lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date:   Thu, 16 Mar 2017 11:46:37 +0900
From:   js1304@...il.com
To:     Andrew Morton <akpm@...ux-foundation.org>
Cc:     Minchan Kim <minchan@...nel.org>,
        Sergey Senozhatsky <sergey.senozhatsky@...il.com>,
        linux-kernel@...r.kernel.org, kernel-team@....com,
        Joonsoo Kim <iamjoonsoo.kim@....com>
Subject: [PATCH 3/4] zram: implement deduplication in zram

From: Joonsoo Kim <iamjoonsoo.kim@....com>

This patch implements deduplication feature in zram. The purpose
of this work is naturally to save amount of memory usage by zram.

Android is one of the biggest users to use zram as swap and it's
really important to save amount of memory usage. There is a paper
that reports that duplication ratio of Android's memory content is
rather high [1]. And, there is a similar work on zswap that also
reports that experiments has shown that around 10-15% of pages
stored in zswp are duplicates and deduplicate them provides some
benefits [2].

Also, there is a different kind of workload that uses zram as blockdev
and store build outputs into it to reduce wear-out problem of real
blockdev. In this workload, deduplication hit is very high
although I don't know exact reason about it.

Anyway, if we can detect duplicated content and avoid to store duplicated
content at different memory space, we can save memory. This patch
tries to do that.

Implementation is almost simple and intuitive but I should note
one thing about implementation detail.

To check duplication, this patch uses checksum of the page and
collision of this checksum could be possible. There would be
many choices to handle this situation but this patch chooses
to allow entry with duplicated checksum to be added to the hash,
but, not to compare all entries with duplicated checksum
when checking duplication. I guess that checksum collision is quite
rare event and we don't need to pay any attention to such a case.
Therefore, I decided the most simplest way to implement the feature.
If there is a different opinion, I can accept and go that way.

Following is the result of this patch.

Test result #1 (Swap):
Android Marshmallow, emulator, x86_64, Backporting to kernel v3.18

orig_data_size: 145297408
compr_data_size: 32408125
mem_used_total: 32276480
dup_data_size: 3188134
meta_data_size: 1444272

Last two metrics added to mm_stat are related to this work.
First one, dup_data_size, is amount of saved memory by avoiding
to store duplicated page. Later one, meta_data_size, is the amount of
data structure to support deduplication. If dup > meta, we can judge
that the patch improves memory usage.

In Adnroid, we can save 5% of memory usage by this work.

Test result #2 (Blockdev):
build the kernel and store output to ext4 FS on zram

<no-dedup>
Elapsed time: 249 s
mm_stat: 430845952 191014886 196898816 0 196898816 28320 0 0 0

<dedup>
Elapsed time: 250 s
mm_stat: 430505984 190971334 148365312 0 148365312 28404 0 47287038  3945792

There is no performance degradation and save 23% memory.

Test result #3 (Blockdev):
copy android build output dir(out/host) to ext4 FS on zram

<no-dedup>
Elapsed time: out/host: 88 s
mm_stat: 8834420736 3658184579 3834208256 0 3834208256 32889 0 0 0

<dedup>
Elapsed time: out/host: 100 s
mm_stat: 8832929792 3657329322 2832015360 0 2832015360 32609 0 952568877 80880336

It shows performance degradation roughly 13% and save 24% memory. Maybe,
it is due to overhead of calculating checksum and comparison.

Test result #4 (Blockdev):
copy android build output dir(out/target/common) to ext4 FS on zram

<no-dedup>
Elapsed time: out/host: 203 s
mm_stat: 4041678848 2310355010 2346577920 0 2346582016 500 4 0 0

<dedup>
Elapsed time: out/host: 201 s
mm_stat: 4041666560 2310488276 1338150912 0 1338150912 476 0 989088794 24564336

Memory is saved by 42% and performance is the same. Even if there is overhead
of calculating checksum and comparison, large hit ratio compensate it since
hit leads to less compression attempt.

Anyway, benefit seems to be largely dependent on the workload so
following patch will make this feature optional. However, this feature
can help some usecases so is deserved to be merged.

[1]: MemScope: Analyzing Memory Duplication on Android Systems,
dl.acm.org/citation.cfm?id=2797023
[2]: zswap: Optimize compressed pool memory utilization,
lkml.kernel.org/r/1341407574.7551.1471584870761.JavaMail.weblogic@...as3p2

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@....com>
---
 drivers/block/zram/zram_drv.c | 212 ++++++++++++++++++++++++++++++++++++++----
 drivers/block/zram/zram_drv.h |  18 ++++
 2 files changed, 214 insertions(+), 16 deletions(-)

diff --git a/drivers/block/zram/zram_drv.c b/drivers/block/zram/zram_drv.c
index a3d9cbca..012425f 100644
--- a/drivers/block/zram/zram_drv.c
+++ b/drivers/block/zram/zram_drv.c
@@ -32,6 +32,7 @@
 #include <linux/idr.h>
 #include <linux/sysfs.h>
 #include <linux/cpuhotplug.h>
+#include <linux/jhash.h>
 
 #include "zram_drv.h"
 
@@ -385,14 +386,16 @@ static ssize_t mm_stat_show(struct device *dev,
 	max_used = atomic_long_read(&zram->stats.max_used_pages);
 
 	ret = scnprintf(buf, PAGE_SIZE,
-			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
+			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n",
 			orig_size << PAGE_SHIFT,
 			(u64)atomic64_read(&zram->stats.compr_data_size),
 			mem_used << PAGE_SHIFT,
 			zram->limit_pages << PAGE_SHIFT,
 			max_used << PAGE_SHIFT,
 			(u64)atomic64_read(&zram->stats.same_pages),
-			pool_stats.pages_compacted);
+			pool_stats.pages_compacted,
+			(u64)atomic64_read(&zram->stats.dup_data_size),
+			(u64)atomic64_read(&zram->stats.meta_data_size));
 	up_read(&zram->init_lock);
 
 	return ret;
@@ -419,29 +422,165 @@ static ssize_t debug_stat_show(struct device *dev,
 static DEVICE_ATTR_RO(mm_stat);
 static DEVICE_ATTR_RO(debug_stat);
 
-static struct zram_entry *zram_entry_alloc(struct zram_meta *meta,
+static u32 zram_calc_checksum(unsigned char *mem)
+{
+	return jhash(mem, PAGE_SIZE, 0);
+}
+
+static struct zram_entry *zram_entry_alloc(struct zram *zram,
 					unsigned int len, gfp_t flags)
 {
+	struct zram_meta *meta = zram->meta;
 	struct zram_entry *entry;
+	unsigned long handle;
 
-	entry = kzalloc(sizeof(*entry), flags);
-	if (!entry)
+	handle = zs_malloc(meta->mem_pool, len, flags);
+	if (!handle)
 		return NULL;
 
-	entry->handle = zs_malloc(meta->mem_pool, len, flags);
-	if (!entry->handle) {
-		kfree(entry);
+	entry = kzalloc(sizeof(*entry), flags);
+	if (!entry) {
+		zs_free(meta->mem_pool, handle);
 		return NULL;
 	}
 
+	entry->handle = handle;
+	RB_CLEAR_NODE(&entry->rb_node);
+	entry->refcount = 1;
+	entry->len = len;
+	atomic64_add(sizeof(*entry), &zram->stats.meta_data_size);
+
 	return entry;
 }
 
-static inline void zram_entry_free(struct zram_meta *meta,
-			struct zram_entry *entry)
+static void zram_entry_insert(struct zram *zram, struct zram_entry *new,
+				u32 checksum)
+{
+	struct zram_meta *meta = zram->meta;
+	struct zram_hash *hash;
+	struct rb_root *rb_root;
+	struct rb_node **rb_node, *parent = NULL;
+	struct zram_entry *entry;
+
+	new->checksum = checksum;
+	hash = &meta->hash[checksum % meta->hash_size];
+	rb_root = &hash->rb_root;
+
+	spin_lock(&hash->lock);
+	rb_node = &rb_root->rb_node;
+	while (*rb_node) {
+		parent = *rb_node;
+		entry = rb_entry(parent, struct zram_entry, rb_node);
+		if (checksum < entry->checksum)
+			rb_node = &parent->rb_left;
+		else if (checksum > entry->checksum)
+			rb_node = &parent->rb_right;
+		else
+			rb_node = &parent->rb_left;
+	}
+
+	rb_link_node(&new->rb_node, parent, rb_node);
+	rb_insert_color(&new->rb_node, rb_root);
+	spin_unlock(&hash->lock);
+}
+
+static bool zram_entry_match(struct zram *zram, struct zram_entry *entry,
+				unsigned char *mem)
+{
+	bool match = false;
+	unsigned char *cmem;
+	struct zram_meta *meta = zram->meta;
+	struct zcomp_strm *zstrm;
+
+	cmem = zs_map_object(meta->mem_pool, entry->handle, ZS_MM_RO);
+	if (entry->len == PAGE_SIZE) {
+		match = !memcmp(mem, cmem, PAGE_SIZE);
+	} else {
+		zstrm = zcomp_stream_get(zram->comp);
+		if (!zcomp_decompress(zstrm, cmem, entry->len, zstrm->buffer))
+			match = !memcmp(mem, zstrm->buffer, PAGE_SIZE);
+		zcomp_stream_put(zram->comp);
+	}
+	zs_unmap_object(meta->mem_pool, entry->handle);
+
+	return match;
+}
+
+static inline void zram_entry_free(struct zram *zram, struct zram_meta *meta,
+				struct zram_entry *entry)
 {
 	zs_free(meta->mem_pool, entry->handle);
 	kfree(entry);
+	if (zram)
+		atomic64_sub(sizeof(*entry), &zram->stats.meta_data_size);
+}
+
+static bool zram_entry_put(struct zram *zram, struct zram_meta *meta,
+			struct zram_entry *entry, bool populated)
+{
+	struct zram_hash *hash;
+	u32 checksum;
+
+	if (!populated)
+		goto free;
+
+	checksum = entry->checksum;
+	hash = &meta->hash[checksum % meta->hash_size];
+
+	spin_lock(&hash->lock);
+	entry->refcount--;
+	if (!entry->refcount) {
+		populated = false;
+		rb_erase(&entry->rb_node, &hash->rb_root);
+		RB_CLEAR_NODE(&entry->rb_node);
+	}
+	spin_unlock(&hash->lock);
+
+free:
+	if (!populated)
+		zram_entry_free(zram, meta, entry);
+
+	return populated;
+}
+
+static struct zram_entry *zram_entry_get(struct zram *zram,
+				unsigned char *mem, u32 checksum)
+{
+	struct zram_meta *meta = zram->meta;
+	struct zram_hash *hash;
+	struct zram_entry *entry;
+	struct rb_node *rb_node;
+
+	hash = &meta->hash[checksum % meta->hash_size];
+
+	spin_lock(&hash->lock);
+	rb_node = hash->rb_root.rb_node;
+	while (rb_node) {
+		entry = rb_entry(rb_node, struct zram_entry, rb_node);
+		if (checksum == entry->checksum) {
+			entry->refcount++;
+			atomic64_add(entry->len, &zram->stats.dup_data_size);
+			spin_unlock(&hash->lock);
+
+			if (zram_entry_match(zram, entry, mem))
+				return entry;
+
+			if (zram_entry_put(zram, meta, entry, true)) {
+				atomic64_sub(entry->len,
+					&zram->stats.dup_data_size);
+			}
+
+			return NULL;
+		}
+
+		if (checksum < entry->checksum)
+			rb_node = rb_node->rb_left;
+		else
+			rb_node = rb_node->rb_right;
+	}
+	spin_unlock(&hash->lock);
+
+	return NULL;
 }
 
 static void zram_meta_free(struct zram_meta *meta, u64 disksize)
@@ -459,18 +598,31 @@ static void zram_meta_free(struct zram_meta *meta, u64 disksize)
 		if (!entry || zram_test_flag(meta, index, ZRAM_SAME))
 			continue;
 
-		zram_entry_free(meta, entry);
+		zram_entry_put(NULL, meta, entry, true);
 	}
 
 	zs_destroy_pool(meta->mem_pool);
+	vfree(meta->hash);
 	vfree(meta->table);
 	kfree(meta);
 }
 
+static void zram_meta_init(struct zram_meta *meta)
+{
+	int i;
+	struct zram_hash *hash;
+
+	for (i = 0; i < meta->hash_size; i++) {
+		hash = &meta->hash[i];
+		spin_lock_init(&hash->lock);
+		hash->rb_root = RB_ROOT;
+	}
+}
+
 static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize)
 {
 	size_t num_pages;
-	struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
+	struct zram_meta *meta = kzalloc(sizeof(*meta), GFP_KERNEL);
 
 	if (!meta)
 		return NULL;
@@ -482,15 +634,27 @@ static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize)
 		goto out_error;
 	}
 
+	meta->hash_size = num_pages >> ZRAM_HASH_SHIFT;
+	meta->hash_size = min_t(size_t, ZRAM_HASH_SIZE_MAX, meta->hash_size);
+	meta->hash_size = max_t(size_t, ZRAM_HASH_SIZE_MIN, meta->hash_size);
+	meta->hash = vzalloc(meta->hash_size * sizeof(struct zram_hash));
+	if (!meta->hash) {
+		pr_err("Error allocating zram entry hash\n");
+		goto out_error;
+	}
+
 	meta->mem_pool = zs_create_pool(pool_name);
 	if (!meta->mem_pool) {
 		pr_err("Error creating memory pool\n");
 		goto out_error;
 	}
 
+	zram_meta_init(meta);
+
 	return meta;
 
 out_error:
+	vfree(meta->hash);
 	vfree(meta->table);
 	kfree(meta);
 	return NULL;
@@ -520,7 +684,8 @@ static void zram_free_page(struct zram *zram, size_t index)
 	if (!entry)
 		return;
 
-	zram_entry_free(meta, entry);
+	if (zram_entry_put(zram, meta, entry, true))
+		atomic64_sub(entry->len, &zram->stats.dup_data_size);
 
 	atomic64_sub(zram_get_obj_size(meta, index),
 			&zram->stats.compr_data_size);
@@ -631,6 +796,7 @@ static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
 	struct zcomp_strm *zstrm = NULL;
 	unsigned long alloced_pages;
 	unsigned long element;
+	u32 checksum;
 
 	page = bvec->bv_page;
 	if (is_partial_io(bvec)) {
@@ -674,6 +840,18 @@ static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
 		goto out;
 	}
 
+	checksum = zram_calc_checksum(uncmem);
+	if (!entry) {
+		entry = zram_entry_get(zram, uncmem, checksum);
+		if (entry) {
+			if (!is_partial_io(bvec))
+				kunmap_atomic(user_mem);
+
+			clen = entry->len;
+			goto found_duplication;
+		}
+	}
+
 	zstrm = zcomp_stream_get(zram->comp);
 	ret = zcomp_compress(zstrm, uncmem, &clen);
 	if (!is_partial_io(bvec)) {
@@ -708,7 +886,7 @@ static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
 	 * from the slow path and entry has already been allocated.
 	 */
 	if (!entry) {
-		entry = zram_entry_alloc(meta, clen,
+		entry = zram_entry_alloc(zram, clen,
 				__GFP_KSWAPD_RECLAIM | __GFP_NOWARN);
 	}
 
@@ -718,7 +896,7 @@ static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
 
 		atomic64_inc(&zram->stats.writestall);
 
-		entry = zram_entry_alloc(meta, clen, GFP_NOIO);
+		entry = zram_entry_alloc(zram, clen, GFP_NOIO);
 		if (entry)
 			goto compress_again;
 
@@ -732,7 +910,7 @@ static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
 	update_used_max(zram, alloced_pages);
 
 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
-		zram_entry_free(meta, entry);
+		zram_entry_put(zram, meta, entry, false);
 		ret = -ENOMEM;
 		goto out;
 	}
@@ -750,7 +928,9 @@ static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
 	zcomp_stream_put(zram->comp);
 	zstrm = NULL;
 	zs_unmap_object(meta->mem_pool, entry->handle);
+	zram_entry_insert(zram, entry, checksum);
 
+found_duplication:
 	/*
 	 * Free memory associated with this sector
 	 * before overwriting unused sectors.
diff --git a/drivers/block/zram/zram_drv.h b/drivers/block/zram/zram_drv.h
index a7ae46c..07d1f8d 100644
--- a/drivers/block/zram/zram_drv.h
+++ b/drivers/block/zram/zram_drv.h
@@ -18,6 +18,7 @@
 #include <linux/rwsem.h>
 #include <linux/zsmalloc.h>
 #include <linux/crypto.h>
+#include <linux/spinlock.h>
 
 #include "zcomp.h"
 
@@ -45,6 +46,10 @@
 #define ZRAM_SECTOR_PER_LOGICAL_BLOCK	\
 	(1 << (ZRAM_LOGICAL_BLOCK_SHIFT - SECTOR_SHIFT))
 
+/* One slot will contain 128 pages theoretically */
+#define ZRAM_HASH_SHIFT		7
+#define ZRAM_HASH_SIZE_MIN	(1 << 10)
+#define ZRAM_HASH_SIZE_MAX	(1 << 31)
 
 /*
  * The lower ZRAM_FLAG_SHIFT bits of table.value is for
@@ -70,6 +75,10 @@ enum zram_pageflags {
 /*-- Data structures */
 
 struct zram_entry {
+	struct rb_node rb_node;
+	u32 len;
+	u32 checksum;
+	unsigned long refcount;
 	unsigned long handle;
 };
 
@@ -94,11 +103,20 @@ struct zram_stats {
 	atomic64_t pages_stored;	/* no. of pages currently stored */
 	atomic_long_t max_used_pages;	/* no. of maximum pages stored */
 	atomic64_t writestall;		/* no. of write slow paths */
+	atomic64_t dup_data_size;	/* compressed size of pages duplicated */
+	atomic64_t meta_data_size;	/* size of zram_entries */
+};
+
+struct zram_hash {
+	spinlock_t lock;
+	struct rb_root rb_root;
 };
 
 struct zram_meta {
 	struct zram_table_entry *table;
 	struct zs_pool *mem_pool;
+	struct zram_hash *hash;
+	size_t hash_size;
 };
 
 struct zram {
-- 
1.9.1

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ