[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <1493739380-19772-2-git-send-email-paulmck@linux.vnet.ibm.com>
Date: Tue, 2 May 2017 08:36:20 -0700
From: "Paul E. McKenney" <paulmck@...ux.vnet.ibm.com>
To: linux-kernel@...r.kernel.org
Cc: mingo@...nel.org, jiangshanlai@...il.com, dipankar@...ibm.com,
akpm@...ux-foundation.org, mathieu.desnoyers@...icios.com,
josh@...htriplett.org, tglx@...utronix.de, peterz@...radead.org,
rostedt@...dmis.org, dhowells@...hat.com, edumazet@...gle.com,
fweisbec@...il.com, oleg@...hat.com, bobby.prani@...il.com,
"Paul E. McKenney" <paulmck@...ux.vnet.ibm.com>
Subject: [PATCH tip/core/rcu 2/2] rcu: Separately compile large rcu_segcblist functions
This commit creates a new kernel/rcu/rcu_segcblist.c file that
contains non-trivial segcblist functions. Trivial functions
remain as static inline functions in kernel/rcu/rcu_segcblist.h
Reported-by: Linus Torvalds <torvalds@...ux-foundation.org>
Signed-off-by: Paul E. McKenney <paulmck@...ux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@...radead.org>
Cc: Thomas Gleixner <tglx@...utronix.de>
---
init/Kconfig | 3 +
kernel/rcu/Makefile | 1 +
kernel/rcu/rcu_segcblist.c | 505 ++++++++++++++++++++++++++++++++++++++++++
kernel/rcu/rcu_segcblist.h | 533 +++------------------------------------------
4 files changed, 544 insertions(+), 498 deletions(-)
create mode 100644 kernel/rcu/rcu_segcblist.c
diff --git a/init/Kconfig b/init/Kconfig
index 42a346b0df43..1d3475fc9496 100644
--- a/init/Kconfig
+++ b/init/Kconfig
@@ -573,6 +573,9 @@ config RCU_STALL_COMMON
the tiny variants to disable RCU CPU stall warnings, while
making these warnings mandatory for the tree variants.
+config RCU_NEED_SEGCBLIST
+ def_bool ( TREE_RCU || PREEMPT_RCU || TINY_SRCU || TREE_SRCU )
+
config CONTEXT_TRACKING
bool
diff --git a/kernel/rcu/Makefile b/kernel/rcu/Makefile
index 158e6593d58c..23803c7d5180 100644
--- a/kernel/rcu/Makefile
+++ b/kernel/rcu/Makefile
@@ -12,3 +12,4 @@ obj-$(CONFIG_TREE_RCU) += tree.o
obj-$(CONFIG_PREEMPT_RCU) += tree.o
obj-$(CONFIG_TREE_RCU_TRACE) += tree_trace.o
obj-$(CONFIG_TINY_RCU) += tiny.o
+obj-$(CONFIG_RCU_NEED_SEGCBLIST) += rcu_segcblist.o
diff --git a/kernel/rcu/rcu_segcblist.c b/kernel/rcu/rcu_segcblist.c
new file mode 100644
index 000000000000..2b62a38b080f
--- /dev/null
+++ b/kernel/rcu/rcu_segcblist.c
@@ -0,0 +1,505 @@
+/*
+ * RCU segmented callback lists, function definitions
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, you can access it online at
+ * http://www.gnu.org/licenses/gpl-2.0.html.
+ *
+ * Copyright IBM Corporation, 2017
+ *
+ * Authors: Paul E. McKenney <paulmck@...ux.vnet.ibm.com>
+ */
+
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/interrupt.h>
+
+#include "rcu_segcblist.h"
+
+/* Initialize simple callback list. */
+void rcu_cblist_init(struct rcu_cblist *rclp)
+{
+ rclp->head = NULL;
+ rclp->tail = &rclp->head;
+ rclp->len = 0;
+ rclp->len_lazy = 0;
+}
+
+/*
+ * Debug function to actually count the number of callbacks.
+ * If the number exceeds the limit specified, return -1.
+ */
+long rcu_cblist_count_cbs(struct rcu_cblist *rclp, long lim)
+{
+ int cnt = 0;
+ struct rcu_head **rhpp = &rclp->head;
+
+ for (;;) {
+ if (!*rhpp)
+ return cnt;
+ if (++cnt > lim)
+ return -1;
+ rhpp = &(*rhpp)->next;
+ }
+}
+
+/*
+ * Dequeue the oldest rcu_head structure from the specified callback
+ * list. This function assumes that the callback is non-lazy, but
+ * the caller can later invoke rcu_cblist_dequeued_lazy() if it
+ * finds otherwise (and if it cares about laziness). This allows
+ * different users to have different ways of determining laziness.
+ */
+struct rcu_head *rcu_cblist_dequeue(struct rcu_cblist *rclp)
+{
+ struct rcu_head *rhp;
+
+ rhp = rclp->head;
+ if (!rhp)
+ return NULL;
+ rclp->len--;
+ rclp->head = rhp->next;
+ if (!rclp->head)
+ rclp->tail = &rclp->head;
+ return rhp;
+}
+
+/*
+ * Initialize an rcu_segcblist structure.
+ */
+void rcu_segcblist_init(struct rcu_segcblist *rsclp)
+{
+ int i;
+
+ BUILD_BUG_ON(RCU_NEXT_TAIL + 1 != ARRAY_SIZE(rsclp->gp_seq));
+ BUILD_BUG_ON(ARRAY_SIZE(rsclp->tails) != ARRAY_SIZE(rsclp->gp_seq));
+ rsclp->head = NULL;
+ for (i = 0; i < RCU_CBLIST_NSEGS; i++)
+ rsclp->tails[i] = &rsclp->head;
+ rsclp->len = 0;
+ rsclp->len_lazy = 0;
+}
+
+/*
+ * Disable the specified rcu_segcblist structure, so that callbacks can
+ * no longer be posted to it. This structure must be empty.
+ */
+void rcu_segcblist_disable(struct rcu_segcblist *rsclp)
+{
+ WARN_ON_ONCE(!rcu_segcblist_empty(rsclp));
+ WARN_ON_ONCE(rcu_segcblist_n_cbs(rsclp));
+ WARN_ON_ONCE(rcu_segcblist_n_lazy_cbs(rsclp));
+ rsclp->tails[RCU_NEXT_TAIL] = NULL;
+}
+
+/*
+ * Is the specified segment of the specified rcu_segcblist structure
+ * empty of callbacks?
+ */
+bool rcu_segcblist_segempty(struct rcu_segcblist *rsclp, int seg)
+{
+ if (seg == RCU_DONE_TAIL)
+ return &rsclp->head == rsclp->tails[RCU_DONE_TAIL];
+ return rsclp->tails[seg - 1] == rsclp->tails[seg];
+}
+
+/*
+ * Does the specified rcu_segcblist structure contain callbacks that
+ * are ready to be invoked?
+ */
+bool rcu_segcblist_ready_cbs(struct rcu_segcblist *rsclp)
+{
+ return rcu_segcblist_is_enabled(rsclp) &&
+ &rsclp->head != rsclp->tails[RCU_DONE_TAIL];
+}
+
+/*
+ * Does the specified rcu_segcblist structure contain callbacks that
+ * are still pending, that is, not yet ready to be invoked?
+ */
+bool rcu_segcblist_pend_cbs(struct rcu_segcblist *rsclp)
+{
+ return rcu_segcblist_is_enabled(rsclp) &&
+ !rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL);
+}
+
+/*
+ * Dequeue and return the first ready-to-invoke callback. If there
+ * are no ready-to-invoke callbacks, return NULL. Disables interrupts
+ * to avoid interference. Does not protect from interference from other
+ * CPUs or tasks.
+ */
+struct rcu_head *rcu_segcblist_dequeue(struct rcu_segcblist *rsclp)
+{
+ unsigned long flags;
+ int i;
+ struct rcu_head *rhp;
+
+ local_irq_save(flags);
+ if (!rcu_segcblist_ready_cbs(rsclp)) {
+ local_irq_restore(flags);
+ return NULL;
+ }
+ rhp = rsclp->head;
+ BUG_ON(!rhp);
+ rsclp->head = rhp->next;
+ for (i = RCU_DONE_TAIL; i < RCU_CBLIST_NSEGS; i++) {
+ if (rsclp->tails[i] != &rhp->next)
+ break;
+ rsclp->tails[i] = &rsclp->head;
+ }
+ smp_mb(); /* Dequeue before decrement for rcu_barrier(). */
+ WRITE_ONCE(rsclp->len, rsclp->len - 1);
+ local_irq_restore(flags);
+ return rhp;
+}
+
+/*
+ * Account for the fact that a previously dequeued callback turned out
+ * to be marked as lazy.
+ */
+void rcu_segcblist_dequeued_lazy(struct rcu_segcblist *rsclp)
+{
+ unsigned long flags;
+
+ local_irq_save(flags);
+ rsclp->len_lazy--;
+ local_irq_restore(flags);
+}
+
+/*
+ * Return a pointer to the first callback in the specified rcu_segcblist
+ * structure. This is useful for diagnostics.
+ */
+struct rcu_head *rcu_segcblist_first_cb(struct rcu_segcblist *rsclp)
+{
+ if (rcu_segcblist_is_enabled(rsclp))
+ return rsclp->head;
+ return NULL;
+}
+
+/*
+ * Return a pointer to the first pending callback in the specified
+ * rcu_segcblist structure. This is useful just after posting a given
+ * callback -- if that callback is the first pending callback, then
+ * you cannot rely on someone else having already started up the required
+ * grace period.
+ */
+struct rcu_head *rcu_segcblist_first_pend_cb(struct rcu_segcblist *rsclp)
+{
+ if (rcu_segcblist_is_enabled(rsclp))
+ return *rsclp->tails[RCU_DONE_TAIL];
+ return NULL;
+}
+
+/*
+ * Does the specified rcu_segcblist structure contain callbacks that
+ * have not yet been processed beyond having been posted, that is,
+ * does it contain callbacks in its last segment?
+ */
+bool rcu_segcblist_new_cbs(struct rcu_segcblist *rsclp)
+{
+ return rcu_segcblist_is_enabled(rsclp) &&
+ !rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL);
+}
+
+/*
+ * Enqueue the specified callback onto the specified rcu_segcblist
+ * structure, updating accounting as needed. Note that the ->len
+ * field may be accessed locklessly, hence the WRITE_ONCE().
+ * The ->len field is used by rcu_barrier() and friends to determine
+ * if it must post a callback on this structure, and it is OK
+ * for rcu_barrier() to sometimes post callbacks needlessly, but
+ * absolutely not OK for it to ever miss posting a callback.
+ */
+void rcu_segcblist_enqueue(struct rcu_segcblist *rsclp,
+ struct rcu_head *rhp, bool lazy)
+{
+ WRITE_ONCE(rsclp->len, rsclp->len + 1); /* ->len sampled locklessly. */
+ if (lazy)
+ rsclp->len_lazy++;
+ smp_mb(); /* Ensure counts are updated before callback is enqueued. */
+ rhp->next = NULL;
+ *rsclp->tails[RCU_NEXT_TAIL] = rhp;
+ rsclp->tails[RCU_NEXT_TAIL] = &rhp->next;
+}
+
+/*
+ * Entrain the specified callback onto the specified rcu_segcblist at
+ * the end of the last non-empty segment. If the entire rcu_segcblist
+ * is empty, make no change, but return false.
+ *
+ * This is intended for use by rcu_barrier()-like primitives, -not-
+ * for normal grace-period use. IMPORTANT: The callback you enqueue
+ * will wait for all prior callbacks, NOT necessarily for a grace
+ * period. You have been warned.
+ */
+bool rcu_segcblist_entrain(struct rcu_segcblist *rsclp,
+ struct rcu_head *rhp, bool lazy)
+{
+ int i;
+
+ if (rcu_segcblist_n_cbs(rsclp) == 0)
+ return false;
+ WRITE_ONCE(rsclp->len, rsclp->len + 1);
+ if (lazy)
+ rsclp->len_lazy++;
+ smp_mb(); /* Ensure counts are updated before callback is entrained. */
+ rhp->next = NULL;
+ for (i = RCU_NEXT_TAIL; i > RCU_DONE_TAIL; i--)
+ if (rsclp->tails[i] != rsclp->tails[i - 1])
+ break;
+ *rsclp->tails[i] = rhp;
+ for (; i <= RCU_NEXT_TAIL; i++)
+ rsclp->tails[i] = &rhp->next;
+ return true;
+}
+
+/*
+ * Extract only the counts from the specified rcu_segcblist structure,
+ * and place them in the specified rcu_cblist structure. This function
+ * supports both callback orphaning and invocation, hence the separation
+ * of counts and callbacks. (Callbacks ready for invocation must be
+ * orphaned and adopted separately from pending callbacks, but counts
+ * apply to all callbacks. Locking must be used to make sure that
+ * both orphaned-callbacks lists are consistent.)
+ */
+void rcu_segcblist_extract_count(struct rcu_segcblist *rsclp,
+ struct rcu_cblist *rclp)
+{
+ rclp->len_lazy += rsclp->len_lazy;
+ rclp->len += rsclp->len;
+ rsclp->len_lazy = 0;
+ WRITE_ONCE(rsclp->len, 0); /* ->len sampled locklessly. */
+}
+
+/*
+ * Extract only those callbacks ready to be invoked from the specified
+ * rcu_segcblist structure and place them in the specified rcu_cblist
+ * structure.
+ */
+void rcu_segcblist_extract_done_cbs(struct rcu_segcblist *rsclp,
+ struct rcu_cblist *rclp)
+{
+ int i;
+
+ if (!rcu_segcblist_ready_cbs(rsclp))
+ return; /* Nothing to do. */
+ *rclp->tail = rsclp->head;
+ rsclp->head = *rsclp->tails[RCU_DONE_TAIL];
+ *rsclp->tails[RCU_DONE_TAIL] = NULL;
+ rclp->tail = rsclp->tails[RCU_DONE_TAIL];
+ for (i = RCU_CBLIST_NSEGS - 1; i >= RCU_DONE_TAIL; i--)
+ if (rsclp->tails[i] == rsclp->tails[RCU_DONE_TAIL])
+ rsclp->tails[i] = &rsclp->head;
+}
+
+/*
+ * Extract only those callbacks still pending (not yet ready to be
+ * invoked) from the specified rcu_segcblist structure and place them in
+ * the specified rcu_cblist structure. Note that this loses information
+ * about any callbacks that might have been partway done waiting for
+ * their grace period. Too bad! They will have to start over.
+ */
+void rcu_segcblist_extract_pend_cbs(struct rcu_segcblist *rsclp,
+ struct rcu_cblist *rclp)
+{
+ int i;
+
+ if (!rcu_segcblist_pend_cbs(rsclp))
+ return; /* Nothing to do. */
+ *rclp->tail = *rsclp->tails[RCU_DONE_TAIL];
+ rclp->tail = rsclp->tails[RCU_NEXT_TAIL];
+ *rsclp->tails[RCU_DONE_TAIL] = NULL;
+ for (i = RCU_DONE_TAIL + 1; i < RCU_CBLIST_NSEGS; i++)
+ rsclp->tails[i] = rsclp->tails[RCU_DONE_TAIL];
+}
+
+/*
+ * Insert counts from the specified rcu_cblist structure in the
+ * specified rcu_segcblist structure.
+ */
+void rcu_segcblist_insert_count(struct rcu_segcblist *rsclp,
+ struct rcu_cblist *rclp)
+{
+ rsclp->len_lazy += rclp->len_lazy;
+ /* ->len sampled locklessly. */
+ WRITE_ONCE(rsclp->len, rsclp->len + rclp->len);
+ rclp->len_lazy = 0;
+ rclp->len = 0;
+}
+
+/*
+ * Move callbacks from the specified rcu_cblist to the beginning of the
+ * done-callbacks segment of the specified rcu_segcblist.
+ */
+void rcu_segcblist_insert_done_cbs(struct rcu_segcblist *rsclp,
+ struct rcu_cblist *rclp)
+{
+ int i;
+
+ if (!rclp->head)
+ return; /* No callbacks to move. */
+ *rclp->tail = rsclp->head;
+ rsclp->head = rclp->head;
+ for (i = RCU_DONE_TAIL; i < RCU_CBLIST_NSEGS; i++)
+ if (&rsclp->head == rsclp->tails[i])
+ rsclp->tails[i] = rclp->tail;
+ else
+ break;
+ rclp->head = NULL;
+ rclp->tail = &rclp->head;
+}
+
+/*
+ * Move callbacks from the specified rcu_cblist to the end of the
+ * new-callbacks segment of the specified rcu_segcblist.
+ */
+void rcu_segcblist_insert_pend_cbs(struct rcu_segcblist *rsclp,
+ struct rcu_cblist *rclp)
+{
+ if (!rclp->head)
+ return; /* Nothing to do. */
+ *rsclp->tails[RCU_NEXT_TAIL] = rclp->head;
+ rsclp->tails[RCU_NEXT_TAIL] = rclp->tail;
+ rclp->head = NULL;
+ rclp->tail = &rclp->head;
+}
+
+/*
+ * Advance the callbacks in the specified rcu_segcblist structure based
+ * on the current value passed in for the grace-period counter.
+ */
+void rcu_segcblist_advance(struct rcu_segcblist *rsclp, unsigned long seq)
+{
+ int i, j;
+
+ WARN_ON_ONCE(!rcu_segcblist_is_enabled(rsclp));
+ if (rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL))
+ return;
+
+ /*
+ * Find all callbacks whose ->gp_seq numbers indicate that they
+ * are ready to invoke, and put them into the RCU_DONE_TAIL segment.
+ */
+ for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
+ if (ULONG_CMP_LT(seq, rsclp->gp_seq[i]))
+ break;
+ rsclp->tails[RCU_DONE_TAIL] = rsclp->tails[i];
+ }
+
+ /* If no callbacks moved, nothing more need be done. */
+ if (i == RCU_WAIT_TAIL)
+ return;
+
+ /* Clean up tail pointers that might have been misordered above. */
+ for (j = RCU_WAIT_TAIL; j < i; j++)
+ rsclp->tails[j] = rsclp->tails[RCU_DONE_TAIL];
+
+ /*
+ * Callbacks moved, so clean up the misordered ->tails[] pointers
+ * that now point into the middle of the list of ready-to-invoke
+ * callbacks. The overall effect is to copy down the later pointers
+ * into the gap that was created by the now-ready segments.
+ */
+ for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
+ if (rsclp->tails[j] == rsclp->tails[RCU_NEXT_TAIL])
+ break; /* No more callbacks. */
+ rsclp->tails[j] = rsclp->tails[i];
+ rsclp->gp_seq[j] = rsclp->gp_seq[i];
+ }
+}
+
+/*
+ * "Accelerate" callbacks based on more-accurate grace-period information.
+ * The reason for this is that RCU does not synchronize the beginnings and
+ * ends of grace periods, and that callbacks are posted locally. This in
+ * turn means that the callbacks must be labelled conservatively early
+ * on, as getting exact information would degrade both performance and
+ * scalability. When more accurate grace-period information becomes
+ * available, previously posted callbacks can be "accelerated", marking
+ * them to complete at the end of the earlier grace period.
+ *
+ * This function operates on an rcu_segcblist structure, and also the
+ * grace-period sequence number seq at which new callbacks would become
+ * ready to invoke. Returns true if there are callbacks that won't be
+ * ready to invoke until seq, false otherwise.
+ */
+bool rcu_segcblist_accelerate(struct rcu_segcblist *rsclp, unsigned long seq)
+{
+ int i;
+
+ WARN_ON_ONCE(!rcu_segcblist_is_enabled(rsclp));
+ if (rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL))
+ return false;
+
+ /*
+ * Find the segment preceding the oldest segment of callbacks
+ * whose ->gp_seq[] completion is at or after that passed in via
+ * "seq", skipping any empty segments. This oldest segment, along
+ * with any later segments, can be merged in with any newly arrived
+ * callbacks in the RCU_NEXT_TAIL segment, and assigned "seq"
+ * as their ->gp_seq[] grace-period completion sequence number.
+ */
+ for (i = RCU_NEXT_READY_TAIL; i > RCU_DONE_TAIL; i--)
+ if (rsclp->tails[i] != rsclp->tails[i - 1] &&
+ ULONG_CMP_LT(rsclp->gp_seq[i], seq))
+ break;
+
+ /*
+ * If all the segments contain callbacks that correspond to
+ * earlier grace-period sequence numbers than "seq", leave.
+ * Assuming that the rcu_segcblist structure has enough
+ * segments in its arrays, this can only happen if some of
+ * the non-done segments contain callbacks that really are
+ * ready to invoke. This situation will get straightened
+ * out by the next call to rcu_segcblist_advance().
+ *
+ * Also advance to the oldest segment of callbacks whose
+ * ->gp_seq[] completion is at or after that passed in via "seq",
+ * skipping any empty segments.
+ */
+ if (++i >= RCU_NEXT_TAIL)
+ return false;
+
+ /*
+ * Merge all later callbacks, including newly arrived callbacks,
+ * into the segment located by the for-loop above. Assign "seq"
+ * as the ->gp_seq[] value in order to correctly handle the case
+ * where there were no pending callbacks in the rcu_segcblist
+ * structure other than in the RCU_NEXT_TAIL segment.
+ */
+ for (; i < RCU_NEXT_TAIL; i++) {
+ rsclp->tails[i] = rsclp->tails[RCU_NEXT_TAIL];
+ rsclp->gp_seq[i] = seq;
+ }
+ return true;
+}
+
+/*
+ * Scan the specified rcu_segcblist structure for callbacks that need
+ * a grace period later than the one specified by "seq". We don't look
+ * at the RCU_DONE_TAIL or RCU_NEXT_TAIL segments because they don't
+ * have a grace-period sequence number.
+ */
+bool rcu_segcblist_future_gp_needed(struct rcu_segcblist *rsclp,
+ unsigned long seq)
+{
+ int i;
+
+ for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
+ if (rsclp->tails[i - 1] != rsclp->tails[i] &&
+ ULONG_CMP_LT(seq, rsclp->gp_seq[i]))
+ return true;
+ return false;
+}
diff --git a/kernel/rcu/rcu_segcblist.h b/kernel/rcu/rcu_segcblist.h
index d98d2f9b8d59..86bc1101b806 100644
--- a/kernel/rcu/rcu_segcblist.h
+++ b/kernel/rcu/rcu_segcblist.h
@@ -1,5 +1,5 @@
/*
- * RCU segmented callback lists
+ * RCU segmented callback lists, internal-to-rcu header file
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@@ -22,15 +22,6 @@
#include <linux/rcu_segcblist.h>
-/* Initialize simple callback list. */
-static inline void rcu_cblist_init(struct rcu_cblist *rclp)
-{
- rclp->head = NULL;
- rclp->tail = &rclp->head;
- rclp->len = 0;
- rclp->len_lazy = 0;
-}
-
/* Is simple callback list empty? */
static inline bool rcu_cblist_empty(struct rcu_cblist *rclp)
{
@@ -50,45 +41,6 @@ static inline long rcu_cblist_n_lazy_cbs(struct rcu_cblist *rclp)
}
/*
- * Debug function to actually count the number of callbacks.
- * If the number exceeds the limit specified, return -1.
- */
-static inline long rcu_cblist_count_cbs(struct rcu_cblist *rclp, long lim)
-{
- int cnt = 0;
- struct rcu_head **rhpp = &rclp->head;
-
- for (;;) {
- if (!*rhpp)
- return cnt;
- if (++cnt > lim)
- return -1;
- rhpp = &(*rhpp)->next;
- }
-}
-
-/*
- * Dequeue the oldest rcu_head structure from the specified callback
- * list. This function assumes that the callback is non-lazy, but
- * the caller can later invoke rcu_cblist_dequeued_lazy() if it
- * finds otherwise (and if it cares about laziness). This allows
- * different users to have different ways of determining laziness.
- */
-static inline struct rcu_head *rcu_cblist_dequeue(struct rcu_cblist *rclp)
-{
- struct rcu_head *rhp;
-
- rhp = rclp->head;
- if (!rhp)
- return NULL;
- rclp->len--;
- rclp->head = rhp->next;
- if (!rclp->head)
- rclp->tail = &rclp->head;
- return rhp;
-}
-
-/*
* Account for the fact that a previously dequeued callback turned out
* to be marked as lazy.
*/
@@ -118,21 +70,9 @@ static inline struct rcu_head **rcu_cblist_tail(struct rcu_cblist *rclp)
return rclp->tail;
}
-/*
- * Initialize an rcu_segcblist structure.
- */
-static inline void rcu_segcblist_init(struct rcu_segcblist *rsclp)
-{
- int i;
-
- BUILD_BUG_ON(RCU_NEXT_TAIL + 1 != ARRAY_SIZE(rsclp->gp_seq));
- BUILD_BUG_ON(ARRAY_SIZE(rsclp->tails) != ARRAY_SIZE(rsclp->gp_seq));
- rsclp->head = NULL;
- for (i = 0; i < RCU_CBLIST_NSEGS; i++)
- rsclp->tails[i] = &rsclp->head;
- rsclp->len = 0;
- rsclp->len_lazy = 0;
-}
+void rcu_cblist_init(struct rcu_cblist *rclp);
+long rcu_cblist_count_cbs(struct rcu_cblist *rclp, long lim);
+struct rcu_head *rcu_cblist_dequeue(struct rcu_cblist *rclp);
/*
* Is the specified rcu_segcblist structure empty?
@@ -180,29 +120,6 @@ static inline bool rcu_segcblist_is_enabled(struct rcu_segcblist *rsclp)
}
/*
- * Disable the specified rcu_segcblist structure, so that callbacks can
- * no longer be posted to it. This structure must be empty.
- */
-static inline void rcu_segcblist_disable(struct rcu_segcblist *rsclp)
-{
- WARN_ON_ONCE(!rcu_segcblist_empty(rsclp));
- WARN_ON_ONCE(rcu_segcblist_n_cbs(rsclp));
- WARN_ON_ONCE(rcu_segcblist_n_lazy_cbs(rsclp));
- rsclp->tails[RCU_NEXT_TAIL] = NULL;
-}
-
-/*
- * Is the specified segment of the specified rcu_segcblist structure
- * empty of callbacks?
- */
-static inline bool rcu_segcblist_segempty(struct rcu_segcblist *rsclp, int seg)
-{
- if (seg == RCU_DONE_TAIL)
- return &rsclp->head == rsclp->tails[RCU_DONE_TAIL];
- return rsclp->tails[seg - 1] == rsclp->tails[seg];
-}
-
-/*
* Are all segments following the specified segment of the specified
* rcu_segcblist structure empty of callbacks? (The specified
* segment might well contain callbacks.)
@@ -213,417 +130,6 @@ static inline bool rcu_segcblist_restempty(struct rcu_segcblist *rsclp, int seg)
}
/*
- * Does the specified rcu_segcblist structure contain callbacks that
- * are ready to be invoked?
- */
-static inline bool rcu_segcblist_ready_cbs(struct rcu_segcblist *rsclp)
-{
- return rcu_segcblist_is_enabled(rsclp) &&
- &rsclp->head != rsclp->tails[RCU_DONE_TAIL];
-}
-
-/*
- * Does the specified rcu_segcblist structure contain callbacks that
- * are still pending, that is, not yet ready to be invoked?
- */
-static inline bool rcu_segcblist_pend_cbs(struct rcu_segcblist *rsclp)
-{
- return rcu_segcblist_is_enabled(rsclp) &&
- !rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL);
-}
-
-/*
- * Dequeue and return the first ready-to-invoke callback. If there
- * are no ready-to-invoke callbacks, return NULL. Disables interrupts
- * to avoid interference. Does not protect from interference from other
- * CPUs or tasks.
- */
-static inline struct rcu_head *
-rcu_segcblist_dequeue(struct rcu_segcblist *rsclp)
-{
- unsigned long flags;
- int i;
- struct rcu_head *rhp;
-
- local_irq_save(flags);
- if (!rcu_segcblist_ready_cbs(rsclp)) {
- local_irq_restore(flags);
- return NULL;
- }
- rhp = rsclp->head;
- BUG_ON(!rhp);
- rsclp->head = rhp->next;
- for (i = RCU_DONE_TAIL; i < RCU_CBLIST_NSEGS; i++) {
- if (rsclp->tails[i] != &rhp->next)
- break;
- rsclp->tails[i] = &rsclp->head;
- }
- smp_mb(); /* Dequeue before decrement for rcu_barrier(). */
- WRITE_ONCE(rsclp->len, rsclp->len - 1);
- local_irq_restore(flags);
- return rhp;
-}
-
-/*
- * Account for the fact that a previously dequeued callback turned out
- * to be marked as lazy.
- */
-static inline void rcu_segcblist_dequeued_lazy(struct rcu_segcblist *rsclp)
-{
- unsigned long flags;
-
- local_irq_save(flags);
- rsclp->len_lazy--;
- local_irq_restore(flags);
-}
-
-/*
- * Return a pointer to the first callback in the specified rcu_segcblist
- * structure. This is useful for diagnostics.
- */
-static inline struct rcu_head *
-rcu_segcblist_first_cb(struct rcu_segcblist *rsclp)
-{
- if (rcu_segcblist_is_enabled(rsclp))
- return rsclp->head;
- return NULL;
-}
-
-/*
- * Return a pointer to the first pending callback in the specified
- * rcu_segcblist structure. This is useful just after posting a given
- * callback -- if that callback is the first pending callback, then
- * you cannot rely on someone else having already started up the required
- * grace period.
- */
-static inline struct rcu_head *
-rcu_segcblist_first_pend_cb(struct rcu_segcblist *rsclp)
-{
- if (rcu_segcblist_is_enabled(rsclp))
- return *rsclp->tails[RCU_DONE_TAIL];
- return NULL;
-}
-
-/*
- * Does the specified rcu_segcblist structure contain callbacks that
- * have not yet been processed beyond having been posted, that is,
- * does it contain callbacks in its last segment?
- */
-static inline bool rcu_segcblist_new_cbs(struct rcu_segcblist *rsclp)
-{
- return rcu_segcblist_is_enabled(rsclp) &&
- !rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL);
-}
-
-/*
- * Enqueue the specified callback onto the specified rcu_segcblist
- * structure, updating accounting as needed. Note that the ->len
- * field may be accessed locklessly, hence the WRITE_ONCE().
- * The ->len field is used by rcu_barrier() and friends to determine
- * if it must post a callback on this structure, and it is OK
- * for rcu_barrier() to sometimes post callbacks needlessly, but
- * absolutely not OK for it to ever miss posting a callback.
- */
-static inline void rcu_segcblist_enqueue(struct rcu_segcblist *rsclp,
- struct rcu_head *rhp, bool lazy)
-{
- WRITE_ONCE(rsclp->len, rsclp->len + 1); /* ->len sampled locklessly. */
- if (lazy)
- rsclp->len_lazy++;
- smp_mb(); /* Ensure counts are updated before callback is enqueued. */
- rhp->next = NULL;
- *rsclp->tails[RCU_NEXT_TAIL] = rhp;
- rsclp->tails[RCU_NEXT_TAIL] = &rhp->next;
-}
-
-/*
- * Entrain the specified callback onto the specified rcu_segcblist at
- * the end of the last non-empty segment. If the entire rcu_segcblist
- * is empty, make no change, but return false.
- *
- * This is intended for use by rcu_barrier()-like primitives, -not-
- * for normal grace-period use. IMPORTANT: The callback you enqueue
- * will wait for all prior callbacks, NOT necessarily for a grace
- * period. You have been warned.
- */
-static inline bool rcu_segcblist_entrain(struct rcu_segcblist *rsclp,
- struct rcu_head *rhp, bool lazy)
-{
- int i;
-
- if (rcu_segcblist_n_cbs(rsclp) == 0)
- return false;
- WRITE_ONCE(rsclp->len, rsclp->len + 1);
- if (lazy)
- rsclp->len_lazy++;
- smp_mb(); /* Ensure counts are updated before callback is entrained. */
- rhp->next = NULL;
- for (i = RCU_NEXT_TAIL; i > RCU_DONE_TAIL; i--)
- if (rsclp->tails[i] != rsclp->tails[i - 1])
- break;
- *rsclp->tails[i] = rhp;
- for (; i <= RCU_NEXT_TAIL; i++)
- rsclp->tails[i] = &rhp->next;
- return true;
-}
-
-/*
- * Extract only the counts from the specified rcu_segcblist structure,
- * and place them in the specified rcu_cblist structure. This function
- * supports both callback orphaning and invocation, hence the separation
- * of counts and callbacks. (Callbacks ready for invocation must be
- * orphaned and adopted separately from pending callbacks, but counts
- * apply to all callbacks. Locking must be used to make sure that
- * both orphaned-callbacks lists are consistent.)
- */
-static inline void rcu_segcblist_extract_count(struct rcu_segcblist *rsclp,
- struct rcu_cblist *rclp)
-{
- rclp->len_lazy += rsclp->len_lazy;
- rclp->len += rsclp->len;
- rsclp->len_lazy = 0;
- WRITE_ONCE(rsclp->len, 0); /* ->len sampled locklessly. */
-}
-
-/*
- * Extract only those callbacks ready to be invoked from the specified
- * rcu_segcblist structure and place them in the specified rcu_cblist
- * structure.
- */
-static inline void rcu_segcblist_extract_done_cbs(struct rcu_segcblist *rsclp,
- struct rcu_cblist *rclp)
-{
- int i;
-
- if (!rcu_segcblist_ready_cbs(rsclp))
- return; /* Nothing to do. */
- *rclp->tail = rsclp->head;
- rsclp->head = *rsclp->tails[RCU_DONE_TAIL];
- *rsclp->tails[RCU_DONE_TAIL] = NULL;
- rclp->tail = rsclp->tails[RCU_DONE_TAIL];
- for (i = RCU_CBLIST_NSEGS - 1; i >= RCU_DONE_TAIL; i--)
- if (rsclp->tails[i] == rsclp->tails[RCU_DONE_TAIL])
- rsclp->tails[i] = &rsclp->head;
-}
-
-/*
- * Extract only those callbacks still pending (not yet ready to be
- * invoked) from the specified rcu_segcblist structure and place them in
- * the specified rcu_cblist structure. Note that this loses information
- * about any callbacks that might have been partway done waiting for
- * their grace period. Too bad! They will have to start over.
- */
-static inline void
-rcu_segcblist_extract_pend_cbs(struct rcu_segcblist *rsclp,
- struct rcu_cblist *rclp)
-{
- int i;
-
- if (!rcu_segcblist_pend_cbs(rsclp))
- return; /* Nothing to do. */
- *rclp->tail = *rsclp->tails[RCU_DONE_TAIL];
- rclp->tail = rsclp->tails[RCU_NEXT_TAIL];
- *rsclp->tails[RCU_DONE_TAIL] = NULL;
- for (i = RCU_DONE_TAIL + 1; i < RCU_CBLIST_NSEGS; i++)
- rsclp->tails[i] = rsclp->tails[RCU_DONE_TAIL];
-}
-
-/*
- * Move the entire contents of the specified rcu_segcblist structure,
- * counts, callbacks, and all, to the specified rcu_cblist structure.
- * @@@ Why do we need this??? Moving early-boot CBs to NOCB lists?
- * @@@ Memory barrier needed? (Not if only used at boot time...)
- */
-static inline void rcu_segcblist_extract_all(struct rcu_segcblist *rsclp,
- struct rcu_cblist *rclp)
-{
- rcu_segcblist_extract_done_cbs(rsclp, rclp);
- rcu_segcblist_extract_pend_cbs(rsclp, rclp);
- rcu_segcblist_extract_count(rsclp, rclp);
-}
-
-/*
- * Insert counts from the specified rcu_cblist structure in the
- * specified rcu_segcblist structure.
- */
-static inline void rcu_segcblist_insert_count(struct rcu_segcblist *rsclp,
- struct rcu_cblist *rclp)
-{
- rsclp->len_lazy += rclp->len_lazy;
- /* ->len sampled locklessly. */
- WRITE_ONCE(rsclp->len, rsclp->len + rclp->len);
- rclp->len_lazy = 0;
- rclp->len = 0;
-}
-
-/*
- * Move callbacks from the specified rcu_cblist to the beginning of the
- * done-callbacks segment of the specified rcu_segcblist.
- */
-static inline void rcu_segcblist_insert_done_cbs(struct rcu_segcblist *rsclp,
- struct rcu_cblist *rclp)
-{
- int i;
-
- if (!rclp->head)
- return; /* No callbacks to move. */
- *rclp->tail = rsclp->head;
- rsclp->head = rclp->head;
- for (i = RCU_DONE_TAIL; i < RCU_CBLIST_NSEGS; i++)
- if (&rsclp->head == rsclp->tails[i])
- rsclp->tails[i] = rclp->tail;
- else
- break;
- rclp->head = NULL;
- rclp->tail = &rclp->head;
-}
-
-/*
- * Move callbacks from the specified rcu_cblist to the end of the
- * new-callbacks segment of the specified rcu_segcblist.
- */
-static inline void rcu_segcblist_insert_pend_cbs(struct rcu_segcblist *rsclp,
- struct rcu_cblist *rclp)
-{
- if (!rclp->head)
- return; /* Nothing to do. */
- *rsclp->tails[RCU_NEXT_TAIL] = rclp->head;
- rsclp->tails[RCU_NEXT_TAIL] = rclp->tail;
- rclp->head = NULL;
- rclp->tail = &rclp->head;
-}
-
-/*
- * Advance the callbacks in the specified rcu_segcblist structure based
- * on the current value passed in for the grace-period counter.
- */
-static inline void rcu_segcblist_advance(struct rcu_segcblist *rsclp,
- unsigned long seq)
-{
- int i, j;
-
- WARN_ON_ONCE(!rcu_segcblist_is_enabled(rsclp));
- if (rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL))
- return;
-
- /*
- * Find all callbacks whose ->gp_seq numbers indicate that they
- * are ready to invoke, and put them into the RCU_DONE_TAIL segment.
- */
- for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
- if (ULONG_CMP_LT(seq, rsclp->gp_seq[i]))
- break;
- rsclp->tails[RCU_DONE_TAIL] = rsclp->tails[i];
- }
-
- /* If no callbacks moved, nothing more need be done. */
- if (i == RCU_WAIT_TAIL)
- return;
-
- /* Clean up tail pointers that might have been misordered above. */
- for (j = RCU_WAIT_TAIL; j < i; j++)
- rsclp->tails[j] = rsclp->tails[RCU_DONE_TAIL];
-
- /*
- * Callbacks moved, so clean up the misordered ->tails[] pointers
- * that now point into the middle of the list of ready-to-invoke
- * callbacks. The overall effect is to copy down the later pointers
- * into the gap that was created by the now-ready segments.
- */
- for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
- if (rsclp->tails[j] == rsclp->tails[RCU_NEXT_TAIL])
- break; /* No more callbacks. */
- rsclp->tails[j] = rsclp->tails[i];
- rsclp->gp_seq[j] = rsclp->gp_seq[i];
- }
-}
-
-/*
- * "Accelerate" callbacks based on more-accurate grace-period information.
- * The reason for this is that RCU does not synchronize the beginnings and
- * ends of grace periods, and that callbacks are posted locally. This in
- * turn means that the callbacks must be labelled conservatively early
- * on, as getting exact information would degrade both performance and
- * scalability. When more accurate grace-period information becomes
- * available, previously posted callbacks can be "accelerated", marking
- * them to complete at the end of the earlier grace period.
- *
- * This function operates on an rcu_segcblist structure, and also the
- * grace-period sequence number seq at which new callbacks would become
- * ready to invoke. Returns true if there are callbacks that won't be
- * ready to invoke until seq, false otherwise.
- */
-static inline bool rcu_segcblist_accelerate(struct rcu_segcblist *rsclp,
- unsigned long seq)
-{
- int i;
-
- WARN_ON_ONCE(!rcu_segcblist_is_enabled(rsclp));
- if (rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL))
- return false;
-
- /*
- * Find the segment preceding the oldest segment of callbacks
- * whose ->gp_seq[] completion is at or after that passed in via
- * "seq", skipping any empty segments. This oldest segment, along
- * with any later segments, can be merged in with any newly arrived
- * callbacks in the RCU_NEXT_TAIL segment, and assigned "seq"
- * as their ->gp_seq[] grace-period completion sequence number.
- */
- for (i = RCU_NEXT_READY_TAIL; i > RCU_DONE_TAIL; i--)
- if (rsclp->tails[i] != rsclp->tails[i - 1] &&
- ULONG_CMP_LT(rsclp->gp_seq[i], seq))
- break;
-
- /*
- * If all the segments contain callbacks that correspond to
- * earlier grace-period sequence numbers than "seq", leave.
- * Assuming that the rcu_segcblist structure has enough
- * segments in its arrays, this can only happen if some of
- * the non-done segments contain callbacks that really are
- * ready to invoke. This situation will get straightened
- * out by the next call to rcu_segcblist_advance().
- *
- * Also advance to the oldest segment of callbacks whose
- * ->gp_seq[] completion is at or after that passed in via "seq",
- * skipping any empty segments.
- */
- if (++i >= RCU_NEXT_TAIL)
- return false;
-
- /*
- * Merge all later callbacks, including newly arrived callbacks,
- * into the segment located by the for-loop above. Assign "seq"
- * as the ->gp_seq[] value in order to correctly handle the case
- * where there were no pending callbacks in the rcu_segcblist
- * structure other than in the RCU_NEXT_TAIL segment.
- */
- for (; i < RCU_NEXT_TAIL; i++) {
- rsclp->tails[i] = rsclp->tails[RCU_NEXT_TAIL];
- rsclp->gp_seq[i] = seq;
- }
- return true;
-}
-
-/*
- * Scan the specified rcu_segcblist structure for callbacks that need
- * a grace period later than the one specified by "seq". We don't look
- * at the RCU_DONE_TAIL or RCU_NEXT_TAIL segments because they don't
- * have a grace-period sequence number.
- */
-static inline bool rcu_segcblist_future_gp_needed(struct rcu_segcblist *rsclp,
- unsigned long seq)
-{
- int i;
-
- for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
- if (rsclp->tails[i - 1] != rsclp->tails[i] &&
- ULONG_CMP_LT(seq, rsclp->gp_seq[i]))
- return true;
- return false;
-}
-
-/*
* Interim function to return rcu_segcblist head pointer. Longer term, the
* rcu_segcblist will be used more pervasively, removing the need for this
* function.
@@ -643,3 +149,34 @@ static inline struct rcu_head **rcu_segcblist_tail(struct rcu_segcblist *rsclp)
WARN_ON_ONCE(rcu_segcblist_empty(rsclp));
return rsclp->tails[RCU_NEXT_TAIL];
}
+
+void rcu_segcblist_init(struct rcu_segcblist *rsclp);
+void rcu_segcblist_disable(struct rcu_segcblist *rsclp);
+bool rcu_segcblist_segempty(struct rcu_segcblist *rsclp, int seg);
+bool rcu_segcblist_ready_cbs(struct rcu_segcblist *rsclp);
+bool rcu_segcblist_pend_cbs(struct rcu_segcblist *rsclp);
+struct rcu_head *rcu_segcblist_dequeue(struct rcu_segcblist *rsclp);
+void rcu_segcblist_dequeued_lazy(struct rcu_segcblist *rsclp);
+struct rcu_head *rcu_segcblist_first_cb(struct rcu_segcblist *rsclp);
+struct rcu_head *rcu_segcblist_first_pend_cb(struct rcu_segcblist *rsclp);
+bool rcu_segcblist_new_cbs(struct rcu_segcblist *rsclp);
+void rcu_segcblist_enqueue(struct rcu_segcblist *rsclp,
+ struct rcu_head *rhp, bool lazy);
+bool rcu_segcblist_entrain(struct rcu_segcblist *rsclp,
+ struct rcu_head *rhp, bool lazy);
+void rcu_segcblist_extract_count(struct rcu_segcblist *rsclp,
+ struct rcu_cblist *rclp);
+void rcu_segcblist_extract_done_cbs(struct rcu_segcblist *rsclp,
+ struct rcu_cblist *rclp);
+void rcu_segcblist_extract_pend_cbs(struct rcu_segcblist *rsclp,
+ struct rcu_cblist *rclp);
+void rcu_segcblist_insert_count(struct rcu_segcblist *rsclp,
+ struct rcu_cblist *rclp);
+void rcu_segcblist_insert_done_cbs(struct rcu_segcblist *rsclp,
+ struct rcu_cblist *rclp);
+void rcu_segcblist_insert_pend_cbs(struct rcu_segcblist *rsclp,
+ struct rcu_cblist *rclp);
+void rcu_segcblist_advance(struct rcu_segcblist *rsclp, unsigned long seq);
+bool rcu_segcblist_accelerate(struct rcu_segcblist *rsclp, unsigned long seq);
+bool rcu_segcblist_future_gp_needed(struct rcu_segcblist *rsclp,
+ unsigned long seq);
--
2.5.2
Powered by blists - more mailing lists