lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [thread-next>] [day] [month] [year] [list]
Date:   Wed, 26 Apr 2017 08:27:56 +0200
From:   Vincent Guittot <vincent.guittot@...aro.org>
To:     peterz@...radead.org, mingo@...nel.org,
        linux-kernel@...r.kernel.org
Cc:     dietmar.eggemann@....com, Morten.Rasmussen@....com,
        yuyang.du@...el.com, pjt@...gle.com, bsegall@...gle.com,
        Vincent Guittot <vincent.guittot@...aro.org>
Subject: [PATCH v3] sched/cfs: make util/load_avg more stable

In the current implementation of load/util_avg, we assume that the ongoing
time segment has fully elapsed, and util/load_sum is divided by LOAD_AVG_MAX,
even if part of the time segment still remains to run. As a consequence, this
remaining part is considered as idle time and generates unexpected variations
of util_avg of a busy CPU in the range [1002..1024[ whereas util_avg should
stay at 1023.

In order to keep the metric stable, we should not consider the ongoing time
segment when computing load/util_avg but only the segments that have already
fully elapsed. But to not consider the current time segment adds unwanted
latency in the load/util_avg responsivness especially when the time is scaled
instead of the contribution. Instead of waiting for the current time segment
to have fully elapsed before accounting it in load/util_avg, we can already
account the elapsed part but change the range used to compute load/util_avg
accordingly.

At the very beginning of a new time segment, the past segments have been
decayed and the max value is LOAD_AVG_MAX*y. At the very end of the current
time segment, the max value becomes 1024(us) + LOAD_AVG_MAX*y which is equal
to LOAD_AVG_MAX. In fact, the max value is
sa->period_contrib + LOAD_AVG_MAX*y at any time in the time segment.

Taking advantage of the fact that LOAD_AVG_MAX*y == LOAD_AVG_MAX-1024, the
range becomes [0..LOAD_AVG_MAX-1024+sa->period_contrib].

As the elapsed part is already accounted in load/util_sum, we update the max
value according to the current position in the time segment instead of
removing its contribution.

Suggested-by: Peter Zijlstra <peterz@...radead.org>
Signed-off-by: Vincent Guittot <vincent.guittot@...aro.org>
---

Changes:
-Correct typo in commit message: s/MAX_LOAD_AVG/LOAD_AVG_MAX/ and square bracket

 kernel/sched/fair.c | 6 +++---
 1 file changed, 3 insertions(+), 3 deletions(-)

diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index a903276..3531fa1 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -2916,12 +2916,12 @@ ___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
 	/*
 	 * Step 2: update *_avg.
 	 */
-	sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
+	sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
 	if (cfs_rq) {
 		cfs_rq->runnable_load_avg =
-			div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
+			div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
 	}
-	sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
+	sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib);
 
 	return 1;
 }
-- 
2.7.4

Powered by blists - more mailing lists