lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <1486387772-18837-6-git-send-email-mingo@kernel.org>
Date:   Mon,  6 Feb 2017 14:28:08 +0100
From:   Ingo Molnar <mingo@...nel.org>
To:     linux-kernel@...r.kernel.org
Cc:     Andrew Morton <akpm@...ux-foundation.org>,
        Linus Torvalds <torvalds@...ux-foundation.org>,
        Mike Galbraith <efault@....de>,
        Oleg Nesterov <oleg@...hat.com>,
        Peter Zijlstra <peterz@...radead.org>,
        Thomas Gleixner <tglx@...utronix.de>
Subject: [PATCH 05/89] sched/topology: Split out scheduler topology code from core.c into topology.c

Cc: Mike Galbraith <efault@....de>
Cc: Peter Zijlstra <peterz@...radead.org>
Cc: Thomas Gleixner <tglx@...utronix.de>
Cc: linux-kernel@...r.kernel.org
Signed-off-by: Ingo Molnar <mingo@...nel.org>
---
 kernel/sched/Makefile   |    2 +-
 kernel/sched/core.c     | 1659 +------------------------------------------------------------------
 kernel/sched/sched.h    |   23 +-
 kernel/sched/topology.c | 1658 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 4 files changed, 1684 insertions(+), 1658 deletions(-)

diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile
index 5e59b832ae2b..130ce8ac725b 100644
--- a/kernel/sched/Makefile
+++ b/kernel/sched/Makefile
@@ -18,7 +18,7 @@ endif
 obj-y += core.o loadavg.o clock.o cputime.o
 obj-y += idle_task.o fair.o rt.o deadline.o stop_task.o
 obj-y += wait.o swait.o completion.o idle.o
-obj-$(CONFIG_SMP) += cpupri.o cpudeadline.o
+obj-$(CONFIG_SMP) += cpupri.o cpudeadline.o topology.o
 obj-$(CONFIG_SCHED_AUTOGROUP) += auto_group.o
 obj-$(CONFIG_SCHEDSTATS) += stats.o
 obj-$(CONFIG_SCHED_DEBUG) += debug.o
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index 1cea6c61fb01..e4aa470ed454 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -31,7 +31,6 @@
 #define CREATE_TRACE_POINTS
 #include <trace/events/sched.h>
 
-DEFINE_MUTEX(sched_domains_mutex);
 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 
 /*
@@ -5446,7 +5445,7 @@ int task_can_attach(struct task_struct *p,
 
 #ifdef CONFIG_SMP
 
-static bool sched_smp_initialized __read_mostly;
+bool sched_smp_initialized __read_mostly;
 
 #ifdef CONFIG_NUMA_BALANCING
 /* Migrate current task p to target_cpu */
@@ -5643,7 +5642,7 @@ static void migrate_tasks(struct rq *dead_rq)
 }
 #endif /* CONFIG_HOTPLUG_CPU */
 
-static void set_rq_online(struct rq *rq)
+void set_rq_online(struct rq *rq)
 {
 	if (!rq->online) {
 		const struct sched_class *class;
@@ -5658,7 +5657,7 @@ static void set_rq_online(struct rq *rq)
 	}
 }
 
-static void set_rq_offline(struct rq *rq)
+void set_rq_offline(struct rq *rq)
 {
 	if (rq->online) {
 		const struct sched_class *class;
@@ -5680,1658 +5679,6 @@ static void set_cpu_rq_start_time(unsigned int cpu)
 	rq->age_stamp = sched_clock_cpu(cpu);
 }
 
-/* Protected by sched_domains_mutex: */
-static cpumask_var_t sched_domains_tmpmask;
-
-#ifdef CONFIG_SCHED_DEBUG
-
-static __read_mostly int sched_debug_enabled;
-
-static int __init sched_debug_setup(char *str)
-{
-	sched_debug_enabled = 1;
-
-	return 0;
-}
-early_param("sched_debug", sched_debug_setup);
-
-static inline bool sched_debug(void)
-{
-	return sched_debug_enabled;
-}
-
-static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
-				  struct cpumask *groupmask)
-{
-	struct sched_group *group = sd->groups;
-
-	cpumask_clear(groupmask);
-
-	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
-
-	if (!(sd->flags & SD_LOAD_BALANCE)) {
-		printk("does not load-balance\n");
-		if (sd->parent)
-			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
-					" has parent");
-		return -1;
-	}
-
-	printk(KERN_CONT "span %*pbl level %s\n",
-	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
-
-	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
-		printk(KERN_ERR "ERROR: domain->span does not contain "
-				"CPU%d\n", cpu);
-	}
-	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
-		printk(KERN_ERR "ERROR: domain->groups does not contain"
-				" CPU%d\n", cpu);
-	}
-
-	printk(KERN_DEBUG "%*s groups:", level + 1, "");
-	do {
-		if (!group) {
-			printk("\n");
-			printk(KERN_ERR "ERROR: group is NULL\n");
-			break;
-		}
-
-		if (!cpumask_weight(sched_group_cpus(group))) {
-			printk(KERN_CONT "\n");
-			printk(KERN_ERR "ERROR: empty group\n");
-			break;
-		}
-
-		if (!(sd->flags & SD_OVERLAP) &&
-		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
-			printk(KERN_CONT "\n");
-			printk(KERN_ERR "ERROR: repeated CPUs\n");
-			break;
-		}
-
-		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
-
-		printk(KERN_CONT " %*pbl",
-		       cpumask_pr_args(sched_group_cpus(group)));
-		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
-			printk(KERN_CONT " (cpu_capacity = %lu)",
-				group->sgc->capacity);
-		}
-
-		group = group->next;
-	} while (group != sd->groups);
-	printk(KERN_CONT "\n");
-
-	if (!cpumask_equal(sched_domain_span(sd), groupmask))
-		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
-
-	if (sd->parent &&
-	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
-		printk(KERN_ERR "ERROR: parent span is not a superset "
-			"of domain->span\n");
-	return 0;
-}
-
-static void sched_domain_debug(struct sched_domain *sd, int cpu)
-{
-	int level = 0;
-
-	if (!sched_debug_enabled)
-		return;
-
-	if (!sd) {
-		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
-		return;
-	}
-
-	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
-
-	for (;;) {
-		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
-			break;
-		level++;
-		sd = sd->parent;
-		if (!sd)
-			break;
-	}
-}
-#else /* !CONFIG_SCHED_DEBUG */
-
-# define sched_debug_enabled 0
-# define sched_domain_debug(sd, cpu) do { } while (0)
-static inline bool sched_debug(void)
-{
-	return false;
-}
-#endif /* CONFIG_SCHED_DEBUG */
-
-static int sd_degenerate(struct sched_domain *sd)
-{
-	if (cpumask_weight(sched_domain_span(sd)) == 1)
-		return 1;
-
-	/* Following flags need at least 2 groups */
-	if (sd->flags & (SD_LOAD_BALANCE |
-			 SD_BALANCE_NEWIDLE |
-			 SD_BALANCE_FORK |
-			 SD_BALANCE_EXEC |
-			 SD_SHARE_CPUCAPACITY |
-			 SD_ASYM_CPUCAPACITY |
-			 SD_SHARE_PKG_RESOURCES |
-			 SD_SHARE_POWERDOMAIN)) {
-		if (sd->groups != sd->groups->next)
-			return 0;
-	}
-
-	/* Following flags don't use groups */
-	if (sd->flags & (SD_WAKE_AFFINE))
-		return 0;
-
-	return 1;
-}
-
-static int
-sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
-{
-	unsigned long cflags = sd->flags, pflags = parent->flags;
-
-	if (sd_degenerate(parent))
-		return 1;
-
-	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
-		return 0;
-
-	/* Flags needing groups don't count if only 1 group in parent */
-	if (parent->groups == parent->groups->next) {
-		pflags &= ~(SD_LOAD_BALANCE |
-				SD_BALANCE_NEWIDLE |
-				SD_BALANCE_FORK |
-				SD_BALANCE_EXEC |
-				SD_ASYM_CPUCAPACITY |
-				SD_SHARE_CPUCAPACITY |
-				SD_SHARE_PKG_RESOURCES |
-				SD_PREFER_SIBLING |
-				SD_SHARE_POWERDOMAIN);
-		if (nr_node_ids == 1)
-			pflags &= ~SD_SERIALIZE;
-	}
-	if (~cflags & pflags)
-		return 0;
-
-	return 1;
-}
-
-static void free_rootdomain(struct rcu_head *rcu)
-{
-	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
-
-	cpupri_cleanup(&rd->cpupri);
-	cpudl_cleanup(&rd->cpudl);
-	free_cpumask_var(rd->dlo_mask);
-	free_cpumask_var(rd->rto_mask);
-	free_cpumask_var(rd->online);
-	free_cpumask_var(rd->span);
-	kfree(rd);
-}
-
-static void rq_attach_root(struct rq *rq, struct root_domain *rd)
-{
-	struct root_domain *old_rd = NULL;
-	unsigned long flags;
-
-	raw_spin_lock_irqsave(&rq->lock, flags);
-
-	if (rq->rd) {
-		old_rd = rq->rd;
-
-		if (cpumask_test_cpu(rq->cpu, old_rd->online))
-			set_rq_offline(rq);
-
-		cpumask_clear_cpu(rq->cpu, old_rd->span);
-
-		/*
-		 * If we dont want to free the old_rd yet then
-		 * set old_rd to NULL to skip the freeing later
-		 * in this function:
-		 */
-		if (!atomic_dec_and_test(&old_rd->refcount))
-			old_rd = NULL;
-	}
-
-	atomic_inc(&rd->refcount);
-	rq->rd = rd;
-
-	cpumask_set_cpu(rq->cpu, rd->span);
-	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
-		set_rq_online(rq);
-
-	raw_spin_unlock_irqrestore(&rq->lock, flags);
-
-	if (old_rd)
-		call_rcu_sched(&old_rd->rcu, free_rootdomain);
-}
-
-static int init_rootdomain(struct root_domain *rd)
-{
-	memset(rd, 0, sizeof(*rd));
-
-	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
-		goto out;
-	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
-		goto free_span;
-	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
-		goto free_online;
-	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
-		goto free_dlo_mask;
-
-	init_dl_bw(&rd->dl_bw);
-	if (cpudl_init(&rd->cpudl) != 0)
-		goto free_rto_mask;
-
-	if (cpupri_init(&rd->cpupri) != 0)
-		goto free_cpudl;
-	return 0;
-
-free_cpudl:
-	cpudl_cleanup(&rd->cpudl);
-free_rto_mask:
-	free_cpumask_var(rd->rto_mask);
-free_dlo_mask:
-	free_cpumask_var(rd->dlo_mask);
-free_online:
-	free_cpumask_var(rd->online);
-free_span:
-	free_cpumask_var(rd->span);
-out:
-	return -ENOMEM;
-}
-
-/*
- * By default the system creates a single root-domain with all CPUs as
- * members (mimicking the global state we have today).
- */
-struct root_domain def_root_domain;
-
-static void init_defrootdomain(void)
-{
-	init_rootdomain(&def_root_domain);
-
-	atomic_set(&def_root_domain.refcount, 1);
-}
-
-static struct root_domain *alloc_rootdomain(void)
-{
-	struct root_domain *rd;
-
-	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
-	if (!rd)
-		return NULL;
-
-	if (init_rootdomain(rd) != 0) {
-		kfree(rd);
-		return NULL;
-	}
-
-	return rd;
-}
-
-static void free_sched_groups(struct sched_group *sg, int free_sgc)
-{
-	struct sched_group *tmp, *first;
-
-	if (!sg)
-		return;
-
-	first = sg;
-	do {
-		tmp = sg->next;
-
-		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
-			kfree(sg->sgc);
-
-		kfree(sg);
-		sg = tmp;
-	} while (sg != first);
-}
-
-static void destroy_sched_domain(struct sched_domain *sd)
-{
-	/*
-	 * If its an overlapping domain it has private groups, iterate and
-	 * nuke them all.
-	 */
-	if (sd->flags & SD_OVERLAP) {
-		free_sched_groups(sd->groups, 1);
-	} else if (atomic_dec_and_test(&sd->groups->ref)) {
-		kfree(sd->groups->sgc);
-		kfree(sd->groups);
-	}
-	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
-		kfree(sd->shared);
-	kfree(sd);
-}
-
-static void destroy_sched_domains_rcu(struct rcu_head *rcu)
-{
-	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
-
-	while (sd) {
-		struct sched_domain *parent = sd->parent;
-		destroy_sched_domain(sd);
-		sd = parent;
-	}
-}
-
-static void destroy_sched_domains(struct sched_domain *sd)
-{
-	if (sd)
-		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
-}
-
-/*
- * Keep a special pointer to the highest sched_domain that has
- * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
- * allows us to avoid some pointer chasing select_idle_sibling().
- *
- * Also keep a unique ID per domain (we use the first CPU number in
- * the cpumask of the domain), this allows us to quickly tell if
- * two CPUs are in the same cache domain, see cpus_share_cache().
- */
-DEFINE_PER_CPU(struct sched_domain *, sd_llc);
-DEFINE_PER_CPU(int, sd_llc_size);
-DEFINE_PER_CPU(int, sd_llc_id);
-DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
-DEFINE_PER_CPU(struct sched_domain *, sd_numa);
-DEFINE_PER_CPU(struct sched_domain *, sd_asym);
-
-static void update_top_cache_domain(int cpu)
-{
-	struct sched_domain_shared *sds = NULL;
-	struct sched_domain *sd;
-	int id = cpu;
-	int size = 1;
-
-	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
-	if (sd) {
-		id = cpumask_first(sched_domain_span(sd));
-		size = cpumask_weight(sched_domain_span(sd));
-		sds = sd->shared;
-	}
-
-	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
-	per_cpu(sd_llc_size, cpu) = size;
-	per_cpu(sd_llc_id, cpu) = id;
-	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
-
-	sd = lowest_flag_domain(cpu, SD_NUMA);
-	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
-
-	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
-	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
-}
-
-/*
- * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
- * hold the hotplug lock.
- */
-static void
-cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
-{
-	struct rq *rq = cpu_rq(cpu);
-	struct sched_domain *tmp;
-
-	/* Remove the sched domains which do not contribute to scheduling. */
-	for (tmp = sd; tmp; ) {
-		struct sched_domain *parent = tmp->parent;
-		if (!parent)
-			break;
-
-		if (sd_parent_degenerate(tmp, parent)) {
-			tmp->parent = parent->parent;
-			if (parent->parent)
-				parent->parent->child = tmp;
-			/*
-			 * Transfer SD_PREFER_SIBLING down in case of a
-			 * degenerate parent; the spans match for this
-			 * so the property transfers.
-			 */
-			if (parent->flags & SD_PREFER_SIBLING)
-				tmp->flags |= SD_PREFER_SIBLING;
-			destroy_sched_domain(parent);
-		} else
-			tmp = tmp->parent;
-	}
-
-	if (sd && sd_degenerate(sd)) {
-		tmp = sd;
-		sd = sd->parent;
-		destroy_sched_domain(tmp);
-		if (sd)
-			sd->child = NULL;
-	}
-
-	sched_domain_debug(sd, cpu);
-
-	rq_attach_root(rq, rd);
-	tmp = rq->sd;
-	rcu_assign_pointer(rq->sd, sd);
-	destroy_sched_domains(tmp);
-
-	update_top_cache_domain(cpu);
-}
-
-/* Setup the mask of CPUs configured for isolated domains */
-static int __init isolated_cpu_setup(char *str)
-{
-	int ret;
-
-	alloc_bootmem_cpumask_var(&cpu_isolated_map);
-	ret = cpulist_parse(str, cpu_isolated_map);
-	if (ret) {
-		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
-		return 0;
-	}
-	return 1;
-}
-__setup("isolcpus=", isolated_cpu_setup);
-
-struct s_data {
-	struct sched_domain ** __percpu sd;
-	struct root_domain	*rd;
-};
-
-enum s_alloc {
-	sa_rootdomain,
-	sa_sd,
-	sa_sd_storage,
-	sa_none,
-};
-
-/*
- * Build an iteration mask that can exclude certain CPUs from the upwards
- * domain traversal.
- *
- * Asymmetric node setups can result in situations where the domain tree is of
- * unequal depth, make sure to skip domains that already cover the entire
- * range.
- *
- * In that case build_sched_domains() will have terminated the iteration early
- * and our sibling sd spans will be empty. Domains should always include the
- * CPU they're built on, so check that.
- */
-static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
-{
-	const struct cpumask *span = sched_domain_span(sd);
-	struct sd_data *sdd = sd->private;
-	struct sched_domain *sibling;
-	int i;
-
-	for_each_cpu(i, span) {
-		sibling = *per_cpu_ptr(sdd->sd, i);
-		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
-			continue;
-
-		cpumask_set_cpu(i, sched_group_mask(sg));
-	}
-}
-
-/*
- * Return the canonical balance CPU for this group, this is the first CPU
- * of this group that's also in the iteration mask.
- */
-int group_balance_cpu(struct sched_group *sg)
-{
-	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
-}
-
-static int
-build_overlap_sched_groups(struct sched_domain *sd, int cpu)
-{
-	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
-	const struct cpumask *span = sched_domain_span(sd);
-	struct cpumask *covered = sched_domains_tmpmask;
-	struct sd_data *sdd = sd->private;
-	struct sched_domain *sibling;
-	int i;
-
-	cpumask_clear(covered);
-
-	for_each_cpu(i, span) {
-		struct cpumask *sg_span;
-
-		if (cpumask_test_cpu(i, covered))
-			continue;
-
-		sibling = *per_cpu_ptr(sdd->sd, i);
-
-		/* See the comment near build_group_mask(). */
-		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
-			continue;
-
-		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
-				GFP_KERNEL, cpu_to_node(cpu));
-
-		if (!sg)
-			goto fail;
-
-		sg_span = sched_group_cpus(sg);
-		if (sibling->child)
-			cpumask_copy(sg_span, sched_domain_span(sibling->child));
-		else
-			cpumask_set_cpu(i, sg_span);
-
-		cpumask_or(covered, covered, sg_span);
-
-		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
-		if (atomic_inc_return(&sg->sgc->ref) == 1)
-			build_group_mask(sd, sg);
-
-		/*
-		 * Initialize sgc->capacity such that even if we mess up the
-		 * domains and no possible iteration will get us here, we won't
-		 * die on a /0 trap.
-		 */
-		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
-		sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
-
-		/*
-		 * Make sure the first group of this domain contains the
-		 * canonical balance CPU. Otherwise the sched_domain iteration
-		 * breaks. See update_sg_lb_stats().
-		 */
-		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
-		    group_balance_cpu(sg) == cpu)
-			groups = sg;
-
-		if (!first)
-			first = sg;
-		if (last)
-			last->next = sg;
-		last = sg;
-		last->next = first;
-	}
-	sd->groups = groups;
-
-	return 0;
-
-fail:
-	free_sched_groups(first, 0);
-
-	return -ENOMEM;
-}
-
-static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
-{
-	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
-	struct sched_domain *child = sd->child;
-
-	if (child)
-		cpu = cpumask_first(sched_domain_span(child));
-
-	if (sg) {
-		*sg = *per_cpu_ptr(sdd->sg, cpu);
-		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
-
-		/* For claim_allocations: */
-		atomic_set(&(*sg)->sgc->ref, 1);
-	}
-
-	return cpu;
-}
-
-/*
- * build_sched_groups will build a circular linked list of the groups
- * covered by the given span, and will set each group's ->cpumask correctly,
- * and ->cpu_capacity to 0.
- *
- * Assumes the sched_domain tree is fully constructed
- */
-static int
-build_sched_groups(struct sched_domain *sd, int cpu)
-{
-	struct sched_group *first = NULL, *last = NULL;
-	struct sd_data *sdd = sd->private;
-	const struct cpumask *span = sched_domain_span(sd);
-	struct cpumask *covered;
-	int i;
-
-	get_group(cpu, sdd, &sd->groups);
-	atomic_inc(&sd->groups->ref);
-
-	if (cpu != cpumask_first(span))
-		return 0;
-
-	lockdep_assert_held(&sched_domains_mutex);
-	covered = sched_domains_tmpmask;
-
-	cpumask_clear(covered);
-
-	for_each_cpu(i, span) {
-		struct sched_group *sg;
-		int group, j;
-
-		if (cpumask_test_cpu(i, covered))
-			continue;
-
-		group = get_group(i, sdd, &sg);
-		cpumask_setall(sched_group_mask(sg));
-
-		for_each_cpu(j, span) {
-			if (get_group(j, sdd, NULL) != group)
-				continue;
-
-			cpumask_set_cpu(j, covered);
-			cpumask_set_cpu(j, sched_group_cpus(sg));
-		}
-
-		if (!first)
-			first = sg;
-		if (last)
-			last->next = sg;
-		last = sg;
-	}
-	last->next = first;
-
-	return 0;
-}
-
-/*
- * Initialize sched groups cpu_capacity.
- *
- * cpu_capacity indicates the capacity of sched group, which is used while
- * distributing the load between different sched groups in a sched domain.
- * Typically cpu_capacity for all the groups in a sched domain will be same
- * unless there are asymmetries in the topology. If there are asymmetries,
- * group having more cpu_capacity will pickup more load compared to the
- * group having less cpu_capacity.
- */
-static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
-{
-	struct sched_group *sg = sd->groups;
-
-	WARN_ON(!sg);
-
-	do {
-		int cpu, max_cpu = -1;
-
-		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
-
-		if (!(sd->flags & SD_ASYM_PACKING))
-			goto next;
-
-		for_each_cpu(cpu, sched_group_cpus(sg)) {
-			if (max_cpu < 0)
-				max_cpu = cpu;
-			else if (sched_asym_prefer(cpu, max_cpu))
-				max_cpu = cpu;
-		}
-		sg->asym_prefer_cpu = max_cpu;
-
-next:
-		sg = sg->next;
-	} while (sg != sd->groups);
-
-	if (cpu != group_balance_cpu(sg))
-		return;
-
-	update_group_capacity(sd, cpu);
-}
-
-/*
- * Initializers for schedule domains
- * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
- */
-
-static int default_relax_domain_level = -1;
-int sched_domain_level_max;
-
-static int __init setup_relax_domain_level(char *str)
-{
-	if (kstrtoint(str, 0, &default_relax_domain_level))
-		pr_warn("Unable to set relax_domain_level\n");
-
-	return 1;
-}
-__setup("relax_domain_level=", setup_relax_domain_level);
-
-static void set_domain_attribute(struct sched_domain *sd,
-				 struct sched_domain_attr *attr)
-{
-	int request;
-
-	if (!attr || attr->relax_domain_level < 0) {
-		if (default_relax_domain_level < 0)
-			return;
-		else
-			request = default_relax_domain_level;
-	} else
-		request = attr->relax_domain_level;
-	if (request < sd->level) {
-		/* Turn off idle balance on this domain: */
-		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
-	} else {
-		/* Turn on idle balance on this domain: */
-		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
-	}
-}
-
-static void __sdt_free(const struct cpumask *cpu_map);
-static int __sdt_alloc(const struct cpumask *cpu_map);
-
-static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
-				 const struct cpumask *cpu_map)
-{
-	switch (what) {
-	case sa_rootdomain:
-		if (!atomic_read(&d->rd->refcount))
-			free_rootdomain(&d->rd->rcu);
-		/* Fall through */
-	case sa_sd:
-		free_percpu(d->sd);
-		/* Fall through */
-	case sa_sd_storage:
-		__sdt_free(cpu_map);
-		/* Fall through */
-	case sa_none:
-		break;
-	}
-}
-
-static enum s_alloc
-__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
-{
-	memset(d, 0, sizeof(*d));
-
-	if (__sdt_alloc(cpu_map))
-		return sa_sd_storage;
-	d->sd = alloc_percpu(struct sched_domain *);
-	if (!d->sd)
-		return sa_sd_storage;
-	d->rd = alloc_rootdomain();
-	if (!d->rd)
-		return sa_sd;
-	return sa_rootdomain;
-}
-
-/*
- * NULL the sd_data elements we've used to build the sched_domain and
- * sched_group structure so that the subsequent __free_domain_allocs()
- * will not free the data we're using.
- */
-static void claim_allocations(int cpu, struct sched_domain *sd)
-{
-	struct sd_data *sdd = sd->private;
-
-	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
-	*per_cpu_ptr(sdd->sd, cpu) = NULL;
-
-	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
-		*per_cpu_ptr(sdd->sds, cpu) = NULL;
-
-	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
-		*per_cpu_ptr(sdd->sg, cpu) = NULL;
-
-	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
-		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
-}
-
-#ifdef CONFIG_NUMA
-static int sched_domains_numa_levels;
-enum numa_topology_type sched_numa_topology_type;
-static int *sched_domains_numa_distance;
-int sched_max_numa_distance;
-static struct cpumask ***sched_domains_numa_masks;
-static int sched_domains_curr_level;
-#endif
-
-/*
- * SD_flags allowed in topology descriptions.
- *
- * These flags are purely descriptive of the topology and do not prescribe
- * behaviour. Behaviour is artificial and mapped in the below sd_init()
- * function:
- *
- *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
- *   SD_SHARE_PKG_RESOURCES - describes shared caches
- *   SD_NUMA                - describes NUMA topologies
- *   SD_SHARE_POWERDOMAIN   - describes shared power domain
- *   SD_ASYM_CPUCAPACITY    - describes mixed capacity topologies
- *
- * Odd one out, which beside describing the topology has a quirk also
- * prescribes the desired behaviour that goes along with it:
- *
- *   SD_ASYM_PACKING        - describes SMT quirks
- */
-#define TOPOLOGY_SD_FLAGS		\
-	(SD_SHARE_CPUCAPACITY |		\
-	 SD_SHARE_PKG_RESOURCES |	\
-	 SD_NUMA |			\
-	 SD_ASYM_PACKING |		\
-	 SD_ASYM_CPUCAPACITY |		\
-	 SD_SHARE_POWERDOMAIN)
-
-static struct sched_domain *
-sd_init(struct sched_domain_topology_level *tl,
-	const struct cpumask *cpu_map,
-	struct sched_domain *child, int cpu)
-{
-	struct sd_data *sdd = &tl->data;
-	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
-	int sd_id, sd_weight, sd_flags = 0;
-
-#ifdef CONFIG_NUMA
-	/*
-	 * Ugly hack to pass state to sd_numa_mask()...
-	 */
-	sched_domains_curr_level = tl->numa_level;
-#endif
-
-	sd_weight = cpumask_weight(tl->mask(cpu));
-
-	if (tl->sd_flags)
-		sd_flags = (*tl->sd_flags)();
-	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
-			"wrong sd_flags in topology description\n"))
-		sd_flags &= ~TOPOLOGY_SD_FLAGS;
-
-	*sd = (struct sched_domain){
-		.min_interval		= sd_weight,
-		.max_interval		= 2*sd_weight,
-		.busy_factor		= 32,
-		.imbalance_pct		= 125,
-
-		.cache_nice_tries	= 0,
-		.busy_idx		= 0,
-		.idle_idx		= 0,
-		.newidle_idx		= 0,
-		.wake_idx		= 0,
-		.forkexec_idx		= 0,
-
-		.flags			= 1*SD_LOAD_BALANCE
-					| 1*SD_BALANCE_NEWIDLE
-					| 1*SD_BALANCE_EXEC
-					| 1*SD_BALANCE_FORK
-					| 0*SD_BALANCE_WAKE
-					| 1*SD_WAKE_AFFINE
-					| 0*SD_SHARE_CPUCAPACITY
-					| 0*SD_SHARE_PKG_RESOURCES
-					| 0*SD_SERIALIZE
-					| 0*SD_PREFER_SIBLING
-					| 0*SD_NUMA
-					| sd_flags
-					,
-
-		.last_balance		= jiffies,
-		.balance_interval	= sd_weight,
-		.smt_gain		= 0,
-		.max_newidle_lb_cost	= 0,
-		.next_decay_max_lb_cost	= jiffies,
-		.child			= child,
-#ifdef CONFIG_SCHED_DEBUG
-		.name			= tl->name,
-#endif
-	};
-
-	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
-	sd_id = cpumask_first(sched_domain_span(sd));
-
-	/*
-	 * Convert topological properties into behaviour.
-	 */
-
-	if (sd->flags & SD_ASYM_CPUCAPACITY) {
-		struct sched_domain *t = sd;
-
-		for_each_lower_domain(t)
-			t->flags |= SD_BALANCE_WAKE;
-	}
-
-	if (sd->flags & SD_SHARE_CPUCAPACITY) {
-		sd->flags |= SD_PREFER_SIBLING;
-		sd->imbalance_pct = 110;
-		sd->smt_gain = 1178; /* ~15% */
-
-	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
-		sd->imbalance_pct = 117;
-		sd->cache_nice_tries = 1;
-		sd->busy_idx = 2;
-
-#ifdef CONFIG_NUMA
-	} else if (sd->flags & SD_NUMA) {
-		sd->cache_nice_tries = 2;
-		sd->busy_idx = 3;
-		sd->idle_idx = 2;
-
-		sd->flags |= SD_SERIALIZE;
-		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
-			sd->flags &= ~(SD_BALANCE_EXEC |
-				       SD_BALANCE_FORK |
-				       SD_WAKE_AFFINE);
-		}
-
-#endif
-	} else {
-		sd->flags |= SD_PREFER_SIBLING;
-		sd->cache_nice_tries = 1;
-		sd->busy_idx = 2;
-		sd->idle_idx = 1;
-	}
-
-	/*
-	 * For all levels sharing cache; connect a sched_domain_shared
-	 * instance.
-	 */
-	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
-		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
-		atomic_inc(&sd->shared->ref);
-		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
-	}
-
-	sd->private = sdd;
-
-	return sd;
-}
-
-/*
- * Topology list, bottom-up.
- */
-static struct sched_domain_topology_level default_topology[] = {
-#ifdef CONFIG_SCHED_SMT
-	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
-#endif
-#ifdef CONFIG_SCHED_MC
-	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
-#endif
-	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
-	{ NULL, },
-};
-
-static struct sched_domain_topology_level *sched_domain_topology =
-	default_topology;
-
-#define for_each_sd_topology(tl)			\
-	for (tl = sched_domain_topology; tl->mask; tl++)
-
-void set_sched_topology(struct sched_domain_topology_level *tl)
-{
-	if (WARN_ON_ONCE(sched_smp_initialized))
-		return;
-
-	sched_domain_topology = tl;
-}
-
-#ifdef CONFIG_NUMA
-
-static const struct cpumask *sd_numa_mask(int cpu)
-{
-	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
-}
-
-static void sched_numa_warn(const char *str)
-{
-	static int done = false;
-	int i,j;
-
-	if (done)
-		return;
-
-	done = true;
-
-	printk(KERN_WARNING "ERROR: %s\n\n", str);
-
-	for (i = 0; i < nr_node_ids; i++) {
-		printk(KERN_WARNING "  ");
-		for (j = 0; j < nr_node_ids; j++)
-			printk(KERN_CONT "%02d ", node_distance(i,j));
-		printk(KERN_CONT "\n");
-	}
-	printk(KERN_WARNING "\n");
-}
-
-bool find_numa_distance(int distance)
-{
-	int i;
-
-	if (distance == node_distance(0, 0))
-		return true;
-
-	for (i = 0; i < sched_domains_numa_levels; i++) {
-		if (sched_domains_numa_distance[i] == distance)
-			return true;
-	}
-
-	return false;
-}
-
-/*
- * A system can have three types of NUMA topology:
- * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
- * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
- * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
- *
- * The difference between a glueless mesh topology and a backplane
- * topology lies in whether communication between not directly
- * connected nodes goes through intermediary nodes (where programs
- * could run), or through backplane controllers. This affects
- * placement of programs.
- *
- * The type of topology can be discerned with the following tests:
- * - If the maximum distance between any nodes is 1 hop, the system
- *   is directly connected.
- * - If for two nodes A and B, located N > 1 hops away from each other,
- *   there is an intermediary node C, which is < N hops away from both
- *   nodes A and B, the system is a glueless mesh.
- */
-static void init_numa_topology_type(void)
-{
-	int a, b, c, n;
-
-	n = sched_max_numa_distance;
-
-	if (sched_domains_numa_levels <= 1) {
-		sched_numa_topology_type = NUMA_DIRECT;
-		return;
-	}
-
-	for_each_online_node(a) {
-		for_each_online_node(b) {
-			/* Find two nodes furthest removed from each other. */
-			if (node_distance(a, b) < n)
-				continue;
-
-			/* Is there an intermediary node between a and b? */
-			for_each_online_node(c) {
-				if (node_distance(a, c) < n &&
-				    node_distance(b, c) < n) {
-					sched_numa_topology_type =
-							NUMA_GLUELESS_MESH;
-					return;
-				}
-			}
-
-			sched_numa_topology_type = NUMA_BACKPLANE;
-			return;
-		}
-	}
-}
-
-static void sched_init_numa(void)
-{
-	int next_distance, curr_distance = node_distance(0, 0);
-	struct sched_domain_topology_level *tl;
-	int level = 0;
-	int i, j, k;
-
-	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
-	if (!sched_domains_numa_distance)
-		return;
-
-	/*
-	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
-	 * unique distances in the node_distance() table.
-	 *
-	 * Assumes node_distance(0,j) includes all distances in
-	 * node_distance(i,j) in order to avoid cubic time.
-	 */
-	next_distance = curr_distance;
-	for (i = 0; i < nr_node_ids; i++) {
-		for (j = 0; j < nr_node_ids; j++) {
-			for (k = 0; k < nr_node_ids; k++) {
-				int distance = node_distance(i, k);
-
-				if (distance > curr_distance &&
-				    (distance < next_distance ||
-				     next_distance == curr_distance))
-					next_distance = distance;
-
-				/*
-				 * While not a strong assumption it would be nice to know
-				 * about cases where if node A is connected to B, B is not
-				 * equally connected to A.
-				 */
-				if (sched_debug() && node_distance(k, i) != distance)
-					sched_numa_warn("Node-distance not symmetric");
-
-				if (sched_debug() && i && !find_numa_distance(distance))
-					sched_numa_warn("Node-0 not representative");
-			}
-			if (next_distance != curr_distance) {
-				sched_domains_numa_distance[level++] = next_distance;
-				sched_domains_numa_levels = level;
-				curr_distance = next_distance;
-			} else break;
-		}
-
-		/*
-		 * In case of sched_debug() we verify the above assumption.
-		 */
-		if (!sched_debug())
-			break;
-	}
-
-	if (!level)
-		return;
-
-	/*
-	 * 'level' contains the number of unique distances, excluding the
-	 * identity distance node_distance(i,i).
-	 *
-	 * The sched_domains_numa_distance[] array includes the actual distance
-	 * numbers.
-	 */
-
-	/*
-	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
-	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
-	 * the array will contain less then 'level' members. This could be
-	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
-	 * in other functions.
-	 *
-	 * We reset it to 'level' at the end of this function.
-	 */
-	sched_domains_numa_levels = 0;
-
-	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
-	if (!sched_domains_numa_masks)
-		return;
-
-	/*
-	 * Now for each level, construct a mask per node which contains all
-	 * CPUs of nodes that are that many hops away from us.
-	 */
-	for (i = 0; i < level; i++) {
-		sched_domains_numa_masks[i] =
-			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
-		if (!sched_domains_numa_masks[i])
-			return;
-
-		for (j = 0; j < nr_node_ids; j++) {
-			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
-			if (!mask)
-				return;
-
-			sched_domains_numa_masks[i][j] = mask;
-
-			for_each_node(k) {
-				if (node_distance(j, k) > sched_domains_numa_distance[i])
-					continue;
-
-				cpumask_or(mask, mask, cpumask_of_node(k));
-			}
-		}
-	}
-
-	/* Compute default topology size */
-	for (i = 0; sched_domain_topology[i].mask; i++);
-
-	tl = kzalloc((i + level + 1) *
-			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
-	if (!tl)
-		return;
-
-	/*
-	 * Copy the default topology bits..
-	 */
-	for (i = 0; sched_domain_topology[i].mask; i++)
-		tl[i] = sched_domain_topology[i];
-
-	/*
-	 * .. and append 'j' levels of NUMA goodness.
-	 */
-	for (j = 0; j < level; i++, j++) {
-		tl[i] = (struct sched_domain_topology_level){
-			.mask = sd_numa_mask,
-			.sd_flags = cpu_numa_flags,
-			.flags = SDTL_OVERLAP,
-			.numa_level = j,
-			SD_INIT_NAME(NUMA)
-		};
-	}
-
-	sched_domain_topology = tl;
-
-	sched_domains_numa_levels = level;
-	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
-
-	init_numa_topology_type();
-}
-
-static void sched_domains_numa_masks_set(unsigned int cpu)
-{
-	int node = cpu_to_node(cpu);
-	int i, j;
-
-	for (i = 0; i < sched_domains_numa_levels; i++) {
-		for (j = 0; j < nr_node_ids; j++) {
-			if (node_distance(j, node) <= sched_domains_numa_distance[i])
-				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
-		}
-	}
-}
-
-static void sched_domains_numa_masks_clear(unsigned int cpu)
-{
-	int i, j;
-
-	for (i = 0; i < sched_domains_numa_levels; i++) {
-		for (j = 0; j < nr_node_ids; j++)
-			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
-	}
-}
-
-#else
-static inline void sched_init_numa(void) { }
-static void sched_domains_numa_masks_set(unsigned int cpu) { }
-static void sched_domains_numa_masks_clear(unsigned int cpu) { }
-#endif /* CONFIG_NUMA */
-
-static int __sdt_alloc(const struct cpumask *cpu_map)
-{
-	struct sched_domain_topology_level *tl;
-	int j;
-
-	for_each_sd_topology(tl) {
-		struct sd_data *sdd = &tl->data;
-
-		sdd->sd = alloc_percpu(struct sched_domain *);
-		if (!sdd->sd)
-			return -ENOMEM;
-
-		sdd->sds = alloc_percpu(struct sched_domain_shared *);
-		if (!sdd->sds)
-			return -ENOMEM;
-
-		sdd->sg = alloc_percpu(struct sched_group *);
-		if (!sdd->sg)
-			return -ENOMEM;
-
-		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
-		if (!sdd->sgc)
-			return -ENOMEM;
-
-		for_each_cpu(j, cpu_map) {
-			struct sched_domain *sd;
-			struct sched_domain_shared *sds;
-			struct sched_group *sg;
-			struct sched_group_capacity *sgc;
-
-			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
-					GFP_KERNEL, cpu_to_node(j));
-			if (!sd)
-				return -ENOMEM;
-
-			*per_cpu_ptr(sdd->sd, j) = sd;
-
-			sds = kzalloc_node(sizeof(struct sched_domain_shared),
-					GFP_KERNEL, cpu_to_node(j));
-			if (!sds)
-				return -ENOMEM;
-
-			*per_cpu_ptr(sdd->sds, j) = sds;
-
-			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
-					GFP_KERNEL, cpu_to_node(j));
-			if (!sg)
-				return -ENOMEM;
-
-			sg->next = sg;
-
-			*per_cpu_ptr(sdd->sg, j) = sg;
-
-			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
-					GFP_KERNEL, cpu_to_node(j));
-			if (!sgc)
-				return -ENOMEM;
-
-			*per_cpu_ptr(sdd->sgc, j) = sgc;
-		}
-	}
-
-	return 0;
-}
-
-static void __sdt_free(const struct cpumask *cpu_map)
-{
-	struct sched_domain_topology_level *tl;
-	int j;
-
-	for_each_sd_topology(tl) {
-		struct sd_data *sdd = &tl->data;
-
-		for_each_cpu(j, cpu_map) {
-			struct sched_domain *sd;
-
-			if (sdd->sd) {
-				sd = *per_cpu_ptr(sdd->sd, j);
-				if (sd && (sd->flags & SD_OVERLAP))
-					free_sched_groups(sd->groups, 0);
-				kfree(*per_cpu_ptr(sdd->sd, j));
-			}
-
-			if (sdd->sds)
-				kfree(*per_cpu_ptr(sdd->sds, j));
-			if (sdd->sg)
-				kfree(*per_cpu_ptr(sdd->sg, j));
-			if (sdd->sgc)
-				kfree(*per_cpu_ptr(sdd->sgc, j));
-		}
-		free_percpu(sdd->sd);
-		sdd->sd = NULL;
-		free_percpu(sdd->sds);
-		sdd->sds = NULL;
-		free_percpu(sdd->sg);
-		sdd->sg = NULL;
-		free_percpu(sdd->sgc);
-		sdd->sgc = NULL;
-	}
-}
-
-struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
-		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
-		struct sched_domain *child, int cpu)
-{
-	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
-
-	if (child) {
-		sd->level = child->level + 1;
-		sched_domain_level_max = max(sched_domain_level_max, sd->level);
-		child->parent = sd;
-
-		if (!cpumask_subset(sched_domain_span(child),
-				    sched_domain_span(sd))) {
-			pr_err("BUG: arch topology borken\n");
-#ifdef CONFIG_SCHED_DEBUG
-			pr_err("     the %s domain not a subset of the %s domain\n",
-					child->name, sd->name);
-#endif
-			/* Fixup, ensure @sd has at least @child cpus. */
-			cpumask_or(sched_domain_span(sd),
-				   sched_domain_span(sd),
-				   sched_domain_span(child));
-		}
-
-	}
-	set_domain_attribute(sd, attr);
-
-	return sd;
-}
-
-/*
- * Build sched domains for a given set of CPUs and attach the sched domains
- * to the individual CPUs
- */
-static int
-build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
-{
-	enum s_alloc alloc_state;
-	struct sched_domain *sd;
-	struct s_data d;
-	struct rq *rq = NULL;
-	int i, ret = -ENOMEM;
-
-	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
-	if (alloc_state != sa_rootdomain)
-		goto error;
-
-	/* Set up domains for CPUs specified by the cpu_map: */
-	for_each_cpu(i, cpu_map) {
-		struct sched_domain_topology_level *tl;
-
-		sd = NULL;
-		for_each_sd_topology(tl) {
-			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
-			if (tl == sched_domain_topology)
-				*per_cpu_ptr(d.sd, i) = sd;
-			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
-				sd->flags |= SD_OVERLAP;
-			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
-				break;
-		}
-	}
-
-	/* Build the groups for the domains */
-	for_each_cpu(i, cpu_map) {
-		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
-			sd->span_weight = cpumask_weight(sched_domain_span(sd));
-			if (sd->flags & SD_OVERLAP) {
-				if (build_overlap_sched_groups(sd, i))
-					goto error;
-			} else {
-				if (build_sched_groups(sd, i))
-					goto error;
-			}
-		}
-	}
-
-	/* Calculate CPU capacity for physical packages and nodes */
-	for (i = nr_cpumask_bits-1; i >= 0; i--) {
-		if (!cpumask_test_cpu(i, cpu_map))
-			continue;
-
-		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
-			claim_allocations(i, sd);
-			init_sched_groups_capacity(i, sd);
-		}
-	}
-
-	/* Attach the domains */
-	rcu_read_lock();
-	for_each_cpu(i, cpu_map) {
-		rq = cpu_rq(i);
-		sd = *per_cpu_ptr(d.sd, i);
-
-		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
-		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
-			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
-
-		cpu_attach_domain(sd, d.rd, i);
-	}
-	rcu_read_unlock();
-
-	if (rq && sched_debug_enabled) {
-		pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
-			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
-	}
-
-	ret = 0;
-error:
-	__free_domain_allocs(&d, alloc_state, cpu_map);
-	return ret;
-}
-
-/* Current sched domains: */
-static cpumask_var_t			*doms_cur;
-
-/* Number of sched domains in 'doms_cur': */
-static int				ndoms_cur;
-
-/* Attribues of custom domains in 'doms_cur' */
-static struct sched_domain_attr		*dattr_cur;
-
-/*
- * Special case: If a kmalloc() of a doms_cur partition (array of
- * cpumask) fails, then fallback to a single sched domain,
- * as determined by the single cpumask fallback_doms.
- */
-static cpumask_var_t			fallback_doms;
-
-/*
- * arch_update_cpu_topology lets virtualized architectures update the
- * CPU core maps. It is supposed to return 1 if the topology changed
- * or 0 if it stayed the same.
- */
-int __weak arch_update_cpu_topology(void)
-{
-	return 0;
-}
-
-cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
-{
-	int i;
-	cpumask_var_t *doms;
-
-	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
-	if (!doms)
-		return NULL;
-	for (i = 0; i < ndoms; i++) {
-		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
-			free_sched_domains(doms, i);
-			return NULL;
-		}
-	}
-	return doms;
-}
-
-void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
-{
-	unsigned int i;
-	for (i = 0; i < ndoms; i++)
-		free_cpumask_var(doms[i]);
-	kfree(doms);
-}
-
-/*
- * Set up scheduler domains and groups. Callers must hold the hotplug lock.
- * For now this just excludes isolated CPUs, but could be used to
- * exclude other special cases in the future.
- */
-static int init_sched_domains(const struct cpumask *cpu_map)
-{
-	int err;
-
-	arch_update_cpu_topology();
-	ndoms_cur = 1;
-	doms_cur = alloc_sched_domains(ndoms_cur);
-	if (!doms_cur)
-		doms_cur = &fallback_doms;
-	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
-	err = build_sched_domains(doms_cur[0], NULL);
-	register_sched_domain_sysctl();
-
-	return err;
-}
-
-/*
- * Detach sched domains from a group of CPUs specified in cpu_map
- * These CPUs will now be attached to the NULL domain
- */
-static void detach_destroy_domains(const struct cpumask *cpu_map)
-{
-	int i;
-
-	rcu_read_lock();
-	for_each_cpu(i, cpu_map)
-		cpu_attach_domain(NULL, &def_root_domain, i);
-	rcu_read_unlock();
-}
-
-/* handle null as "default" */
-static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
-			struct sched_domain_attr *new, int idx_new)
-{
-	struct sched_domain_attr tmp;
-
-	/* Fast path: */
-	if (!new && !cur)
-		return 1;
-
-	tmp = SD_ATTR_INIT;
-	return !memcmp(cur ? (cur + idx_cur) : &tmp,
-			new ? (new + idx_new) : &tmp,
-			sizeof(struct sched_domain_attr));
-}
-
-/*
- * Partition sched domains as specified by the 'ndoms_new'
- * cpumasks in the array doms_new[] of cpumasks. This compares
- * doms_new[] to the current sched domain partitioning, doms_cur[].
- * It destroys each deleted domain and builds each new domain.
- *
- * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
- * The masks don't intersect (don't overlap.) We should setup one
- * sched domain for each mask. CPUs not in any of the cpumasks will
- * not be load balanced. If the same cpumask appears both in the
- * current 'doms_cur' domains and in the new 'doms_new', we can leave
- * it as it is.
- *
- * The passed in 'doms_new' should be allocated using
- * alloc_sched_domains.  This routine takes ownership of it and will
- * free_sched_domains it when done with it. If the caller failed the
- * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
- * and partition_sched_domains() will fallback to the single partition
- * 'fallback_doms', it also forces the domains to be rebuilt.
- *
- * If doms_new == NULL it will be replaced with cpu_online_mask.
- * ndoms_new == 0 is a special case for destroying existing domains,
- * and it will not create the default domain.
- *
- * Call with hotplug lock held
- */
-void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
-			     struct sched_domain_attr *dattr_new)
-{
-	int i, j, n;
-	int new_topology;
-
-	mutex_lock(&sched_domains_mutex);
-
-	/* Always unregister in case we don't destroy any domains: */
-	unregister_sched_domain_sysctl();
-
-	/* Let the architecture update CPU core mappings: */
-	new_topology = arch_update_cpu_topology();
-
-	n = doms_new ? ndoms_new : 0;
-
-	/* Destroy deleted domains: */
-	for (i = 0; i < ndoms_cur; i++) {
-		for (j = 0; j < n && !new_topology; j++) {
-			if (cpumask_equal(doms_cur[i], doms_new[j])
-			    && dattrs_equal(dattr_cur, i, dattr_new, j))
-				goto match1;
-		}
-		/* No match - a current sched domain not in new doms_new[] */
-		detach_destroy_domains(doms_cur[i]);
-match1:
-		;
-	}
-
-	n = ndoms_cur;
-	if (doms_new == NULL) {
-		n = 0;
-		doms_new = &fallback_doms;
-		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
-		WARN_ON_ONCE(dattr_new);
-	}
-
-	/* Build new domains: */
-	for (i = 0; i < ndoms_new; i++) {
-		for (j = 0; j < n && !new_topology; j++) {
-			if (cpumask_equal(doms_new[i], doms_cur[j])
-			    && dattrs_equal(dattr_new, i, dattr_cur, j))
-				goto match2;
-		}
-		/* No match - add a new doms_new */
-		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
-match2:
-		;
-	}
-
-	/* Remember the new sched domains: */
-	if (doms_cur != &fallback_doms)
-		free_sched_domains(doms_cur, ndoms_cur);
-
-	kfree(dattr_cur);
-	doms_cur = doms_new;
-	dattr_cur = dattr_new;
-	ndoms_cur = ndoms_new;
-
-	register_sched_domain_sysctl();
-
-	mutex_unlock(&sched_domains_mutex);
-}
-
 /*
  * used to mark begin/end of suspend/resume:
  */
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index 8ff5cc539e8a..17ed94b9b413 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -223,7 +223,7 @@ bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
 }
 
-extern struct mutex sched_domains_mutex;
+extern void init_dl_bw(struct dl_bw *dl_b);
 
 #ifdef CONFIG_CGROUP_SCHED
 
@@ -584,6 +584,13 @@ struct root_domain {
 };
 
 extern struct root_domain def_root_domain;
+extern struct mutex sched_domains_mutex;
+extern cpumask_var_t fallback_doms;
+extern cpumask_var_t sched_domains_tmpmask;
+
+extern void init_defrootdomain(void);
+extern int init_sched_domains(const struct cpumask *cpu_map);
+extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
 
 #endif /* CONFIG_SMP */
 
@@ -886,6 +893,16 @@ extern int sched_max_numa_distance;
 extern bool find_numa_distance(int distance);
 #endif
 
+#ifdef CONFIG_NUMA
+extern void sched_init_numa(void);
+extern void sched_domains_numa_masks_set(unsigned int cpu);
+extern void sched_domains_numa_masks_clear(unsigned int cpu);
+#else
+static inline void sched_init_numa(void) { }
+static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
+static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
+#endif
+
 #ifdef CONFIG_NUMA_BALANCING
 /* The regions in numa_faults array from task_struct */
 enum numa_faults_stats {
@@ -1752,6 +1769,10 @@ static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
 		__release(rq2->lock);
 }
 
+extern void set_rq_online (struct rq *rq);
+extern void set_rq_offline(struct rq *rq);
+extern bool sched_smp_initialized;
+
 #else /* CONFIG_SMP */
 
 /*
diff --git a/kernel/sched/topology.c b/kernel/sched/topology.c
new file mode 100644
index 000000000000..1b0b4fb12837
--- /dev/null
+++ b/kernel/sched/topology.c
@@ -0,0 +1,1658 @@
+/*
+ * Scheduler topology setup/handling methods
+ */
+#include <linux/sched.h>
+#include <linux/mutex.h>
+
+#include "sched.h"
+
+DEFINE_MUTEX(sched_domains_mutex);
+
+/* Protected by sched_domains_mutex: */
+cpumask_var_t sched_domains_tmpmask;
+
+#ifdef CONFIG_SCHED_DEBUG
+
+static __read_mostly int sched_debug_enabled;
+
+static int __init sched_debug_setup(char *str)
+{
+	sched_debug_enabled = 1;
+
+	return 0;
+}
+early_param("sched_debug", sched_debug_setup);
+
+static inline bool sched_debug(void)
+{
+	return sched_debug_enabled;
+}
+
+static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
+				  struct cpumask *groupmask)
+{
+	struct sched_group *group = sd->groups;
+
+	cpumask_clear(groupmask);
+
+	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
+
+	if (!(sd->flags & SD_LOAD_BALANCE)) {
+		printk("does not load-balance\n");
+		if (sd->parent)
+			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
+					" has parent");
+		return -1;
+	}
+
+	printk(KERN_CONT "span %*pbl level %s\n",
+	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
+
+	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
+		printk(KERN_ERR "ERROR: domain->span does not contain "
+				"CPU%d\n", cpu);
+	}
+	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
+		printk(KERN_ERR "ERROR: domain->groups does not contain"
+				" CPU%d\n", cpu);
+	}
+
+	printk(KERN_DEBUG "%*s groups:", level + 1, "");
+	do {
+		if (!group) {
+			printk("\n");
+			printk(KERN_ERR "ERROR: group is NULL\n");
+			break;
+		}
+
+		if (!cpumask_weight(sched_group_cpus(group))) {
+			printk(KERN_CONT "\n");
+			printk(KERN_ERR "ERROR: empty group\n");
+			break;
+		}
+
+		if (!(sd->flags & SD_OVERLAP) &&
+		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
+			printk(KERN_CONT "\n");
+			printk(KERN_ERR "ERROR: repeated CPUs\n");
+			break;
+		}
+
+		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
+
+		printk(KERN_CONT " %*pbl",
+		       cpumask_pr_args(sched_group_cpus(group)));
+		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
+			printk(KERN_CONT " (cpu_capacity = %lu)",
+				group->sgc->capacity);
+		}
+
+		group = group->next;
+	} while (group != sd->groups);
+	printk(KERN_CONT "\n");
+
+	if (!cpumask_equal(sched_domain_span(sd), groupmask))
+		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
+
+	if (sd->parent &&
+	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
+		printk(KERN_ERR "ERROR: parent span is not a superset "
+			"of domain->span\n");
+	return 0;
+}
+
+static void sched_domain_debug(struct sched_domain *sd, int cpu)
+{
+	int level = 0;
+
+	if (!sched_debug_enabled)
+		return;
+
+	if (!sd) {
+		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
+		return;
+	}
+
+	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
+
+	for (;;) {
+		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
+			break;
+		level++;
+		sd = sd->parent;
+		if (!sd)
+			break;
+	}
+}
+#else /* !CONFIG_SCHED_DEBUG */
+
+# define sched_debug_enabled 0
+# define sched_domain_debug(sd, cpu) do { } while (0)
+static inline bool sched_debug(void)
+{
+	return false;
+}
+#endif /* CONFIG_SCHED_DEBUG */
+
+static int sd_degenerate(struct sched_domain *sd)
+{
+	if (cpumask_weight(sched_domain_span(sd)) == 1)
+		return 1;
+
+	/* Following flags need at least 2 groups */
+	if (sd->flags & (SD_LOAD_BALANCE |
+			 SD_BALANCE_NEWIDLE |
+			 SD_BALANCE_FORK |
+			 SD_BALANCE_EXEC |
+			 SD_SHARE_CPUCAPACITY |
+			 SD_ASYM_CPUCAPACITY |
+			 SD_SHARE_PKG_RESOURCES |
+			 SD_SHARE_POWERDOMAIN)) {
+		if (sd->groups != sd->groups->next)
+			return 0;
+	}
+
+	/* Following flags don't use groups */
+	if (sd->flags & (SD_WAKE_AFFINE))
+		return 0;
+
+	return 1;
+}
+
+static int
+sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
+{
+	unsigned long cflags = sd->flags, pflags = parent->flags;
+
+	if (sd_degenerate(parent))
+		return 1;
+
+	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
+		return 0;
+
+	/* Flags needing groups don't count if only 1 group in parent */
+	if (parent->groups == parent->groups->next) {
+		pflags &= ~(SD_LOAD_BALANCE |
+				SD_BALANCE_NEWIDLE |
+				SD_BALANCE_FORK |
+				SD_BALANCE_EXEC |
+				SD_ASYM_CPUCAPACITY |
+				SD_SHARE_CPUCAPACITY |
+				SD_SHARE_PKG_RESOURCES |
+				SD_PREFER_SIBLING |
+				SD_SHARE_POWERDOMAIN);
+		if (nr_node_ids == 1)
+			pflags &= ~SD_SERIALIZE;
+	}
+	if (~cflags & pflags)
+		return 0;
+
+	return 1;
+}
+
+static void free_rootdomain(struct rcu_head *rcu)
+{
+	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
+
+	cpupri_cleanup(&rd->cpupri);
+	cpudl_cleanup(&rd->cpudl);
+	free_cpumask_var(rd->dlo_mask);
+	free_cpumask_var(rd->rto_mask);
+	free_cpumask_var(rd->online);
+	free_cpumask_var(rd->span);
+	kfree(rd);
+}
+
+void rq_attach_root(struct rq *rq, struct root_domain *rd)
+{
+	struct root_domain *old_rd = NULL;
+	unsigned long flags;
+
+	raw_spin_lock_irqsave(&rq->lock, flags);
+
+	if (rq->rd) {
+		old_rd = rq->rd;
+
+		if (cpumask_test_cpu(rq->cpu, old_rd->online))
+			set_rq_offline(rq);
+
+		cpumask_clear_cpu(rq->cpu, old_rd->span);
+
+		/*
+		 * If we dont want to free the old_rd yet then
+		 * set old_rd to NULL to skip the freeing later
+		 * in this function:
+		 */
+		if (!atomic_dec_and_test(&old_rd->refcount))
+			old_rd = NULL;
+	}
+
+	atomic_inc(&rd->refcount);
+	rq->rd = rd;
+
+	cpumask_set_cpu(rq->cpu, rd->span);
+	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
+		set_rq_online(rq);
+
+	raw_spin_unlock_irqrestore(&rq->lock, flags);
+
+	if (old_rd)
+		call_rcu_sched(&old_rd->rcu, free_rootdomain);
+}
+
+static int init_rootdomain(struct root_domain *rd)
+{
+	memset(rd, 0, sizeof(*rd));
+
+	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
+		goto out;
+	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
+		goto free_span;
+	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
+		goto free_online;
+	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
+		goto free_dlo_mask;
+
+	init_dl_bw(&rd->dl_bw);
+	if (cpudl_init(&rd->cpudl) != 0)
+		goto free_rto_mask;
+
+	if (cpupri_init(&rd->cpupri) != 0)
+		goto free_cpudl;
+	return 0;
+
+free_cpudl:
+	cpudl_cleanup(&rd->cpudl);
+free_rto_mask:
+	free_cpumask_var(rd->rto_mask);
+free_dlo_mask:
+	free_cpumask_var(rd->dlo_mask);
+free_online:
+	free_cpumask_var(rd->online);
+free_span:
+	free_cpumask_var(rd->span);
+out:
+	return -ENOMEM;
+}
+
+/*
+ * By default the system creates a single root-domain with all CPUs as
+ * members (mimicking the global state we have today).
+ */
+struct root_domain def_root_domain;
+
+void init_defrootdomain(void)
+{
+	init_rootdomain(&def_root_domain);
+
+	atomic_set(&def_root_domain.refcount, 1);
+}
+
+static struct root_domain *alloc_rootdomain(void)
+{
+	struct root_domain *rd;
+
+	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
+	if (!rd)
+		return NULL;
+
+	if (init_rootdomain(rd) != 0) {
+		kfree(rd);
+		return NULL;
+	}
+
+	return rd;
+}
+
+static void free_sched_groups(struct sched_group *sg, int free_sgc)
+{
+	struct sched_group *tmp, *first;
+
+	if (!sg)
+		return;
+
+	first = sg;
+	do {
+		tmp = sg->next;
+
+		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
+			kfree(sg->sgc);
+
+		kfree(sg);
+		sg = tmp;
+	} while (sg != first);
+}
+
+static void destroy_sched_domain(struct sched_domain *sd)
+{
+	/*
+	 * If its an overlapping domain it has private groups, iterate and
+	 * nuke them all.
+	 */
+	if (sd->flags & SD_OVERLAP) {
+		free_sched_groups(sd->groups, 1);
+	} else if (atomic_dec_and_test(&sd->groups->ref)) {
+		kfree(sd->groups->sgc);
+		kfree(sd->groups);
+	}
+	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
+		kfree(sd->shared);
+	kfree(sd);
+}
+
+static void destroy_sched_domains_rcu(struct rcu_head *rcu)
+{
+	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
+
+	while (sd) {
+		struct sched_domain *parent = sd->parent;
+		destroy_sched_domain(sd);
+		sd = parent;
+	}
+}
+
+static void destroy_sched_domains(struct sched_domain *sd)
+{
+	if (sd)
+		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
+}
+
+/*
+ * Keep a special pointer to the highest sched_domain that has
+ * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
+ * allows us to avoid some pointer chasing select_idle_sibling().
+ *
+ * Also keep a unique ID per domain (we use the first CPU number in
+ * the cpumask of the domain), this allows us to quickly tell if
+ * two CPUs are in the same cache domain, see cpus_share_cache().
+ */
+DEFINE_PER_CPU(struct sched_domain *, sd_llc);
+DEFINE_PER_CPU(int, sd_llc_size);
+DEFINE_PER_CPU(int, sd_llc_id);
+DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
+DEFINE_PER_CPU(struct sched_domain *, sd_numa);
+DEFINE_PER_CPU(struct sched_domain *, sd_asym);
+
+static void update_top_cache_domain(int cpu)
+{
+	struct sched_domain_shared *sds = NULL;
+	struct sched_domain *sd;
+	int id = cpu;
+	int size = 1;
+
+	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
+	if (sd) {
+		id = cpumask_first(sched_domain_span(sd));
+		size = cpumask_weight(sched_domain_span(sd));
+		sds = sd->shared;
+	}
+
+	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
+	per_cpu(sd_llc_size, cpu) = size;
+	per_cpu(sd_llc_id, cpu) = id;
+	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
+
+	sd = lowest_flag_domain(cpu, SD_NUMA);
+	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
+
+	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
+	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
+}
+
+/*
+ * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
+ * hold the hotplug lock.
+ */
+static void
+cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
+{
+	struct rq *rq = cpu_rq(cpu);
+	struct sched_domain *tmp;
+
+	/* Remove the sched domains which do not contribute to scheduling. */
+	for (tmp = sd; tmp; ) {
+		struct sched_domain *parent = tmp->parent;
+		if (!parent)
+			break;
+
+		if (sd_parent_degenerate(tmp, parent)) {
+			tmp->parent = parent->parent;
+			if (parent->parent)
+				parent->parent->child = tmp;
+			/*
+			 * Transfer SD_PREFER_SIBLING down in case of a
+			 * degenerate parent; the spans match for this
+			 * so the property transfers.
+			 */
+			if (parent->flags & SD_PREFER_SIBLING)
+				tmp->flags |= SD_PREFER_SIBLING;
+			destroy_sched_domain(parent);
+		} else
+			tmp = tmp->parent;
+	}
+
+	if (sd && sd_degenerate(sd)) {
+		tmp = sd;
+		sd = sd->parent;
+		destroy_sched_domain(tmp);
+		if (sd)
+			sd->child = NULL;
+	}
+
+	sched_domain_debug(sd, cpu);
+
+	rq_attach_root(rq, rd);
+	tmp = rq->sd;
+	rcu_assign_pointer(rq->sd, sd);
+	destroy_sched_domains(tmp);
+
+	update_top_cache_domain(cpu);
+}
+
+/* Setup the mask of CPUs configured for isolated domains */
+static int __init isolated_cpu_setup(char *str)
+{
+	int ret;
+
+	alloc_bootmem_cpumask_var(&cpu_isolated_map);
+	ret = cpulist_parse(str, cpu_isolated_map);
+	if (ret) {
+		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
+		return 0;
+	}
+	return 1;
+}
+__setup("isolcpus=", isolated_cpu_setup);
+
+struct s_data {
+	struct sched_domain ** __percpu sd;
+	struct root_domain	*rd;
+};
+
+enum s_alloc {
+	sa_rootdomain,
+	sa_sd,
+	sa_sd_storage,
+	sa_none,
+};
+
+/*
+ * Build an iteration mask that can exclude certain CPUs from the upwards
+ * domain traversal.
+ *
+ * Asymmetric node setups can result in situations where the domain tree is of
+ * unequal depth, make sure to skip domains that already cover the entire
+ * range.
+ *
+ * In that case build_sched_domains() will have terminated the iteration early
+ * and our sibling sd spans will be empty. Domains should always include the
+ * CPU they're built on, so check that.
+ */
+static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
+{
+	const struct cpumask *span = sched_domain_span(sd);
+	struct sd_data *sdd = sd->private;
+	struct sched_domain *sibling;
+	int i;
+
+	for_each_cpu(i, span) {
+		sibling = *per_cpu_ptr(sdd->sd, i);
+		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
+			continue;
+
+		cpumask_set_cpu(i, sched_group_mask(sg));
+	}
+}
+
+/*
+ * Return the canonical balance CPU for this group, this is the first CPU
+ * of this group that's also in the iteration mask.
+ */
+int group_balance_cpu(struct sched_group *sg)
+{
+	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
+}
+
+static int
+build_overlap_sched_groups(struct sched_domain *sd, int cpu)
+{
+	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
+	const struct cpumask *span = sched_domain_span(sd);
+	struct cpumask *covered = sched_domains_tmpmask;
+	struct sd_data *sdd = sd->private;
+	struct sched_domain *sibling;
+	int i;
+
+	cpumask_clear(covered);
+
+	for_each_cpu(i, span) {
+		struct cpumask *sg_span;
+
+		if (cpumask_test_cpu(i, covered))
+			continue;
+
+		sibling = *per_cpu_ptr(sdd->sd, i);
+
+		/* See the comment near build_group_mask(). */
+		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
+			continue;
+
+		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
+				GFP_KERNEL, cpu_to_node(cpu));
+
+		if (!sg)
+			goto fail;
+
+		sg_span = sched_group_cpus(sg);
+		if (sibling->child)
+			cpumask_copy(sg_span, sched_domain_span(sibling->child));
+		else
+			cpumask_set_cpu(i, sg_span);
+
+		cpumask_or(covered, covered, sg_span);
+
+		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
+		if (atomic_inc_return(&sg->sgc->ref) == 1)
+			build_group_mask(sd, sg);
+
+		/*
+		 * Initialize sgc->capacity such that even if we mess up the
+		 * domains and no possible iteration will get us here, we won't
+		 * die on a /0 trap.
+		 */
+		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
+		sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
+
+		/*
+		 * Make sure the first group of this domain contains the
+		 * canonical balance CPU. Otherwise the sched_domain iteration
+		 * breaks. See update_sg_lb_stats().
+		 */
+		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
+		    group_balance_cpu(sg) == cpu)
+			groups = sg;
+
+		if (!first)
+			first = sg;
+		if (last)
+			last->next = sg;
+		last = sg;
+		last->next = first;
+	}
+	sd->groups = groups;
+
+	return 0;
+
+fail:
+	free_sched_groups(first, 0);
+
+	return -ENOMEM;
+}
+
+static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
+{
+	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
+	struct sched_domain *child = sd->child;
+
+	if (child)
+		cpu = cpumask_first(sched_domain_span(child));
+
+	if (sg) {
+		*sg = *per_cpu_ptr(sdd->sg, cpu);
+		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
+
+		/* For claim_allocations: */
+		atomic_set(&(*sg)->sgc->ref, 1);
+	}
+
+	return cpu;
+}
+
+/*
+ * build_sched_groups will build a circular linked list of the groups
+ * covered by the given span, and will set each group's ->cpumask correctly,
+ * and ->cpu_capacity to 0.
+ *
+ * Assumes the sched_domain tree is fully constructed
+ */
+static int
+build_sched_groups(struct sched_domain *sd, int cpu)
+{
+	struct sched_group *first = NULL, *last = NULL;
+	struct sd_data *sdd = sd->private;
+	const struct cpumask *span = sched_domain_span(sd);
+	struct cpumask *covered;
+	int i;
+
+	get_group(cpu, sdd, &sd->groups);
+	atomic_inc(&sd->groups->ref);
+
+	if (cpu != cpumask_first(span))
+		return 0;
+
+	lockdep_assert_held(&sched_domains_mutex);
+	covered = sched_domains_tmpmask;
+
+	cpumask_clear(covered);
+
+	for_each_cpu(i, span) {
+		struct sched_group *sg;
+		int group, j;
+
+		if (cpumask_test_cpu(i, covered))
+			continue;
+
+		group = get_group(i, sdd, &sg);
+		cpumask_setall(sched_group_mask(sg));
+
+		for_each_cpu(j, span) {
+			if (get_group(j, sdd, NULL) != group)
+				continue;
+
+			cpumask_set_cpu(j, covered);
+			cpumask_set_cpu(j, sched_group_cpus(sg));
+		}
+
+		if (!first)
+			first = sg;
+		if (last)
+			last->next = sg;
+		last = sg;
+	}
+	last->next = first;
+
+	return 0;
+}
+
+/*
+ * Initialize sched groups cpu_capacity.
+ *
+ * cpu_capacity indicates the capacity of sched group, which is used while
+ * distributing the load between different sched groups in a sched domain.
+ * Typically cpu_capacity for all the groups in a sched domain will be same
+ * unless there are asymmetries in the topology. If there are asymmetries,
+ * group having more cpu_capacity will pickup more load compared to the
+ * group having less cpu_capacity.
+ */
+static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
+{
+	struct sched_group *sg = sd->groups;
+
+	WARN_ON(!sg);
+
+	do {
+		int cpu, max_cpu = -1;
+
+		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
+
+		if (!(sd->flags & SD_ASYM_PACKING))
+			goto next;
+
+		for_each_cpu(cpu, sched_group_cpus(sg)) {
+			if (max_cpu < 0)
+				max_cpu = cpu;
+			else if (sched_asym_prefer(cpu, max_cpu))
+				max_cpu = cpu;
+		}
+		sg->asym_prefer_cpu = max_cpu;
+
+next:
+		sg = sg->next;
+	} while (sg != sd->groups);
+
+	if (cpu != group_balance_cpu(sg))
+		return;
+
+	update_group_capacity(sd, cpu);
+}
+
+/*
+ * Initializers for schedule domains
+ * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
+ */
+
+static int default_relax_domain_level = -1;
+int sched_domain_level_max;
+
+static int __init setup_relax_domain_level(char *str)
+{
+	if (kstrtoint(str, 0, &default_relax_domain_level))
+		pr_warn("Unable to set relax_domain_level\n");
+
+	return 1;
+}
+__setup("relax_domain_level=", setup_relax_domain_level);
+
+static void set_domain_attribute(struct sched_domain *sd,
+				 struct sched_domain_attr *attr)
+{
+	int request;
+
+	if (!attr || attr->relax_domain_level < 0) {
+		if (default_relax_domain_level < 0)
+			return;
+		else
+			request = default_relax_domain_level;
+	} else
+		request = attr->relax_domain_level;
+	if (request < sd->level) {
+		/* Turn off idle balance on this domain: */
+		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
+	} else {
+		/* Turn on idle balance on this domain: */
+		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
+	}
+}
+
+static void __sdt_free(const struct cpumask *cpu_map);
+static int __sdt_alloc(const struct cpumask *cpu_map);
+
+static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
+				 const struct cpumask *cpu_map)
+{
+	switch (what) {
+	case sa_rootdomain:
+		if (!atomic_read(&d->rd->refcount))
+			free_rootdomain(&d->rd->rcu);
+		/* Fall through */
+	case sa_sd:
+		free_percpu(d->sd);
+		/* Fall through */
+	case sa_sd_storage:
+		__sdt_free(cpu_map);
+		/* Fall through */
+	case sa_none:
+		break;
+	}
+}
+
+static enum s_alloc
+__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
+{
+	memset(d, 0, sizeof(*d));
+
+	if (__sdt_alloc(cpu_map))
+		return sa_sd_storage;
+	d->sd = alloc_percpu(struct sched_domain *);
+	if (!d->sd)
+		return sa_sd_storage;
+	d->rd = alloc_rootdomain();
+	if (!d->rd)
+		return sa_sd;
+	return sa_rootdomain;
+}
+
+/*
+ * NULL the sd_data elements we've used to build the sched_domain and
+ * sched_group structure so that the subsequent __free_domain_allocs()
+ * will not free the data we're using.
+ */
+static void claim_allocations(int cpu, struct sched_domain *sd)
+{
+	struct sd_data *sdd = sd->private;
+
+	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
+	*per_cpu_ptr(sdd->sd, cpu) = NULL;
+
+	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
+		*per_cpu_ptr(sdd->sds, cpu) = NULL;
+
+	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
+		*per_cpu_ptr(sdd->sg, cpu) = NULL;
+
+	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
+		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
+}
+
+#ifdef CONFIG_NUMA
+static int sched_domains_numa_levels;
+enum numa_topology_type sched_numa_topology_type;
+static int *sched_domains_numa_distance;
+int sched_max_numa_distance;
+static struct cpumask ***sched_domains_numa_masks;
+static int sched_domains_curr_level;
+#endif
+
+/*
+ * SD_flags allowed in topology descriptions.
+ *
+ * These flags are purely descriptive of the topology and do not prescribe
+ * behaviour. Behaviour is artificial and mapped in the below sd_init()
+ * function:
+ *
+ *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
+ *   SD_SHARE_PKG_RESOURCES - describes shared caches
+ *   SD_NUMA                - describes NUMA topologies
+ *   SD_SHARE_POWERDOMAIN   - describes shared power domain
+ *   SD_ASYM_CPUCAPACITY    - describes mixed capacity topologies
+ *
+ * Odd one out, which beside describing the topology has a quirk also
+ * prescribes the desired behaviour that goes along with it:
+ *
+ *   SD_ASYM_PACKING        - describes SMT quirks
+ */
+#define TOPOLOGY_SD_FLAGS		\
+	(SD_SHARE_CPUCAPACITY |		\
+	 SD_SHARE_PKG_RESOURCES |	\
+	 SD_NUMA |			\
+	 SD_ASYM_PACKING |		\
+	 SD_ASYM_CPUCAPACITY |		\
+	 SD_SHARE_POWERDOMAIN)
+
+static struct sched_domain *
+sd_init(struct sched_domain_topology_level *tl,
+	const struct cpumask *cpu_map,
+	struct sched_domain *child, int cpu)
+{
+	struct sd_data *sdd = &tl->data;
+	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
+	int sd_id, sd_weight, sd_flags = 0;
+
+#ifdef CONFIG_NUMA
+	/*
+	 * Ugly hack to pass state to sd_numa_mask()...
+	 */
+	sched_domains_curr_level = tl->numa_level;
+#endif
+
+	sd_weight = cpumask_weight(tl->mask(cpu));
+
+	if (tl->sd_flags)
+		sd_flags = (*tl->sd_flags)();
+	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
+			"wrong sd_flags in topology description\n"))
+		sd_flags &= ~TOPOLOGY_SD_FLAGS;
+
+	*sd = (struct sched_domain){
+		.min_interval		= sd_weight,
+		.max_interval		= 2*sd_weight,
+		.busy_factor		= 32,
+		.imbalance_pct		= 125,
+
+		.cache_nice_tries	= 0,
+		.busy_idx		= 0,
+		.idle_idx		= 0,
+		.newidle_idx		= 0,
+		.wake_idx		= 0,
+		.forkexec_idx		= 0,
+
+		.flags			= 1*SD_LOAD_BALANCE
+					| 1*SD_BALANCE_NEWIDLE
+					| 1*SD_BALANCE_EXEC
+					| 1*SD_BALANCE_FORK
+					| 0*SD_BALANCE_WAKE
+					| 1*SD_WAKE_AFFINE
+					| 0*SD_SHARE_CPUCAPACITY
+					| 0*SD_SHARE_PKG_RESOURCES
+					| 0*SD_SERIALIZE
+					| 0*SD_PREFER_SIBLING
+					| 0*SD_NUMA
+					| sd_flags
+					,
+
+		.last_balance		= jiffies,
+		.balance_interval	= sd_weight,
+		.smt_gain		= 0,
+		.max_newidle_lb_cost	= 0,
+		.next_decay_max_lb_cost	= jiffies,
+		.child			= child,
+#ifdef CONFIG_SCHED_DEBUG
+		.name			= tl->name,
+#endif
+	};
+
+	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
+	sd_id = cpumask_first(sched_domain_span(sd));
+
+	/*
+	 * Convert topological properties into behaviour.
+	 */
+
+	if (sd->flags & SD_ASYM_CPUCAPACITY) {
+		struct sched_domain *t = sd;
+
+		for_each_lower_domain(t)
+			t->flags |= SD_BALANCE_WAKE;
+	}
+
+	if (sd->flags & SD_SHARE_CPUCAPACITY) {
+		sd->flags |= SD_PREFER_SIBLING;
+		sd->imbalance_pct = 110;
+		sd->smt_gain = 1178; /* ~15% */
+
+	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
+		sd->imbalance_pct = 117;
+		sd->cache_nice_tries = 1;
+		sd->busy_idx = 2;
+
+#ifdef CONFIG_NUMA
+	} else if (sd->flags & SD_NUMA) {
+		sd->cache_nice_tries = 2;
+		sd->busy_idx = 3;
+		sd->idle_idx = 2;
+
+		sd->flags |= SD_SERIALIZE;
+		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
+			sd->flags &= ~(SD_BALANCE_EXEC |
+				       SD_BALANCE_FORK |
+				       SD_WAKE_AFFINE);
+		}
+
+#endif
+	} else {
+		sd->flags |= SD_PREFER_SIBLING;
+		sd->cache_nice_tries = 1;
+		sd->busy_idx = 2;
+		sd->idle_idx = 1;
+	}
+
+	/*
+	 * For all levels sharing cache; connect a sched_domain_shared
+	 * instance.
+	 */
+	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
+		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
+		atomic_inc(&sd->shared->ref);
+		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
+	}
+
+	sd->private = sdd;
+
+	return sd;
+}
+
+/*
+ * Topology list, bottom-up.
+ */
+static struct sched_domain_topology_level default_topology[] = {
+#ifdef CONFIG_SCHED_SMT
+	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
+#endif
+#ifdef CONFIG_SCHED_MC
+	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
+#endif
+	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
+	{ NULL, },
+};
+
+static struct sched_domain_topology_level *sched_domain_topology =
+	default_topology;
+
+#define for_each_sd_topology(tl)			\
+	for (tl = sched_domain_topology; tl->mask; tl++)
+
+void set_sched_topology(struct sched_domain_topology_level *tl)
+{
+	if (WARN_ON_ONCE(sched_smp_initialized))
+		return;
+
+	sched_domain_topology = tl;
+}
+
+#ifdef CONFIG_NUMA
+
+static const struct cpumask *sd_numa_mask(int cpu)
+{
+	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
+}
+
+static void sched_numa_warn(const char *str)
+{
+	static int done = false;
+	int i,j;
+
+	if (done)
+		return;
+
+	done = true;
+
+	printk(KERN_WARNING "ERROR: %s\n\n", str);
+
+	for (i = 0; i < nr_node_ids; i++) {
+		printk(KERN_WARNING "  ");
+		for (j = 0; j < nr_node_ids; j++)
+			printk(KERN_CONT "%02d ", node_distance(i,j));
+		printk(KERN_CONT "\n");
+	}
+	printk(KERN_WARNING "\n");
+}
+
+bool find_numa_distance(int distance)
+{
+	int i;
+
+	if (distance == node_distance(0, 0))
+		return true;
+
+	for (i = 0; i < sched_domains_numa_levels; i++) {
+		if (sched_domains_numa_distance[i] == distance)
+			return true;
+	}
+
+	return false;
+}
+
+/*
+ * A system can have three types of NUMA topology:
+ * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
+ * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
+ * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
+ *
+ * The difference between a glueless mesh topology and a backplane
+ * topology lies in whether communication between not directly
+ * connected nodes goes through intermediary nodes (where programs
+ * could run), or through backplane controllers. This affects
+ * placement of programs.
+ *
+ * The type of topology can be discerned with the following tests:
+ * - If the maximum distance between any nodes is 1 hop, the system
+ *   is directly connected.
+ * - If for two nodes A and B, located N > 1 hops away from each other,
+ *   there is an intermediary node C, which is < N hops away from both
+ *   nodes A and B, the system is a glueless mesh.
+ */
+static void init_numa_topology_type(void)
+{
+	int a, b, c, n;
+
+	n = sched_max_numa_distance;
+
+	if (sched_domains_numa_levels <= 1) {
+		sched_numa_topology_type = NUMA_DIRECT;
+		return;
+	}
+
+	for_each_online_node(a) {
+		for_each_online_node(b) {
+			/* Find two nodes furthest removed from each other. */
+			if (node_distance(a, b) < n)
+				continue;
+
+			/* Is there an intermediary node between a and b? */
+			for_each_online_node(c) {
+				if (node_distance(a, c) < n &&
+				    node_distance(b, c) < n) {
+					sched_numa_topology_type =
+							NUMA_GLUELESS_MESH;
+					return;
+				}
+			}
+
+			sched_numa_topology_type = NUMA_BACKPLANE;
+			return;
+		}
+	}
+}
+
+void sched_init_numa(void)
+{
+	int next_distance, curr_distance = node_distance(0, 0);
+	struct sched_domain_topology_level *tl;
+	int level = 0;
+	int i, j, k;
+
+	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
+	if (!sched_domains_numa_distance)
+		return;
+
+	/*
+	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
+	 * unique distances in the node_distance() table.
+	 *
+	 * Assumes node_distance(0,j) includes all distances in
+	 * node_distance(i,j) in order to avoid cubic time.
+	 */
+	next_distance = curr_distance;
+	for (i = 0; i < nr_node_ids; i++) {
+		for (j = 0; j < nr_node_ids; j++) {
+			for (k = 0; k < nr_node_ids; k++) {
+				int distance = node_distance(i, k);
+
+				if (distance > curr_distance &&
+				    (distance < next_distance ||
+				     next_distance == curr_distance))
+					next_distance = distance;
+
+				/*
+				 * While not a strong assumption it would be nice to know
+				 * about cases where if node A is connected to B, B is not
+				 * equally connected to A.
+				 */
+				if (sched_debug() && node_distance(k, i) != distance)
+					sched_numa_warn("Node-distance not symmetric");
+
+				if (sched_debug() && i && !find_numa_distance(distance))
+					sched_numa_warn("Node-0 not representative");
+			}
+			if (next_distance != curr_distance) {
+				sched_domains_numa_distance[level++] = next_distance;
+				sched_domains_numa_levels = level;
+				curr_distance = next_distance;
+			} else break;
+		}
+
+		/*
+		 * In case of sched_debug() we verify the above assumption.
+		 */
+		if (!sched_debug())
+			break;
+	}
+
+	if (!level)
+		return;
+
+	/*
+	 * 'level' contains the number of unique distances, excluding the
+	 * identity distance node_distance(i,i).
+	 *
+	 * The sched_domains_numa_distance[] array includes the actual distance
+	 * numbers.
+	 */
+
+	/*
+	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
+	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
+	 * the array will contain less then 'level' members. This could be
+	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
+	 * in other functions.
+	 *
+	 * We reset it to 'level' at the end of this function.
+	 */
+	sched_domains_numa_levels = 0;
+
+	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
+	if (!sched_domains_numa_masks)
+		return;
+
+	/*
+	 * Now for each level, construct a mask per node which contains all
+	 * CPUs of nodes that are that many hops away from us.
+	 */
+	for (i = 0; i < level; i++) {
+		sched_domains_numa_masks[i] =
+			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
+		if (!sched_domains_numa_masks[i])
+			return;
+
+		for (j = 0; j < nr_node_ids; j++) {
+			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
+			if (!mask)
+				return;
+
+			sched_domains_numa_masks[i][j] = mask;
+
+			for_each_node(k) {
+				if (node_distance(j, k) > sched_domains_numa_distance[i])
+					continue;
+
+				cpumask_or(mask, mask, cpumask_of_node(k));
+			}
+		}
+	}
+
+	/* Compute default topology size */
+	for (i = 0; sched_domain_topology[i].mask; i++);
+
+	tl = kzalloc((i + level + 1) *
+			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
+	if (!tl)
+		return;
+
+	/*
+	 * Copy the default topology bits..
+	 */
+	for (i = 0; sched_domain_topology[i].mask; i++)
+		tl[i] = sched_domain_topology[i];
+
+	/*
+	 * .. and append 'j' levels of NUMA goodness.
+	 */
+	for (j = 0; j < level; i++, j++) {
+		tl[i] = (struct sched_domain_topology_level){
+			.mask = sd_numa_mask,
+			.sd_flags = cpu_numa_flags,
+			.flags = SDTL_OVERLAP,
+			.numa_level = j,
+			SD_INIT_NAME(NUMA)
+		};
+	}
+
+	sched_domain_topology = tl;
+
+	sched_domains_numa_levels = level;
+	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
+
+	init_numa_topology_type();
+}
+
+void sched_domains_numa_masks_set(unsigned int cpu)
+{
+	int node = cpu_to_node(cpu);
+	int i, j;
+
+	for (i = 0; i < sched_domains_numa_levels; i++) {
+		for (j = 0; j < nr_node_ids; j++) {
+			if (node_distance(j, node) <= sched_domains_numa_distance[i])
+				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
+		}
+	}
+}
+
+void sched_domains_numa_masks_clear(unsigned int cpu)
+{
+	int i, j;
+
+	for (i = 0; i < sched_domains_numa_levels; i++) {
+		for (j = 0; j < nr_node_ids; j++)
+			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
+	}
+}
+
+#endif /* CONFIG_NUMA */
+
+static int __sdt_alloc(const struct cpumask *cpu_map)
+{
+	struct sched_domain_topology_level *tl;
+	int j;
+
+	for_each_sd_topology(tl) {
+		struct sd_data *sdd = &tl->data;
+
+		sdd->sd = alloc_percpu(struct sched_domain *);
+		if (!sdd->sd)
+			return -ENOMEM;
+
+		sdd->sds = alloc_percpu(struct sched_domain_shared *);
+		if (!sdd->sds)
+			return -ENOMEM;
+
+		sdd->sg = alloc_percpu(struct sched_group *);
+		if (!sdd->sg)
+			return -ENOMEM;
+
+		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
+		if (!sdd->sgc)
+			return -ENOMEM;
+
+		for_each_cpu(j, cpu_map) {
+			struct sched_domain *sd;
+			struct sched_domain_shared *sds;
+			struct sched_group *sg;
+			struct sched_group_capacity *sgc;
+
+			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
+					GFP_KERNEL, cpu_to_node(j));
+			if (!sd)
+				return -ENOMEM;
+
+			*per_cpu_ptr(sdd->sd, j) = sd;
+
+			sds = kzalloc_node(sizeof(struct sched_domain_shared),
+					GFP_KERNEL, cpu_to_node(j));
+			if (!sds)
+				return -ENOMEM;
+
+			*per_cpu_ptr(sdd->sds, j) = sds;
+
+			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
+					GFP_KERNEL, cpu_to_node(j));
+			if (!sg)
+				return -ENOMEM;
+
+			sg->next = sg;
+
+			*per_cpu_ptr(sdd->sg, j) = sg;
+
+			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
+					GFP_KERNEL, cpu_to_node(j));
+			if (!sgc)
+				return -ENOMEM;
+
+			*per_cpu_ptr(sdd->sgc, j) = sgc;
+		}
+	}
+
+	return 0;
+}
+
+static void __sdt_free(const struct cpumask *cpu_map)
+{
+	struct sched_domain_topology_level *tl;
+	int j;
+
+	for_each_sd_topology(tl) {
+		struct sd_data *sdd = &tl->data;
+
+		for_each_cpu(j, cpu_map) {
+			struct sched_domain *sd;
+
+			if (sdd->sd) {
+				sd = *per_cpu_ptr(sdd->sd, j);
+				if (sd && (sd->flags & SD_OVERLAP))
+					free_sched_groups(sd->groups, 0);
+				kfree(*per_cpu_ptr(sdd->sd, j));
+			}
+
+			if (sdd->sds)
+				kfree(*per_cpu_ptr(sdd->sds, j));
+			if (sdd->sg)
+				kfree(*per_cpu_ptr(sdd->sg, j));
+			if (sdd->sgc)
+				kfree(*per_cpu_ptr(sdd->sgc, j));
+		}
+		free_percpu(sdd->sd);
+		sdd->sd = NULL;
+		free_percpu(sdd->sds);
+		sdd->sds = NULL;
+		free_percpu(sdd->sg);
+		sdd->sg = NULL;
+		free_percpu(sdd->sgc);
+		sdd->sgc = NULL;
+	}
+}
+
+struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
+		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
+		struct sched_domain *child, int cpu)
+{
+	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
+
+	if (child) {
+		sd->level = child->level + 1;
+		sched_domain_level_max = max(sched_domain_level_max, sd->level);
+		child->parent = sd;
+
+		if (!cpumask_subset(sched_domain_span(child),
+				    sched_domain_span(sd))) {
+			pr_err("BUG: arch topology borken\n");
+#ifdef CONFIG_SCHED_DEBUG
+			pr_err("     the %s domain not a subset of the %s domain\n",
+					child->name, sd->name);
+#endif
+			/* Fixup, ensure @sd has at least @child cpus. */
+			cpumask_or(sched_domain_span(sd),
+				   sched_domain_span(sd),
+				   sched_domain_span(child));
+		}
+
+	}
+	set_domain_attribute(sd, attr);
+
+	return sd;
+}
+
+/*
+ * Build sched domains for a given set of CPUs and attach the sched domains
+ * to the individual CPUs
+ */
+static int
+build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
+{
+	enum s_alloc alloc_state;
+	struct sched_domain *sd;
+	struct s_data d;
+	struct rq *rq = NULL;
+	int i, ret = -ENOMEM;
+
+	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
+	if (alloc_state != sa_rootdomain)
+		goto error;
+
+	/* Set up domains for CPUs specified by the cpu_map: */
+	for_each_cpu(i, cpu_map) {
+		struct sched_domain_topology_level *tl;
+
+		sd = NULL;
+		for_each_sd_topology(tl) {
+			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
+			if (tl == sched_domain_topology)
+				*per_cpu_ptr(d.sd, i) = sd;
+			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
+				sd->flags |= SD_OVERLAP;
+			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
+				break;
+		}
+	}
+
+	/* Build the groups for the domains */
+	for_each_cpu(i, cpu_map) {
+		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
+			sd->span_weight = cpumask_weight(sched_domain_span(sd));
+			if (sd->flags & SD_OVERLAP) {
+				if (build_overlap_sched_groups(sd, i))
+					goto error;
+			} else {
+				if (build_sched_groups(sd, i))
+					goto error;
+			}
+		}
+	}
+
+	/* Calculate CPU capacity for physical packages and nodes */
+	for (i = nr_cpumask_bits-1; i >= 0; i--) {
+		if (!cpumask_test_cpu(i, cpu_map))
+			continue;
+
+		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
+			claim_allocations(i, sd);
+			init_sched_groups_capacity(i, sd);
+		}
+	}
+
+	/* Attach the domains */
+	rcu_read_lock();
+	for_each_cpu(i, cpu_map) {
+		rq = cpu_rq(i);
+		sd = *per_cpu_ptr(d.sd, i);
+
+		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
+		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
+			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
+
+		cpu_attach_domain(sd, d.rd, i);
+	}
+	rcu_read_unlock();
+
+	if (rq && sched_debug_enabled) {
+		pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
+			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
+	}
+
+	ret = 0;
+error:
+	__free_domain_allocs(&d, alloc_state, cpu_map);
+	return ret;
+}
+
+/* Current sched domains: */
+static cpumask_var_t			*doms_cur;
+
+/* Number of sched domains in 'doms_cur': */
+static int				ndoms_cur;
+
+/* Attribues of custom domains in 'doms_cur' */
+static struct sched_domain_attr		*dattr_cur;
+
+/*
+ * Special case: If a kmalloc() of a doms_cur partition (array of
+ * cpumask) fails, then fallback to a single sched domain,
+ * as determined by the single cpumask fallback_doms.
+ */
+cpumask_var_t				fallback_doms;
+
+/*
+ * arch_update_cpu_topology lets virtualized architectures update the
+ * CPU core maps. It is supposed to return 1 if the topology changed
+ * or 0 if it stayed the same.
+ */
+int __weak arch_update_cpu_topology(void)
+{
+	return 0;
+}
+
+cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
+{
+	int i;
+	cpumask_var_t *doms;
+
+	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
+	if (!doms)
+		return NULL;
+	for (i = 0; i < ndoms; i++) {
+		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
+			free_sched_domains(doms, i);
+			return NULL;
+		}
+	}
+	return doms;
+}
+
+void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
+{
+	unsigned int i;
+	for (i = 0; i < ndoms; i++)
+		free_cpumask_var(doms[i]);
+	kfree(doms);
+}
+
+/*
+ * Set up scheduler domains and groups. Callers must hold the hotplug lock.
+ * For now this just excludes isolated CPUs, but could be used to
+ * exclude other special cases in the future.
+ */
+int init_sched_domains(const struct cpumask *cpu_map)
+{
+	int err;
+
+	arch_update_cpu_topology();
+	ndoms_cur = 1;
+	doms_cur = alloc_sched_domains(ndoms_cur);
+	if (!doms_cur)
+		doms_cur = &fallback_doms;
+	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
+	err = build_sched_domains(doms_cur[0], NULL);
+	register_sched_domain_sysctl();
+
+	return err;
+}
+
+/*
+ * Detach sched domains from a group of CPUs specified in cpu_map
+ * These CPUs will now be attached to the NULL domain
+ */
+static void detach_destroy_domains(const struct cpumask *cpu_map)
+{
+	int i;
+
+	rcu_read_lock();
+	for_each_cpu(i, cpu_map)
+		cpu_attach_domain(NULL, &def_root_domain, i);
+	rcu_read_unlock();
+}
+
+/* handle null as "default" */
+static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
+			struct sched_domain_attr *new, int idx_new)
+{
+	struct sched_domain_attr tmp;
+
+	/* Fast path: */
+	if (!new && !cur)
+		return 1;
+
+	tmp = SD_ATTR_INIT;
+	return !memcmp(cur ? (cur + idx_cur) : &tmp,
+			new ? (new + idx_new) : &tmp,
+			sizeof(struct sched_domain_attr));
+}
+
+/*
+ * Partition sched domains as specified by the 'ndoms_new'
+ * cpumasks in the array doms_new[] of cpumasks. This compares
+ * doms_new[] to the current sched domain partitioning, doms_cur[].
+ * It destroys each deleted domain and builds each new domain.
+ *
+ * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
+ * The masks don't intersect (don't overlap.) We should setup one
+ * sched domain for each mask. CPUs not in any of the cpumasks will
+ * not be load balanced. If the same cpumask appears both in the
+ * current 'doms_cur' domains and in the new 'doms_new', we can leave
+ * it as it is.
+ *
+ * The passed in 'doms_new' should be allocated using
+ * alloc_sched_domains.  This routine takes ownership of it and will
+ * free_sched_domains it when done with it. If the caller failed the
+ * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
+ * and partition_sched_domains() will fallback to the single partition
+ * 'fallback_doms', it also forces the domains to be rebuilt.
+ *
+ * If doms_new == NULL it will be replaced with cpu_online_mask.
+ * ndoms_new == 0 is a special case for destroying existing domains,
+ * and it will not create the default domain.
+ *
+ * Call with hotplug lock held
+ */
+void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
+			     struct sched_domain_attr *dattr_new)
+{
+	int i, j, n;
+	int new_topology;
+
+	mutex_lock(&sched_domains_mutex);
+
+	/* Always unregister in case we don't destroy any domains: */
+	unregister_sched_domain_sysctl();
+
+	/* Let the architecture update CPU core mappings: */
+	new_topology = arch_update_cpu_topology();
+
+	n = doms_new ? ndoms_new : 0;
+
+	/* Destroy deleted domains: */
+	for (i = 0; i < ndoms_cur; i++) {
+		for (j = 0; j < n && !new_topology; j++) {
+			if (cpumask_equal(doms_cur[i], doms_new[j])
+			    && dattrs_equal(dattr_cur, i, dattr_new, j))
+				goto match1;
+		}
+		/* No match - a current sched domain not in new doms_new[] */
+		detach_destroy_domains(doms_cur[i]);
+match1:
+		;
+	}
+
+	n = ndoms_cur;
+	if (doms_new == NULL) {
+		n = 0;
+		doms_new = &fallback_doms;
+		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
+		WARN_ON_ONCE(dattr_new);
+	}
+
+	/* Build new domains: */
+	for (i = 0; i < ndoms_new; i++) {
+		for (j = 0; j < n && !new_topology; j++) {
+			if (cpumask_equal(doms_new[i], doms_cur[j])
+			    && dattrs_equal(dattr_new, i, dattr_cur, j))
+				goto match2;
+		}
+		/* No match - add a new doms_new */
+		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
+match2:
+		;
+	}
+
+	/* Remember the new sched domains: */
+	if (doms_cur != &fallback_doms)
+		free_sched_domains(doms_cur, ndoms_cur);
+
+	kfree(dattr_cur);
+	doms_cur = doms_new;
+	dattr_cur = dattr_new;
+	ndoms_cur = ndoms_new;
+
+	register_sched_domain_sysctl();
+
+	mutex_unlock(&sched_domains_mutex);
+}
+
-- 
2.7.4

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ