[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <1849581.EITA3liymz@positron.chronox.de>
Date: Sun, 14 May 2017 16:28:35 +0200
From: Stephan Müller <smueller@...onox.de>
To: linux-kernel@...r.kernel.org
Cc: linux-crypto@...r.kernel.org,
"Jason A. Donenfeld" <Jason@...c4.com>
Subject: [PATCH v11 3/5] Linux Random Number Generator
The LRNG with the following properties:
* noise source: interrupts timing with fast boot time seeding
* lockless LFSR to collect raw entropy
* use of kernel crypto API DRBG
* in case kernel crypto API is not compiled, use standalone
ChaCha20 based RNG
* used cipher types for hashes and DRBG is selectable at
compile time
* "atomic" seeding of secondary DRBG to ensure full entropy
transport
* instantiate one DRBG per NUMA node
Further details including the rationale for the design choices and
properties of the LRNG together with testing is provided at [1].
In addition, the documentation explains the conducted regression
tests to verify that the LRNG is API and ABI compatible with the
legacy /dev/random implementation.
Signed-off-by: Stephan Mueller <smueller@...onox.de>
---
drivers/char/lrng_base.c | 2283 +++++++++++++++++++++++++++++++++++++++++++++
drivers/char/lrng_kcapi.c | 173 ++++
2 files changed, 2456 insertions(+)
create mode 100644 drivers/char/lrng_base.c
create mode 100644 drivers/char/lrng_kcapi.c
diff --git a/drivers/char/lrng_base.c b/drivers/char/lrng_base.c
new file mode 100644
index 0000000..76e45f4
--- /dev/null
+++ b/drivers/char/lrng_base.c
@@ -0,0 +1,2283 @@
+/*
+ * Linux Random Number Generator (LRNG)
+ *
+ * Documentation and test code: http://www.chronox.de/lrng.html
+ *
+ * Copyright (C) 2016 - 2017, Stephan Mueller <smueller@...onox.de>
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, and the entire permission notice in its entirety,
+ * including the disclaimer of warranties.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. The name of the author may not be used to endorse or promote
+ * products derived from this software without specific prior
+ * written permission.
+ *
+ * ALTERNATIVELY, this product may be distributed under the terms of
+ * the GNU General Public License, in which case the provisions of the GPL2
+ * are required INSTEAD OF the above restrictions. (This clause is
+ * necessary due to a potential bad interaction between the GPL and
+ * the restrictions contained in a BSD-style copyright.)
+ *
+ * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
+ * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
+ * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
+ * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
+ * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/timex.h>
+#include <linux/percpu.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/fs.h>
+#include <linux/spinlock.h>
+#include <linux/kthread.h>
+#include <linux/random.h>
+#include <linux/workqueue.h>
+#include <linux/poll.h>
+#include <linux/cryptohash.h>
+#include <linux/syscalls.h>
+#include <linux/uuid.h>
+#include <linux/fips.h>
+#include <linux/slab.h>
+#include <asm/irq_regs.h>
+
+#ifdef CONFIG_CRYPTO_JITTERENTROPY
+#include <crypto/rng.h>
+#endif
+
+/*
+ * Define a DRBG plus a hash / MAC used to extract data from the entropy pool.
+ * For LRNG_HASH_NAME you can use a hash or a MAC (HMAC or CMAC) of your choice
+ * (Note, you should use the suggested selections below -- using SHA-1 or MD5
+ * is not wise). The idea is that the used cipher primitive can be selected to
+ * be the same as used for the DRBG. I.e. the LRNG only uses one cipher
+ * primitive using the same cipher implementation with the options offered in
+ * the following. This means, if the CTR DRBG is selected and AES-NI is present,
+ * both the CTR DRBG and the selected cmac(aes) use AES-NI.
+ *
+ * The security strengths of the DRBGs are taken from SP800-57 section 5.6.1.
+ *
+ * This definition is allowed to be changed.
+ */
+#ifdef CONFIG_CRYPTO_DRBG_CTR
+# define LRNG_HASH_NAME "cmac(aes)"
+# if 0
+# define LRNG_DRBG_SECURITY_STRENGTH_BYTES 16
+# define LRNG_DRBG_CORE "drbg_nopr_ctr_aes128" /* CTR DRBG AES-128 */
+# else
+# define LRNG_DRBG_SECURITY_STRENGTH_BYTES 32
+# define LRNG_DRBG_CORE "drbg_nopr_ctr_aes256" /* CTR DRBG AES-256 */
+# endif
+#elif defined CONFIG_CRYPTO_DRBG_HMAC
+# if 0
+# define LRNG_DRBG_SECURITY_STRENGTH_BYTES 32
+# define LRNG_DRBG_CORE "drbg_nopr_hmac_sha256" /* HMAC DRBG SHA-256 */
+# define LRNG_HASH_NAME "sha256"
+# else
+# define LRNG_DRBG_SECURITY_STRENGTH_BYTES 32
+# define LRNG_DRBG_CORE "drbg_nopr_hmac_sha512" /* HMAC DRBG SHA-512 */
+# define LRNG_HASH_NAME "sha512"
+# endif
+#elif defined CONFIG_CRYPTO_DRBG_HASH
+# if 0
+# define LRNG_DRBG_SECURITY_STRENGTH_BYTES 32
+# define LRNG_DRBG_CORE "drbg_nopr_sha256" /* Hash DRBG SHA-256 */
+# define LRNG_HASH_NAME "sha256"
+# else
+# define LRNG_DRBG_SECURITY_STRENGTH_BYTES 32
+# define LRNG_DRBG_CORE "drbg_nopr_sha512" /* Hash DRBG SHA-512 */
+# define LRNG_HASH_NAME "sha512"
+# endif
+#else
+# define LRNG_DRBG_SECURITY_STRENGTH_BYTES 32
+# define LRNG_DRBG_CORE "ChaCha20" /* ChaCha20 */
+# define LRNG_HASH_NAME "sha1"
+#endif
+
+#define LRNG_DRBG_SECURITY_STRENGTH_BITS (LRNG_DRBG_SECURITY_STRENGTH_BYTES * 8)
+
+#define LRNG_DRBG_BLOCKSIZE 64 /* Maximum of DRNG block sizes */
+
+/*
+ * Alignmask which should cover all cipher implementations
+ * WARNING: If this is changed to a value larger than 8, manual
+ * alignment is necessary as older versions of GCC may not be capable
+ * of aligning stack variables at boundaries greater than 8.
+ * In this case, PTR_ALIGN must be used.
+ */
+#define LRNG_KCAPI_ALIGN 8
+
+/* Primary DRBG state handle */
+struct lrng_pdrbg {
+ void *pdrbg; /* DRNG handle */
+ bool pdrbg_fully_seeded; /* Is DRBG fully seeded? */
+ bool pdrbg_min_seeded; /* Is DRBG minimally seeded? */
+ u32 pdrbg_entropy_bits; /* DRBG entropy level */
+ struct work_struct lrng_seed_work; /* (re)seed work queue */
+ spinlock_t lock;
+};
+
+/* Secondary DRBG state handle */
+struct lrng_sdrbg {
+ void *sdrbg; /* DRNG handle */
+ atomic_t requests; /* Number of DRBG requests */
+ unsigned long last_seeded; /* Last time it was seeded */
+ bool fully_seeded; /* Is DRBG fully seeded? */
+ bool force_reseed; /* Force a reseed */
+ spinlock_t lock;
+};
+
+/*
+ * SP800-90A defines a maximum request size of 1<<16 bytes. The given value is
+ * considered a safer margin. This applies to secondary DRBG.
+ *
+ * This value is allowed to be changed.
+ */
+#define LRNG_DRBG_MAX_REQSIZE (1<<12)
+
+/*
+ * SP800-90A defines a maximum number of requests between reseeds of 1<<48.
+ * The given value is considered a much safer margin, balancing requests for
+ * frequent reseeds with the need to conserve entropy. This value MUST NOT be
+ * larger than INT_MAX because it is used in an atomic_t. This applies to
+ * secondary DRBG.
+ *
+ * This value is allowed to be changed.
+ */
+#define LRNG_DRBG_RESEED_THRESH (1<<17)
+
+/* Status information about IRQ noise source */
+struct lrng_irq_info {
+ atomic_t num_events; /* Number of non-stuck IRQs since last read */
+ atomic_t num_events_thresh; /* Reseed threshold */
+ atomic_t last_time; /* Stuck test: time of previous IRQ */
+ atomic_t last_delta; /* Stuck test: delta of previous IRQ */
+ atomic_t last_delta2; /* Stuck test: 2. time derivation of prev IRQ */
+ atomic_t reseed_in_progress; /* Flag for on executing reseed */
+ atomic_t crngt_ctr; /* FIPS 140-2 CRNGT counter */
+ bool irq_highres_timer; /* Is high-resolution timer available? */
+ u32 irq_entropy_bits; /* LRNG_IRQ_ENTROPY_BITS? */
+};
+
+/*
+ * According to FIPS 140-2 IG 9.8, our C threshold is at 3 back to back stuck
+ * values. It should be highly unlikely that we see three consecutive
+ * identical time stamps.
+ *
+ * This value is allowed to be changed.
+ */
+#define LRNG_FIPS_CRNGT 3
+
+/*
+ * This is the entropy pool used by the slow noise source. Its size should
+ * be at least as large as the interrupt entropy estimate.
+ *
+ * The pool array is aligned to 8 bytes to comfort the kernel crypto API cipher
+ * implementations: for some accelerated implementations, we need an alignment
+ * to avoid a realignment which involves memcpy(). The alignment to 8 bytes
+ * should satisfy all crypto implementations.
+ *
+ * LRNG_POOL_SIZE is allowed to be changed only if the taps for the LFSR are
+ * changed as well. The size must be in powers of 2 due to the mask handling in
+ * lrng_pool_lfsr which uses AND instead of modulo.
+ *
+ * The polynomials for the LFSR are taken from the following URL
+ * which lists primitive polynomials
+ * http://courses.cse.tamu.edu/csce680/walker/lfsr_table.pdf. The first
+ * polynomial is from "Primitive Binary Polynomials" by Wayne Stahnke (1993)
+ * and is primitive as well as irreducible.
+ *
+ * Note, the tap values are smaller by one compared to the documentation because
+ * they are used as an index into an array where the index starts by zero.
+ *
+ * All polynomials were also checked to be primitive with magma.
+ *
+ * LRNG_POOL_SIZE must match the selected polynomial (i.e. LRNG_POOL_SIZE must
+ * be equal to the first value of the polynomial plus one).
+ */
+static u32 const lrng_lfsr_polynomial[] =
+ { 127, 28, 26, 1 }; /* 128 words by Stahnke */
+ /* { 255, 253, 250, 245 }; */ /* 256 words */
+ /* { 511, 509, 506, 503 }; */ /* 512 words */
+ /* { 1023, 1014, 1001, 1000 }; */ /* 1024 words */
+ /* { 2047, 2034, 2033, 2028 }; */ /* 2048 words */
+ /* { 4095, 4094, 4080, 4068 }; */ /* 4096 words */
+struct lrng_pool {
+#define LRNG_POOL_SIZE 128
+#define LRNG_POOL_WORD_BYTES (sizeof(atomic_t))
+#define LRNG_POOL_SIZE_BYTES (LRNG_POOL_SIZE * LRNG_POOL_WORD_BYTES)
+#define LRNG_POOL_SIZE_BITS (LRNG_POOL_SIZE_BYTES * 8)
+#define LRNG_POOL_WORD_BITS (LRNG_POOL_WORD_BYTES * 8)
+ atomic_t pool[LRNG_POOL_SIZE]; /* Pool */
+ atomic_t pool_ptr; /* Ptr into pool for next IRQ word injection */
+ atomic_t input_rotate; /* rotate for LFSR */
+ u32 numa_drngs; /* Number of online DRNGs */
+ bool all_online_numa_node_seeded; /* All NUMA DRNGs seede? */
+ void *lrng_hash;
+ struct lrng_irq_info irq_info; /* IRQ noise source status info */
+};
+
+/*
+ * Number of interrupts to be recorded to assume that DRBG security strength
+ * bits of entropy are received.
+ * Note: a value below the DRBG security strength should not be defined as this
+ * may imply the DRBG can never be fully seeded in case other noise
+ * sources are unavailable.
+ *
+ * This value is allowed to be changed.
+ */
+#define LRNG_IRQ_ENTROPY_BYTES (LRNG_DRBG_SECURITY_STRENGTH_BYTES)
+#define LRNG_IRQ_ENTROPY_BITS (LRNG_IRQ_ENTROPY_BYTES * 8)
+
+/*
+ * Leave given amount of entropy in bits entropy pool to serve /dev/random while
+ * /dev/urandom is stressed.
+ *
+ * This value is allowed to be changed.
+ */
+#define LRNG_EMERG_ENTROPY (LRNG_DRBG_SECURITY_STRENGTH_BITS * 2)
+
+/*
+ * Min required seed entropy is 128 bits as per updates to SP800-131A and
+ * BSI's TR02102.
+ *
+ * This value is allowed to be changed.
+ */
+#define LRNG_MIN_SEED_ENTROPY_BITS 128
+
+#define LRNG_INIT_ENTROPY_BITS 32
+/*
+ * Oversampling factor of IRQ events to obtain
+ * LRNG_DRBG_SECURITY_STRENGTH_BYTES. This factor is used when a
+ * high-resolution time stamp is not available. In this case, jiffies and
+ * register contents are used to fill the entropy pool. These noise sources
+ * are much less entropic than the high-resolution timer. The entropy content
+ * is the entropy content assumed with LRNG_IRQ_ENTROPY_BYTES divided by
+ * LRNG_IRQ_OVERSAMPLING_FACTOR.
+ *
+ * This value is allowed to be changed.
+ */
+#define LRNG_IRQ_OVERSAMPLING_FACTOR 10
+
+static struct lrng_pdrbg lrng_pdrbg = {
+ .lock = __SPIN_LOCK_UNLOCKED(lrng.pdrbg.lock)
+};
+
+static struct lrng_sdrbg **lrng_sdrbg __read_mostly;
+
+static struct lrng_pool lrng_pool __aligned(LRNG_KCAPI_ALIGN) = {
+ .irq_info = {
+ .crngt_ctr = ATOMIC_INIT(LRNG_FIPS_CRNGT),
+ },
+};
+
+static LIST_HEAD(lrng_ready_list);
+static DEFINE_SPINLOCK(lrng_ready_list_lock);
+
+static struct crypto_rng *lrng_jent;
+static DEFINE_SPINLOCK(lrng_jent_lock); /* Lock for r/w lrng_jent */
+
+static atomic_t lrng_pdrbg_avail = ATOMIC_INIT(0);
+static atomic_t lrng_initrng_bytes = ATOMIC_INIT(0);
+static DEFINE_SPINLOCK(lrng_init_rng_lock); /* Lock the init RNG state */
+
+static DECLARE_WAIT_QUEUE_HEAD(lrng_read_wait);
+static DECLARE_WAIT_QUEUE_HEAD(lrng_write_wait);
+static DECLARE_WAIT_QUEUE_HEAD(lrng_pdrbg_init_wait);
+static struct fasync_struct *fasync;
+
+/*
+ * Estimated entropy of data is a 32th of LRNG_DRBG_SECURITY_STRENGTH_BITS.
+ * As we have no ability to review the implementation of those noise sources,
+ * it is prudent to have a conservative estimate here.
+ */
+static u32 archrandom = LRNG_DRBG_SECURITY_STRENGTH_BITS>>5;
+module_param(archrandom, uint, S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
+MODULE_PARM_DESC(archrandom, "Entropy in bits of 256 data bits from CPU noise source (e.g. RDRAND)");
+
+/*
+ * Estimated entropy of data is a 16th of LRNG_DRBG_SECURITY_STRENGTH_BITS.
+ * Albeit a full entropy assessment is provided for the noise source indicating
+ * that it provides high entropy rates and considering that it deactivates
+ * when it detects insufficient hardware, the chosen under estimation of
+ * entropy is considered to be acceptable to all reviewers.
+ */
+static u32 jitterrng = LRNG_DRBG_SECURITY_STRENGTH_BITS>>4;
+module_param(jitterrng, uint, S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
+MODULE_PARM_DESC(jitterrng, "Entropy in bits of of 256 data bits from Jitter RNG noise source");
+
+/*
+ * If the entropy count falls under this number of bits, then we
+ * should wake up processes which are selecting or polling on write
+ * access to /dev/random.
+ */
+static u32 lrng_write_wakeup_bits = LRNG_EMERG_ENTROPY +
+ 2 * LRNG_DRBG_SECURITY_STRENGTH_BITS;
+
+/*
+ * The minimum number of bits of entropy before we wake up a read on
+ * /dev/random.
+ */
+static u32 lrng_read_wakeup_bits = LRNG_POOL_WORD_BITS * 2;
+
+/*
+ * Maximum number of seconds between DRBG reseed intervals of the secondary
+ * DRBG. Note, this is enforced with the next request of random numbers from
+ * the secondary DRBG. Setting this value to zero implies a reseeding attempt
+ * before every generated random number.
+ */
+static int lrng_sdrbg_reseed_max_time = 600;
+
+/************************** Crypto Implementations ***************************/
+
+/**
+ * Allocate DRNG -- the provided integers should be used for sanity checks.
+ * @return: allocated data structure or PTR_ERR on error
+ */
+void *lrng_drng_alloc(const u8 *drng_name, u32 sec_strength);
+
+/* Deallocate DRNG */
+void lrng_drng_dealloc(void *drng);
+
+/**
+ * Seed the DRNG with data of arbitrary length
+ * @drng: is pointer to data structure allocated with lrng_drng_alloc
+ * @return: >= 0 on success, < 0 on error
+ */
+int lrng_drng_seed_helper(void *drng, const u8 *inbuf, u32 inbuflen);
+
+/**
+ * Generate random numbers from the DRNG with arbitrary length
+ * @return: generated number of bytes, < 0 on error
+ */
+int lrng_drng_generate_helper(void *drng, u8 *outbuf, u32 outbuflen);
+
+/**
+ * Generate random numbers from the DRNG with arbitrary length where the
+ * output is capable of providing 1 bit of entropy per data bit.
+ * @return: generated number of bytes, < 0 on error
+ */
+int lrng_drng_generate_helper_full(void *drng, u8 *outbuf, u32 outbuflen);
+
+/**
+ * Allocate the hash for reading the entropy pool
+ * @return: allocated data structure (NULL is success too) or ERR_PTR on error
+ */
+void *lrng_hash_alloc(const u8 *hashname, const u8 *key, u32 keylen);
+
+/**
+ * Return the digestsize for the used hash to read out entropy pool
+ * @hash: is pointer to data structure allocated with lrng_hash_alloc
+ * @return: size of digest of hash in bytes
+ */
+u32 lrng_hash_digestsize(void *hash);
+
+/**
+ * Generate hash
+ * @hash: is pointer to data structure allocated with lrng_hash_alloc
+ * @return: 0 on success, < 0 on error
+ */
+int lrng_hash_buffer(void *hash, const u8 *inbuf, u32 inbuflen, u8 *digest);
+
+/********************************** Helper ***********************************/
+
+static inline u32 atomic_read_u32(atomic_t *v)
+{
+ return (u32)atomic_read(v);
+}
+
+static inline u32 atomic_xchg_u32(atomic_t *v, u32 x)
+{
+ return (u32)atomic_xchg(v, x);
+}
+
+static inline u32 lrng_entropy_to_data(u32 entropy_bits)
+{
+ return ((entropy_bits * lrng_pool.irq_info.irq_entropy_bits) /
+ LRNG_DRBG_SECURITY_STRENGTH_BITS);
+}
+
+static inline u32 lrng_data_to_entropy(u32 irqnum)
+{
+ return ((irqnum * LRNG_DRBG_SECURITY_STRENGTH_BITS) /
+ lrng_pool.irq_info.irq_entropy_bits);
+}
+
+static inline u32 lrng_avail_entropy(void)
+{
+ return min_t(u32, LRNG_POOL_SIZE_BITS,
+ lrng_data_to_entropy(atomic_read_u32(
+ &lrng_pool.irq_info.num_events)));
+}
+
+static inline void lrng_set_entropy_thresh(u32 new)
+{
+ atomic_set(&lrng_pool.irq_info.num_events_thresh,
+ lrng_entropy_to_data(new));
+}
+
+/* Is the primary DRBG seed level too low? */
+static inline bool lrng_need_entropy(void)
+{
+ return ((lrng_avail_entropy() < lrng_write_wakeup_bits) &&
+ (lrng_pdrbg.pdrbg_entropy_bits <
+ LRNG_DRBG_SECURITY_STRENGTH_BITS));
+}
+
+/* Is the entropy pool filled for /dev/random pull or DRBG fully seeded? */
+static inline bool lrng_have_entropy_full(void)
+{
+ return ((lrng_avail_entropy() >= lrng_read_wakeup_bits) ||
+ lrng_pdrbg.pdrbg_entropy_bits >=
+ LRNG_DRBG_SECURITY_STRENGTH_BITS);
+}
+
+/*********************** Fast soise source processing ************************/
+
+#ifdef CONFIG_CRYPTO_JITTERENTROPY
+static void lrng_jent_alloc(void)
+{
+ struct crypto_rng *jent = crypto_alloc_rng("jitterentropy_rng", 0, 0);
+ unsigned long flags;
+
+ if (IS_ERR(jent))
+ jitterrng = 0;
+ else {
+ spin_lock_irqsave(&lrng_jent_lock, flags);
+ if (!lrng_jent && jitterrng)
+ lrng_jent = jent;
+ else
+ crypto_free_rng(jent);
+ spin_unlock_irqrestore(&lrng_jent_lock, flags);
+ }
+ pr_debug("Jitter RNG allocated: %s\n",
+ (lrng_jent) ? "success" : "failure");
+}
+
+static void lrng_jent_release(void)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&lrng_jent_lock, flags);
+ if (!lrng_jent)
+ goto unlock;
+ crypto_free_rng(lrng_jent);
+ lrng_jent = NULL;
+ pr_debug("Jitter RNG released\n");
+
+unlock:
+ spin_unlock_irqrestore(&lrng_jent_lock, flags);
+}
+
+/**
+ * Get Jitter RNG entropy
+ *
+ * @outbuf buffer to store entropy of size LRNG_DRBG_SECURITY_STRENGTH_BYTES
+ * @return > 0 on success where value provides the added entropy in bits
+ * 0 if no fast source was available
+ */
+static u32 lrng_get_jent(u8 *outbuf)
+{
+ int ret;
+ u32 ent_bits = jitterrng;
+ unsigned long flags;
+
+ /* Jitter RNG is enabled to be used and deallocated --> allocate it */
+ if (!lrng_jent && ent_bits)
+ lrng_jent_alloc();
+
+ /* Jitter RNG is disabled at runtime and allocated --> deallocate it */
+ if (lrng_jent && !ent_bits) {
+ lrng_jent_release();
+ return 0;
+ }
+
+ spin_lock_irqsave(&lrng_jent_lock, flags);
+ if (!lrng_jent) {
+ spin_unlock_irqrestore(&lrng_jent_lock, flags);
+ return 0;
+ }
+ ret = crypto_rng_get_bytes(lrng_jent, outbuf,
+ LRNG_DRBG_SECURITY_STRENGTH_BYTES);
+ spin_unlock_irqrestore(&lrng_jent_lock, flags);
+
+ if (ret) {
+ pr_debug("Jitter RNG failed with %d\n", ret);
+ return 0;
+ }
+
+ /* Obtain entropy statement -- cap entropy to buffer size in bits */
+ ent_bits = min_t(u32, ent_bits, LRNG_DRBG_SECURITY_STRENGTH_BITS);
+ pr_debug("obtained %u bits of entropy from Jitter RNG noise source\n",
+ ent_bits);
+ return ent_bits;
+}
+#else /* CONFIG_CRYPTO_JITTERENTROPY */
+static u32 lrng_get_jent(u8 *outbuf) {
+ jitterrng = 0;
+ return 0;
+}
+#endif /* CONFIG_CRYPTO_JITTERENTROPY */
+
+/**
+ * Get CPU noise source entropy
+ *
+ * @outbuf: buffer to store entropy of size LRNG_DRBG_SECURITY_STRENGTH_BYTES
+ * @return: > 0 on success where value provides the added entropy in bits
+ * 0 if no fast source was available
+ */
+static inline u32 lrng_get_arch(u8 *outbuf)
+{
+ u32 i;
+ u32 ent_bits = archrandom;
+
+ /* operate on full blocks */
+ BUILD_BUG_ON(LRNG_DRBG_SECURITY_STRENGTH_BYTES % sizeof(unsigned long));
+
+ if (!ent_bits)
+ return 0;
+
+ for (i = 0; i < LRNG_DRBG_SECURITY_STRENGTH_BYTES;
+ i += sizeof(unsigned long)) {
+ if (!arch_get_random_long((unsigned long *)(outbuf + i))) {
+ archrandom = 0;
+ return 0;
+ }
+ }
+
+ /* Obtain entropy statement -- cap entropy to buffer size in bits */
+ ent_bits = min_t(u32, ent_bits, LRNG_DRBG_SECURITY_STRENGTH_BITS);
+ pr_debug("obtained %u bits of entropy from CPU RNG noise source\n",
+ ent_bits);
+ return ent_bits;
+}
+
+/************************ Slow noise source processing ************************/
+
+/*
+ * Implement a (modified) twisted Generalized Feedback Shift Register. (See M.
+ * Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM Transactions on
+ * Modeling and Computer Simulation 2(3):179-194. Also see M. Matsumoto & Y.
+ * Kurita, 1994. Twisted GFSR generators II. ACM Transactions on Modeling and
+ * Computer Simulation 4:254-266).
+ */
+static u32 const lrng_twist_table[8] = {
+ 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
+ 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
+
+/**
+ * Hot code path - inject data into entropy pool using LFSR
+ *
+ * The function is not marked as inline to support SystemTap testing of the
+ * parameter which is considered to be the raw entropy.
+ */
+static void lrng_pool_lfsr_u32(u32 value)
+{
+ /*
+ * Process the LFSR by altering not adjacent words but rather
+ * more spaced apart words. Using a prime number ensures that all words
+ * are processed evenly. As some the LFSR polynomials taps are close
+ * together, processing adjacent words with the LSFR taps may be
+ * inappropriate as the data just mixed-in at these taps may be not
+ * independent from the current data to be mixed in.
+ */
+ u32 ptr = (u32)atomic_add_return(67, &lrng_pool.pool_ptr) &
+ (LRNG_POOL_SIZE - 1);
+ /*
+ * Add 7 bits of rotation to the pool. At the beginning of the
+ * pool, add an extra 7 bits rotation, so that successive passes
+ * spread the input bits across the pool evenly.
+ */
+ u32 input_rotate = (u32)atomic_add_return((ptr ? 7 : 14),
+ &lrng_pool.input_rotate) & 31;
+ u32 word = rol32(value, input_rotate);
+
+ BUILD_BUG_ON(LRNG_POOL_SIZE - 1 != lrng_lfsr_polynomial[0]);
+ word ^= atomic_read_u32(&lrng_pool.pool[ptr]);
+ word ^= atomic_read_u32(&lrng_pool.pool[
+ (ptr + lrng_lfsr_polynomial[0]) & (LRNG_POOL_SIZE - 1)]);
+ word ^= atomic_read_u32(&lrng_pool.pool[
+ (ptr + lrng_lfsr_polynomial[1]) & (LRNG_POOL_SIZE - 1)]);
+ word ^= atomic_read_u32(&lrng_pool.pool[
+ (ptr + lrng_lfsr_polynomial[2]) & (LRNG_POOL_SIZE - 1)]);
+ word ^= atomic_read_u32(&lrng_pool.pool[
+ (ptr + lrng_lfsr_polynomial[3]) & (LRNG_POOL_SIZE - 1)]);
+
+ word = (word >> 3) ^ lrng_twist_table[word & 7];
+ atomic_set(&lrng_pool.pool[ptr], word);
+}
+
+/* invoke function with buffer aligned to 4 bytes */
+static inline void lrng_pool_lfsr(const u8 *buf, u32 buflen)
+{
+ u32 *p_buf = (u32 *)buf;
+
+ for (; buflen >= 4; buflen -= 4)
+ lrng_pool_lfsr_u32(*p_buf++);
+
+ buf = (u8 *)p_buf;
+ while (buflen--)
+ lrng_pool_lfsr_u32(*buf++);
+}
+
+static inline void lrng_pool_lfsr_nonalinged(const u8 *buf, u32 buflen)
+{
+ if (!((unsigned long)buf & (sizeof(u32) - 1)))
+ lrng_pool_lfsr(buf, buflen);
+ else {
+ while (buflen--)
+ lrng_pool_lfsr_u32(*buf++);
+ }
+}
+
+/**
+ * Hot code path - Stuck test by checking the:
+ * 1st derivation of the event occurrence (time delta)
+ * 2nd derivation of the event occurrence (delta of time deltas)
+ * 3rd derivation of the event occurrence (delta of delta of time deltas)
+ *
+ * All values must always be non-zero. This is also the FIPS 140-2 CRNGT.
+ *
+ * @irq_info: Reference to IRQ information
+ * @now: Event time
+ * @return: 0 event occurrence not stuck (good bit)
+ * 1 event occurrence stuck (reject bit)
+ */
+static int lrng_irq_stuck(struct lrng_irq_info *irq_info, u32 now_time)
+{
+ u32 delta = now_time - atomic_xchg_u32(&irq_info->last_time, now_time);
+ int delta2 = delta - atomic_xchg_u32(&irq_info->last_delta, delta);
+ int delta3 = delta2 - atomic_xchg(&irq_info->last_delta2, delta2);
+
+#ifdef CONFIG_CRYPTO_FIPS
+ if (fips_enabled) {
+ if (!delta) {
+ if (atomic_dec_and_test(&irq_info->crngt_ctr))
+ panic("FIPS 140-2 continuous random number generator test failed\n");
+ } else
+ atomic_set(&irq_info->crngt_ctr, LRNG_FIPS_CRNGT);
+ }
+#endif
+
+ if (!delta || !delta2 || !delta3)
+ return 1;
+
+ return 0;
+}
+
+/**
+ * Hot code path - mix data into entropy pool
+ */
+static inline void lrng_pool_mixin(u32 irq_num)
+{
+ /* Should we wake readers? */
+ if (!(atomic_read_u32(&lrng_pool.pool_ptr) & 0x3f) &&
+ irq_num >= lrng_entropy_to_data(lrng_read_wakeup_bits)) {
+ wake_up_interruptible(&lrng_read_wait);
+ kill_fasync(&fasync, SIGIO, POLL_IN);
+ }
+
+ /*
+ * Once all secondary DRBGs are fully seeded, the interrupt noise
+ * sources will not trigger any reseeding any more.
+ */
+ if (lrng_pool.all_online_numa_node_seeded)
+ return;
+
+ /* Only try to reseed if the DRBG is alive. */
+ if (!atomic_read(&lrng_pdrbg_avail))
+ return;
+
+ /* Only trigger the DRBG reseed if we have collected enough IRQs. */
+ if (atomic_read_u32(&lrng_pool.irq_info.num_events) <
+ atomic_read_u32(&lrng_pool.irq_info.num_events_thresh))
+ return;
+
+ /* Ensure that the seeding only occurs once at any given time. */
+ if (atomic_cmpxchg(&lrng_pool.irq_info.reseed_in_progress, 0, 1))
+ return;
+
+ /* Seed the DRBG with IRQ noise. */
+ schedule_work(&lrng_pdrbg.lrng_seed_work);
+}
+
+/**
+ * Hot code path - Callback for interrupt handler
+ */
+void add_interrupt_randomness(int irq, int irq_flags)
+{
+ u32 now_time = random_get_entropy();
+ struct lrng_irq_info *irq_info = &lrng_pool.irq_info;
+ u32 irq_num = (u32)atomic_add_return(1, &irq_info->num_events);
+
+ if (lrng_pool.irq_info.irq_highres_timer) {
+ lrng_pool_lfsr_u32(now_time);
+ if (lrng_irq_stuck(irq_info, now_time)) {
+ /* remove collected but stuck interrupt from counter */
+ __atomic_add_unless(&irq_info->num_events, -1, 0);
+ return;
+ }
+ lrng_pool_mixin(irq_num);
+ } else {
+ struct pt_regs *regs = get_irq_regs();
+ static atomic_t reg_idx = ATOMIC_INIT(0);
+
+ struct {
+ unsigned long jiffies;
+ int irq;
+ int irq_flags;
+ u64 ip;
+ u32 curr_reg;
+ } data __aligned(LRNG_KCAPI_ALIGN);
+
+ data.jiffies = jiffies;
+ data.irq = irq;
+ data.irq_flags = irq_flags;
+ if (regs) {
+ u32 *ptr = (u32 *)regs;
+ int reg_ptr = atomic_add_return(1, ®_idx);
+
+ data.ip = instruction_pointer(regs);
+ if (reg_ptr >= (sizeof(struct pt_regs) / sizeof(u32))) {
+ atomic_set(®_idx, 0);
+ reg_ptr = 0;
+ }
+ data.curr_reg = *(ptr + reg_ptr);
+ } else
+ data.ip = _RET_IP_;
+
+ lrng_pool_lfsr_u32(now_time);
+ lrng_pool_lfsr((u8 *)&data, sizeof(data));
+ lrng_pool_mixin(irq_num);
+ }
+}
+EXPORT_SYMBOL(add_interrupt_randomness);
+
+/**
+ * Callback for HID layer
+ */
+void add_input_randomness(unsigned int type, unsigned int code,
+ unsigned int value)
+{
+ static unsigned char last_value;
+ unsigned int val;
+
+ /* ignore autorepeat and the like */
+ if (value == last_value)
+ return;
+
+ last_value = value;
+
+ val = (type << 4) ^ code ^ (code >> 4) ^ value;
+ lrng_pool_lfsr_u32(val);
+}
+EXPORT_SYMBOL_GPL(add_input_randomness);
+
+/*
+ * Add device- or boot-specific data to the input pool to help
+ * initialize it.
+ *
+ * None of this adds any entropy; it is meant to avoid the problem of
+ * the entropy pool having similar initial state across largely
+ * identical devices.
+ */
+void add_device_randomness(const void *buf, unsigned int size)
+{
+ lrng_pool_lfsr_nonalinged((u8 *)&buf, size);
+ lrng_pool_lfsr_u32(random_get_entropy());
+ lrng_pool_lfsr_u32(jiffies);
+}
+EXPORT_SYMBOL(add_device_randomness);
+
+/**
+ * Read the entropy pool out for use. The caller must ensure this function
+ * is only called once at a time.
+ *
+ * This function handles the translation from the number of received interrupts
+ * into an entropy statement. The conversion depends on LRNG_IRQ_ENTROPY_BYTES
+ * which defines how many interrupts must be received to obtain 256 bits of
+ * entropy. With this value, the function lrng_data_to_entropy converts a given
+ * data size (received interrupts, requested amount of data, etc.) into an
+ * entropy statement. lrng_entropy_to_data does the reverse.
+ *
+ * Both functions are agnostic about the type of data: when the number of
+ * interrupts is processed by these functions, the resulting entropy value is in
+ * bits as we assume the entropy of interrupts is measured in bits. When data is
+ * processed, the entropy value is in bytes as the data is measured in bytes.
+ *
+ * @outbuf: buffer to store data in with size LRNG_DRBG_SECURITY_STRENGTH_BYTES
+ * @requested_entropy_bits: requested bits of entropy -- the function will
+ * return at least this amount of entropy if available
+ * @drain: boolean indicating that that all entropy of pool can be used
+ * (otherwise some emergency amount of entropy is left)
+ * @return: estimated entropy from the IRQs that was obtained
+ */
+static u32 lrng_get_pool(u8 *outbuf, u32 requested_entropy_bits, bool drain)
+{
+ u32 i, avail_entropy_bytes, irq_num_events_used, irq_num_event_back;
+ /* How many unused interrupts are in entropy pool? */
+ u32 irq_num_events = atomic_xchg_u32(&lrng_pool.irq_info.num_events, 0);
+ /* Convert available interrupts into entropy statement */
+ u32 avail_entropy_bits = lrng_data_to_entropy(irq_num_events);
+ u32 digestsize = lrng_hash_digestsize(lrng_pool.lrng_hash);
+ u8 digest[digestsize] __aligned(LRNG_KCAPI_ALIGN);
+
+ /* Cap available entropy to pool size */
+ avail_entropy_bits =
+ min_t(u32, avail_entropy_bits, LRNG_POOL_SIZE_BITS);
+
+ /* How much entropy we need to and can we use? */
+ if (drain)
+ /* read for the primary DRBG or not fully seeded 2ndary DRBG */
+ avail_entropy_bits = min_t(u32, avail_entropy_bits,
+ requested_entropy_bits);
+ else {
+ /*
+ * Read for 2ndary DRBG: leave the emergency fill level.
+ *
+ * Only obtain data if we have at least the requested entropy
+ * available. The idea is to prevent the transfer of, say
+ * one byte at a time, because one byte of entropic data
+ * can be brute forced by an attacker.
+ */
+ if ((requested_entropy_bits + LRNG_EMERG_ENTROPY) >
+ avail_entropy_bits) {
+ avail_entropy_bits = 0;
+ goto out;
+ }
+ avail_entropy_bits = requested_entropy_bits;
+ }
+
+ /* Hash is a compression function: we generate entropy amount of data */
+ avail_entropy_bits = round_down(avail_entropy_bits, 8);
+ avail_entropy_bytes = avail_entropy_bits >> 3;
+ BUG_ON(avail_entropy_bytes > LRNG_DRBG_SECURITY_STRENGTH_BYTES);
+
+ /* Hash the entire entropy pool */
+ for (i = 0;
+ i < LRNG_DRBG_SECURITY_STRENGTH_BYTES && avail_entropy_bytes > 0;
+ i += digestsize) {
+ u32 tocopy = min3(avail_entropy_bytes, digestsize,
+ (LRNG_DRBG_SECURITY_STRENGTH_BYTES - i));
+
+ if (lrng_hash_buffer(lrng_pool.lrng_hash, (u8 *)lrng_pool.pool,
+ LRNG_POOL_SIZE_BYTES, digest)) {
+ /* We report the successfully read entropy. */
+ avail_entropy_bits = i<<3;
+ memzero_explicit(digest, digestsize);
+ goto out;
+ }
+
+ /* Mix read data back into pool for backtracking resistance */
+ lrng_pool_lfsr(digest, digestsize);
+ /* Copy the data out to the caller */
+ memcpy(outbuf + i, digest, tocopy);
+ avail_entropy_bytes -= tocopy;
+ }
+ memzero_explicit(digest, digestsize);
+
+out:
+ /* There may be new events that came in while we processed this logic */
+ irq_num_events += atomic_xchg_u32(&lrng_pool.irq_info.num_events, 0);
+ /* Convert used entropy into interrupt number for subtraction */
+ irq_num_events_used = lrng_entropy_to_data(avail_entropy_bits);
+ /* Cap the number of events we say we have left to not reuse events */
+ irq_num_event_back = min_t(u32, irq_num_events - irq_num_events_used,
+ lrng_entropy_to_data(LRNG_POOL_SIZE_BITS) -
+ irq_num_events_used);
+ /* Add the unused interrupt number back to the state variable */
+ atomic_add(irq_num_event_back, &lrng_pool.irq_info.num_events);
+
+ /* Obtain entropy statement in bits from the used entropy */
+ pr_debug("obtained %u bits of entropy from %u newly collected interrupts - not using %u interrupts\n",
+ avail_entropy_bits, irq_num_events_used, irq_num_event_back);
+
+ return avail_entropy_bits;
+}
+
+/****************************** DRBG processing *******************************/
+
+/**
+ * Ping all kernel internal callers waiting until the DRBG is fully
+ * seeded that the DRBG is now fully seeded.
+ */
+static void lrng_process_ready_list(void)
+{
+ unsigned long flags;
+ struct random_ready_callback *rdy, *tmp;
+
+ spin_lock_irqsave(&lrng_ready_list_lock, flags);
+ list_for_each_entry_safe(rdy, tmp, &lrng_ready_list, list) {
+ struct module *owner = rdy->owner;
+
+ list_del_init(&rdy->list);
+ rdy->func(rdy);
+ module_put(owner);
+ }
+ spin_unlock_irqrestore(&lrng_ready_list_lock, flags);
+}
+
+/**
+ * Set the slow noise source reseed trigger threshold. The initial threshold
+ * is set to the minimum data size that can be read from the pool: a word. Upon
+ * reaching this value, the next seed threshold of 128 bits is set followed
+ * by 256 bits.
+ *
+ * @entropy_bits: size of entropy currently injected into DRBG
+ */
+static void lrng_pdrbg_init_ops(u32 entropy_bits)
+{
+ if (lrng_pdrbg.pdrbg_fully_seeded)
+ return;
+
+ /* DRBG is seeded with full security strength */
+ if (entropy_bits >= LRNG_DRBG_SECURITY_STRENGTH_BITS) {
+ lrng_pdrbg.pdrbg_fully_seeded = true;
+ lrng_pdrbg.pdrbg_min_seeded = true;
+ pr_info("primary DRBG fully seeded with %u bits of entropy\n",
+ entropy_bits);
+ lrng_process_ready_list();
+ wake_up_all(&lrng_pdrbg_init_wait);
+
+ } else if (!lrng_pdrbg.pdrbg_min_seeded) {
+
+ /* DRBG is seeded with at least 128 bits of entropy */
+ if (entropy_bits >= LRNG_MIN_SEED_ENTROPY_BITS) {
+ lrng_pdrbg.pdrbg_min_seeded = true;
+ pr_info("primary DRBG minimally seeded with %u bits of entropy\n",
+ entropy_bits);
+ lrng_set_entropy_thresh(
+ LRNG_DRBG_SECURITY_STRENGTH_BITS);
+
+ /* DRBG is seeded with at least LRNG_INIT_ENTROPY_BITS bits */
+ } else if (entropy_bits >= LRNG_INIT_ENTROPY_BITS) {
+ pr_info("primary DRBG initially seeded with %u bits of entropy\n",
+ entropy_bits);
+ lrng_set_entropy_thresh(LRNG_MIN_SEED_ENTROPY_BITS);
+ }
+ }
+}
+
+/* Caller must hold lrng_pdrbg.lock */
+static int lrng_pdrbg_generate(u8 *outbuf, u32 outbuflen, bool fullentropy)
+{
+ int ret;
+
+ /* /dev/random only works from a fully seeded DRBG */
+ if (fullentropy && !lrng_pdrbg.pdrbg_fully_seeded)
+ return 0;
+
+ /*
+ * Only deliver as many bytes as the DRBG is seeded with except during
+ * initialization to provide a first seed to the secondary DRBG.
+ */
+ if (lrng_pdrbg.pdrbg_min_seeded)
+ outbuflen = min_t(u32, outbuflen,
+ lrng_pdrbg.pdrbg_entropy_bits>>3);
+ else
+ outbuflen = min_t(u32, outbuflen,
+ LRNG_MIN_SEED_ENTROPY_BITS>>3);
+
+ ret = lrng_drng_generate_helper_full(lrng_pdrbg.pdrbg, outbuf,
+ outbuflen);
+ if (ret != outbuflen) {
+ pr_warn("getting random data from primary DRBG failed (%d)\n",
+ ret);
+ return ret;
+ }
+
+ if (lrng_pdrbg.pdrbg_entropy_bits > (u32)(ret<<3))
+ lrng_pdrbg.pdrbg_entropy_bits -= ret<<3;
+ else
+ lrng_pdrbg.pdrbg_entropy_bits = 0;
+ pr_debug("obtained %d bytes of random data from primary DRBG\n", ret);
+ pr_debug("primary DRBG entropy level at %u bits\n",
+ lrng_pdrbg.pdrbg_entropy_bits);
+
+ return ret;
+}
+
+/**
+ * Inject data into the primary DRBG with a given entropy value. The function
+ * calls the DRBG's update function. This function also generates random data
+ * if requested by caller. The caller is only returned the amount of random
+ * data that is at most equal to the amount of entropy that just seeded the
+ * DRBG.
+ *
+ * Note, this function seeds the primary DRBG and generates data from it
+ * in an atomic operation.
+ *
+ * @inbuf: buffer to inject
+ * @inbuflen: length of inbuf
+ * @entropy_bits: entropy value of the data in inbuf in bits
+ * @outbuf: buffer to fill immediately after seeding to get full entropy
+ * @outbuflen: length of outbuf
+ * @fullentropy: start /dev/random output only after the DRBG was fully seeded
+ * @return: number of bytes written to outbuf, 0 if outbuf is not supplied,
+ * or < 0 in case of error
+ */
+static int lrng_pdrbg_inject(const u8 *inbuf, u32 inbuflen, u32 entropy_bits,
+ u8 *outbuf, u32 outbuflen, bool fullentropy)
+{
+ int ret;
+ unsigned long flags;
+
+ /* cap the maximum entropy value to the provided data length */
+ entropy_bits = min_t(u32, entropy_bits, inbuflen<<3);
+
+ spin_lock_irqsave(&lrng_pdrbg.lock, flags);
+ ret = lrng_drng_seed_helper(lrng_pdrbg.pdrbg, inbuf, inbuflen);
+ if (ret < 0) {
+ pr_warn("(re)seeding of primary DRBG failed\n");
+ goto unlock;
+ }
+ pr_debug("inject %u bytes with %u bits of entropy into primary DRBG\n",
+ inbuflen, entropy_bits);
+
+ /* Adjust the fill level indicator to at most the DRBG sec strength */
+ lrng_pdrbg.pdrbg_entropy_bits =
+ min_t(u32, lrng_pdrbg.pdrbg_entropy_bits + entropy_bits,
+ LRNG_DRBG_SECURITY_STRENGTH_BITS);
+ lrng_pdrbg_init_ops(lrng_pdrbg.pdrbg_entropy_bits);
+
+ if (outbuf && outbuflen)
+ ret = lrng_pdrbg_generate(outbuf, outbuflen, fullentropy);
+
+unlock:
+ spin_unlock_irqrestore(&lrng_pdrbg.lock, flags);
+
+ if (lrng_have_entropy_full()) {
+ /* Wake readers */
+ wake_up_interruptible(&lrng_read_wait);
+ kill_fasync(&fasync, SIGIO, POLL_IN);
+ }
+
+ return ret;
+}
+
+/**
+ * Seed the primary DRBG from the internal noise sources and generate
+ * random data. The seeding and the generation of random data is an atomic
+ * operation for the caller.
+ */
+static int lrng_pdrbg_seed_internal(u8 *outbuf, u32 outbuflen, bool fullentropy,
+ bool drain)
+{
+ u32 total_entropy_bits;
+ struct {
+ u8 a[LRNG_DRBG_SECURITY_STRENGTH_BYTES];
+ u8 b[LRNG_DRBG_SECURITY_STRENGTH_BYTES];
+ u8 c[LRNG_DRBG_SECURITY_STRENGTH_BYTES];
+ u32 now;
+ } entropy_buf __aligned(LRNG_KCAPI_ALIGN);
+ int ret;
+
+ /* No reseeding if sufficient entropy in primary DRBG */
+ if (lrng_pdrbg.pdrbg_entropy_bits >= outbuflen<<3) {
+ unsigned long flags;
+
+ spin_lock_irqsave(&lrng_pdrbg.lock, flags);
+ ret = lrng_pdrbg_generate(outbuf, outbuflen, fullentropy);
+ spin_unlock_irqrestore(&lrng_pdrbg.lock, flags);
+ if (ret == outbuflen)
+ goto out;
+ }
+
+ /*
+ * drain the pool completely during init and when /dev/random calls.
+ *
+ * lrng_get_pool must be guaranteed to be called with multiples of 8
+ * (bits) of entropy as it can only operate byte-wise.
+ */
+ total_entropy_bits = lrng_get_pool(entropy_buf.a,
+ LRNG_DRBG_SECURITY_STRENGTH_BITS,
+ drain);
+
+ /*
+ * Concatenate the output of the noise sources. This would be the
+ * spot to add an entropy extractor logic if desired. Note, this
+ * entirety should have the ability to collect entropy equal or larger
+ * than the DRBG strength to be able to feed /dev/random.
+ */
+ total_entropy_bits += lrng_get_arch(entropy_buf.b);
+ total_entropy_bits += lrng_get_jent(entropy_buf.c);
+
+ pr_debug("reseed primary DRBG from internal noise sources with %u bits of entropy\n",
+ total_entropy_bits);
+
+ /* also reseed the DRBG with the current time stamp */
+ entropy_buf.now = random_get_entropy();
+
+ ret = lrng_pdrbg_inject((u8 *)&entropy_buf, sizeof(entropy_buf),
+ total_entropy_bits,
+ outbuf, outbuflen, fullentropy);
+
+ memzero_explicit(&entropy_buf, sizeof(entropy_buf));
+
+ /*
+ * Shall we wake up user space writers? This location covers
+ * /dev/urandom as well, but also ensures that the user space provider
+ * does not dominate the internal noise sources since in case the
+ * first call of this function finds sufficient entropy in the primary
+ * DRBG, it will not trigger the wakeup. This implies that when the next
+ * /dev/urandom read happens, the primary DRBG is drained and the
+ * internal noise sources are asked to feed the primary DRBG.
+ */
+ if (lrng_need_entropy()) {
+ wake_up_interruptible(&lrng_write_wait);
+ kill_fasync(&fasync, SIGIO, POLL_OUT);
+ }
+
+out:
+ /* Allow the seeding operation to be called again */
+ atomic_set(&lrng_pool.irq_info.reseed_in_progress, 0);
+
+ return ret;
+}
+
+/**
+ * Inject a data buffer into the secondary DRBG
+ *
+ * @sdrbg: reference to secondary DRBG
+ * @inbuf: buffer with data to inject
+ * @inbuflen: buffer length
+ * @internal: did random data originate from internal sources? Update the
+ * reseed threshold and the reseed timer when seeded with entropic
+ * data from noise sources to prevent unprivileged users from
+ * stopping reseeding the secondary DRBG with entropic data.
+ */
+static void lrng_sdrbg_inject(struct lrng_sdrbg *sdrbg,
+ const u8 *inbuf, u32 inbuflen, bool internal)
+{
+ unsigned long flags;
+
+ BUILD_BUG_ON(LRNG_DRBG_RESEED_THRESH > INT_MAX);
+ pr_debug("seeding secondary DRBG with %u bytes\n", inbuflen);
+ spin_lock_irqsave(&sdrbg->lock, flags);
+ if (lrng_drng_seed_helper(sdrbg->sdrbg, inbuf, inbuflen) < 0) {
+ pr_warn("seeding of secondary DRBG failed\n");
+ atomic_set(&sdrbg->requests, 1);
+ } else if (internal) {
+ pr_debug("secondary DRBG stats since last seeding: %lu secs; generate calls: %d\n",
+ (jiffies - sdrbg->last_seeded) / HZ,
+ (LRNG_DRBG_RESEED_THRESH -
+ atomic_read(&sdrbg->requests)));
+ sdrbg->last_seeded = jiffies;
+ atomic_set(&sdrbg->requests, LRNG_DRBG_RESEED_THRESH);
+ }
+ spin_unlock_irqrestore(&sdrbg->lock, flags);
+}
+
+/**
+ * Try to seed the secondary DRBG
+ *
+ * @sdrbg: reference to secondary DRBG
+ * @seedfunc: function to use to seed and obtain random data from primary DRBG
+ */
+static void lrng_sdrbg_seed(struct lrng_sdrbg *sdrbg,
+ int (*seed_func)(u8 *outbuf, u32 outbuflen, bool fullentropy,
+ bool drain))
+{
+ u8 seedbuf[LRNG_DRBG_SECURITY_STRENGTH_BYTES]
+ __aligned(LRNG_KCAPI_ALIGN);
+ int ret;
+
+ BUILD_BUG_ON(LRNG_MIN_SEED_ENTROPY_BITS >
+ LRNG_DRBG_SECURITY_STRENGTH_BITS);
+
+ ret = seed_func(seedbuf, LRNG_DRBG_SECURITY_STRENGTH_BYTES, false,
+ !sdrbg->fully_seeded);
+ /* Update the DRBG state even though we received zero random data */
+ if (ret < 0) {
+ /*
+ * Try to reseed at next round - note if EINPROGRESS is returned
+ * the request counter may fall below zero in case of parallel
+ * operations. We accept such "underflow" temporarily as the
+ * counter will be set back to a positive number in the course
+ * of the reseed. For these few generate operations under
+ * heavy parallel strain of /dev/urandom we therefore exceed
+ * the LRNG_DRBG_RESEED_THRESH threshold.
+ */
+ if (ret != -EINPROGRESS)
+ atomic_set(&sdrbg->requests, 1);
+ return;
+ }
+
+ lrng_sdrbg_inject(sdrbg, seedbuf, ret, true);
+ memzero_explicit(seedbuf, ret);
+
+ if (ret >= LRNG_DRBG_SECURITY_STRENGTH_BYTES)
+ sdrbg->fully_seeded = true;
+}
+
+/**
+ * DRBG reseed trigger: Kernel thread handler triggered by the schedule_work()
+ */
+static void lrng_pdrbg_seed_work(struct work_struct *dummy)
+{
+ u32 node;
+
+ for_each_online_node(node) {
+ struct lrng_sdrbg *sdrbg = lrng_sdrbg[node];
+
+ if (!sdrbg)
+ continue;
+
+ if (!sdrbg->fully_seeded) {
+ pr_debug("reseed triggered by interrupt noise source for secondary DRBG on NUMA node %d\n", node);
+ lrng_sdrbg_seed(sdrbg, lrng_pdrbg_seed_internal);
+ if (node && sdrbg->fully_seeded) {
+ /* Prevent reseed storm */
+ sdrbg->last_seeded += node * 100 * HZ;
+ /* Prevent draining of pool on idle systems */
+ lrng_sdrbg_reseed_max_time += 100;
+ }
+ return;
+ }
+ }
+ lrng_pool.all_online_numa_node_seeded = true;
+ /* Allow the seeding operation to be called again */
+ atomic_set(&lrng_pool.irq_info.reseed_in_progress, 0);
+}
+
+/**
+ * DRBG reseed trigger: Synchronous reseed request which is capable of
+ * generating random numbers at the same time. I.e. the seeding and the
+ * generation are performed in an atomic operation.
+ */
+static int lrng_pdrbg_seed(u8 *outbuf, u32 outbuflen, bool fullentropy,
+ bool drain)
+{
+ /* Ensure that the seeding only occurs once at any given time */
+ if (atomic_cmpxchg(&lrng_pool.irq_info.reseed_in_progress, 0, 1))
+ return -EINPROGRESS;
+ return lrng_pdrbg_seed_internal(outbuf, outbuflen, fullentropy, drain);
+}
+
+/**
+ * Obtain random data from DRBG with information theoretical entropy by
+ * triggering a reseed. The primary DRBG will only return as many random
+ * bytes as it was seeded with.
+ *
+ * @outbuf: buffer to store the random data in
+ * @outbuflen: length of outbuf
+ * @return: < 0 on error
+ * >= 0 the number of bytes that were obtained
+ */
+static int lrng_pdrbg_get(u8 *outbuf, u32 outbuflen)
+{
+ int ret;
+
+ if (!outbuf || !outbuflen)
+ return 0;
+
+ /* DRBG is not yet available */
+ if (!atomic_read(&lrng_pdrbg_avail))
+ return 0;
+
+ ret = lrng_pdrbg_seed(outbuf, outbuflen, true, true);
+ if (ret > 0)
+ pr_debug("read %d bytes of full entropy data from primary DRBG\n",
+ ret);
+ else
+ pr_debug("reading data from primary DRBG failed: %d\n", ret);
+
+ return ret;
+}
+
+/**
+ * Initial RNG provides random data with as much entropy as we have
+ * at boot time until the DRBG becomes available during late_initcall() but
+ * before user space boots. When the DRBG is initialized, the initial RNG
+ * is retired.
+ *
+ * Note: until retirement of this RNG, the system did not generate too much
+ * entropy yet. Hence, a proven DRNG like a DRBG is not necessary here anyway.
+ *
+ * The RNG is using the following as noise source:
+ * * high resolution time stamps
+ * * the collected IRQ state
+ * * CPU noise source if available
+ *
+ * Input/output: it is a drop-in replacement for lrng_sdrbg_get.
+ */
+static u32 lrng_init_state[SHA_WORKSPACE_WORDS];
+static int lrng_init_rng(u8 *outbuf, u32 outbuflen)
+{
+ u32 hash[SHA_DIGEST_WORDS];
+ u32 outbuflen_orig = outbuflen;
+ u32 workspace[SHA_WORKSPACE_WORDS];
+
+ BUILD_BUG_ON(sizeof(lrng_init_state[0]) != LRNG_POOL_WORD_BYTES);
+
+ sha_init(hash);
+ while (outbuflen) {
+ unsigned int arch;
+ u32 i;
+ u32 todo = min_t(u32, outbuflen,
+ SHA_WORKSPACE_WORDS * sizeof(u32));
+
+ /* Update init RNG state with CPU RNG and timer data */
+ for (i = 0; i < SHA_WORKSPACE_WORDS; i++) {
+ if (arch_get_random_int(&arch))
+ lrng_init_state[i] ^= arch;
+ lrng_init_state[i] ^= random_get_entropy();
+ }
+ /* SHA-1 update using the init RNG state */
+ sha_transform(hash, (u8 *)&lrng_init_state, workspace);
+
+ /* SHA-1 update with all words of the entropy pool */
+ BUILD_BUG_ON(LRNG_POOL_SIZE % 16);
+ for (i = 0; i < LRNG_POOL_SIZE; i += 16)
+ sha_transform(hash, (u8 *)(lrng_pool.pool + i),
+ workspace);
+
+ /* Mix generated data into state for backtracking resistance */
+ for (i = 0; i < SHA_DIGEST_WORDS; i++)
+ lrng_init_state[i] ^= hash[i];
+
+ memcpy(outbuf, hash, todo);
+ outbuf += todo;
+ outbuflen -= todo;
+ atomic_add(todo, &lrng_initrng_bytes);
+ }
+ memzero_explicit(hash, sizeof(hash));
+ memzero_explicit(workspace, sizeof(workspace));
+
+ return outbuflen_orig;
+}
+
+static inline struct lrng_sdrbg *lrng_get_current_sdrbg(void)
+{
+ struct lrng_sdrbg *sdrbg = lrng_sdrbg[numa_node_id()];
+
+ return (sdrbg->fully_seeded) ? sdrbg : lrng_sdrbg[0];
+}
+
+/**
+ * Get random data out of the secondary DRBG which is reseeded frequently. In
+ * the worst case, the DRBG may generate random numbers without being reseeded
+ * for LRNG_DRBG_RESEED_THRESH requests times LRNG_DRBG_MAX_REQSIZE bytes.
+ *
+ * If the DRBG is not yet initialized, use the initial RNG output.
+ *
+ * @outbuf: buffer for storing random data
+ * @outbuflen: length of outbuf
+ * @return: < 0 in error case (DRBG generation or update failed)
+ * >=0 returning the returned number of bytes
+ */
+static int lrng_sdrbg_get(u8 *outbuf, u32 outbuflen)
+{
+ u32 processed = 0;
+ struct lrng_sdrbg *sdrbg;
+ unsigned long flags;
+ int ret;
+
+ if (!outbuf || !outbuflen)
+ return 0;
+
+ outbuflen = min_t(size_t, outbuflen, INT_MAX);
+
+ /* DRBG is not yet available */
+ if (!atomic_read(&lrng_pdrbg_avail)) {
+ spin_lock_irqsave(&lrng_init_rng_lock, flags);
+ /* Prevent race with lrng_init */
+ if (!atomic_read(&lrng_pdrbg_avail)) {
+ ret = lrng_init_rng(outbuf, outbuflen);
+ spin_unlock_irqrestore(&lrng_init_rng_lock, flags);
+ return ret;
+ }
+ spin_unlock_irqrestore(&lrng_init_rng_lock, flags);
+ }
+
+ sdrbg = lrng_get_current_sdrbg();
+ while (outbuflen) {
+ unsigned long now = jiffies;
+ u32 todo = min_t(u32, outbuflen, LRNG_DRBG_MAX_REQSIZE);
+
+ if (sdrbg->force_reseed ||
+ atomic_dec_and_test(&sdrbg->requests) ||
+ time_after(now, sdrbg->last_seeded +
+ lrng_sdrbg_reseed_max_time * HZ)) {
+ sdrbg->force_reseed = false;
+ lrng_sdrbg_seed(sdrbg, lrng_pdrbg_seed);
+ }
+
+ spin_lock_irqsave(&sdrbg->lock, flags);
+ ret = lrng_drng_generate_helper(sdrbg->sdrbg,
+ outbuf + processed, todo);
+ spin_unlock_irqrestore(&sdrbg->lock, flags);
+ if (ret <= 0) {
+ pr_warn("getting random data from secondary DRBG failed (%d)\n",
+ ret);
+ return -EFAULT;
+ }
+ processed += ret;
+ outbuflen -= ret;
+ }
+
+ return processed;
+}
+
+static int lrng_drngs_alloc(void)
+{
+ unsigned long flags;
+ struct drbg_state *pdrbg;
+ u32 node;
+ int ret = 0;
+
+ pdrbg = lrng_drng_alloc(LRNG_DRBG_CORE,
+ LRNG_DRBG_SECURITY_STRENGTH_BYTES);
+ if (IS_ERR(pdrbg))
+ return PTR_ERR(pdrbg);
+
+ spin_lock_irqsave(&lrng_pdrbg.lock, flags);
+ if (lrng_pdrbg.pdrbg) {
+ lrng_drng_dealloc(pdrbg);
+ kfree(pdrbg);
+ } else {
+ lrng_pdrbg.pdrbg = pdrbg;
+ INIT_WORK(&lrng_pdrbg.lrng_seed_work, lrng_pdrbg_seed_work);
+ pr_info("primary DRBG allocated\n");
+ }
+ spin_unlock_irqrestore(&lrng_pdrbg.lock, flags);
+
+ lrng_sdrbg = kcalloc(nr_node_ids, sizeof(void *),
+ GFP_KERNEL|__GFP_NOFAIL);
+ for_each_online_node(node) {
+ struct lrng_sdrbg *sdrbg;
+
+ sdrbg = kmalloc_node(sizeof(struct lrng_sdrbg),
+ GFP_KERNEL|__GFP_NOFAIL, node);
+ if (!sdrbg) {
+ ret = -ENOMEM;
+ goto err;
+ }
+ memset(sdrbg, 0, sizeof(lrng_sdrbg));
+
+ sdrbg->sdrbg = lrng_drng_alloc(LRNG_DRBG_CORE,
+ LRNG_DRBG_SECURITY_STRENGTH_BYTES);
+ if (IS_ERR(sdrbg->sdrbg)) {
+ ret = PTR_ERR(sdrbg->sdrbg);
+ kfree(sdrbg);
+ goto err;
+ }
+
+ spin_lock_init(&sdrbg->lock);
+ atomic_set(&sdrbg->requests, 1);
+ sdrbg->last_seeded = jiffies;
+ sdrbg->fully_seeded = false;
+ sdrbg->force_reseed = false;
+
+ lrng_sdrbg[node] = sdrbg;
+
+ lrng_pool.numa_drngs++;
+ pr_info("secondary DRBG for NUMA node %d allocated\n", node);
+ }
+ mb();
+
+ return 0;
+
+err:
+ for_each_online_node(node) {
+ struct lrng_sdrbg *sdrbg = lrng_sdrbg[node];
+
+ if (sdrbg) {
+ if (sdrbg->sdrbg)
+ lrng_drng_dealloc(sdrbg->sdrbg);
+ kfree(sdrbg);
+ }
+ }
+ kfree(lrng_sdrbg);
+
+ lrng_drng_dealloc(pdrbg);
+ kfree(pdrbg);
+
+ return ret;
+}
+
+static int lrng_alloc(void)
+{
+ u8 key[LRNG_DRBG_SECURITY_STRENGTH_BYTES] __aligned(LRNG_KCAPI_ALIGN);
+ int ret = lrng_drngs_alloc();
+
+ if (ret)
+ return ret;
+
+ lrng_init_rng(key, sizeof(key));
+ lrng_pool.lrng_hash = lrng_hash_alloc(LRNG_HASH_NAME, key, sizeof(key));
+ memzero_explicit(key, sizeof(key));
+ if (IS_ERR(lrng_pool.lrng_hash))
+ return PTR_ERR(lrng_pool.lrng_hash);
+
+ return 0;
+}
+
+/************************** LRNG kernel interfaces ***************************/
+
+void get_random_bytes(void *buf, int nbytes)
+{
+ lrng_sdrbg_get((u8 *)buf, (u32)nbytes);
+}
+EXPORT_SYMBOL(get_random_bytes);
+
+/**
+ * This function will use the architecture-specific hardware random
+ * number generator if it is available. The arch-specific hw RNG will
+ * almost certainly be faster than what we can do in software, but it
+ * is impossible to verify that it is implemented securely (as
+ * opposed, to, say, the AES encryption of a sequence number using a
+ * key known by the NSA). So it's useful if we need the speed, but
+ * only if we're willing to trust the hardware manufacturer not to
+ * have put in a back door.
+ *
+ * @buf: buffer allocated by caller to store the random data in
+ * @nbytes: length of outbuf
+ */
+void get_random_bytes_arch(void *buf, int nbytes)
+{
+ u8 *p = buf;
+
+ while (nbytes) {
+ unsigned long v;
+ int chunk = min_t(int, nbytes, sizeof(unsigned long));
+
+ if (!arch_get_random_long(&v))
+ break;
+
+ memcpy(p, &v, chunk);
+ p += chunk;
+ nbytes -= chunk;
+ }
+
+ if (nbytes)
+ lrng_sdrbg_get((u8 *)p, (u32)nbytes);
+}
+EXPORT_SYMBOL(get_random_bytes_arch);
+
+/**
+ * Interface for in-kernel drivers of true hardware RNGs.
+ * Those devices may produce endless random bits and will be throttled
+ * when our pool is full.
+ *
+ * @buffer: buffer holding the entropic data from HW noise sources to be used to
+ * (re)seed the DRBG.
+ * @count: length of buffer
+ * @entropy_bits: amount of entropy in buffer (value is in bits)
+ */
+void add_hwgenerator_randomness(const char *buffer, size_t count,
+ size_t entropy_bits)
+{
+ /* DRBG is not yet online */
+ if (!atomic_read(&lrng_pdrbg_avail))
+ return;
+ /*
+ * Suspend writing if we are fully loaded with entropy.
+ * We'll be woken up again once below lrng_write_wakeup_thresh,
+ * or when the calling thread is about to terminate.
+ */
+ wait_event_interruptible(lrng_write_wait,
+ kthread_should_stop() || lrng_need_entropy());
+ lrng_pdrbg_inject(buffer, count, entropy_bits, NULL, 0, false);
+}
+EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
+
+/**
+ * Delete a previously registered readiness callback function.
+ */
+void del_random_ready_callback(struct random_ready_callback *rdy)
+{
+ unsigned long flags;
+ struct module *owner = NULL;
+
+ spin_lock_irqsave(&lrng_ready_list_lock, flags);
+ if (!list_empty(&rdy->list)) {
+ list_del_init(&rdy->list);
+ owner = rdy->owner;
+ }
+ spin_unlock_irqrestore(&lrng_ready_list_lock, flags);
+
+ module_put(owner);
+}
+EXPORT_SYMBOL(del_random_ready_callback);
+
+/**
+ * Add a callback function that will be invoked when the DRBG is fully seeded.
+ *
+ * @return: 0 if callback is successfully added
+ * -EALREADY if pool is already initialised (callback not called)
+ * -ENOENT if module for callback is not alive
+ */
+int add_random_ready_callback(struct random_ready_callback *rdy)
+{
+ struct module *owner;
+ unsigned long flags;
+ int err = -EALREADY;
+
+ if (likely(lrng_pdrbg.pdrbg_fully_seeded))
+ return err;
+
+ owner = rdy->owner;
+ if (!try_module_get(owner))
+ return -ENOENT;
+
+ spin_lock_irqsave(&lrng_ready_list_lock, flags);
+ if (lrng_pdrbg.pdrbg_fully_seeded)
+ goto out;
+
+ owner = NULL;
+
+ list_add(&rdy->list, &lrng_ready_list);
+ err = 0;
+
+out:
+ spin_unlock_irqrestore(&lrng_ready_list_lock, flags);
+
+ module_put(owner);
+
+ return err;
+}
+EXPORT_SYMBOL(add_random_ready_callback);
+
+/************************ LRNG user space interfaces *************************/
+
+static ssize_t lrng_read_common(char __user *buf, size_t nbytes,
+ int (*lrng_read_random)(u8 *outbuf, u32 outbuflen))
+{
+ ssize_t ret = 0;
+ u8 tmpbuf[LRNG_DRBG_BLOCKSIZE] __aligned(LRNG_KCAPI_ALIGN);
+ u8 *tmp_large = NULL;
+ u8 *tmp = tmpbuf;
+ u32 tmplen = sizeof(tmpbuf);
+
+ if (nbytes == 0)
+ return 0;
+
+ /*
+ * Satisfy large read requests -- as the common case are smaller
+ * request sizes, such as 16 or 32 bytes, avoid a kmalloc overhead for
+ * those by using the stack variable of tmpbuf. This tmpbuf use,
+ * however, comes at a cost of an additional memcpy when using the
+ * CTR DRBG as this requires a heap variable it uses internally for
+ * the actual cipher operation.
+ */
+ if (nbytes > sizeof(tmpbuf)) {
+ tmplen = min_t(u32, nbytes, LRNG_DRBG_MAX_REQSIZE);
+ tmp_large = kmalloc(tmplen + LRNG_KCAPI_ALIGN, GFP_KERNEL);
+ if (!tmp_large)
+ tmplen = sizeof(tmpbuf);
+ else
+ tmp = PTR_ALIGN(tmp_large, LRNG_KCAPI_ALIGN);
+ }
+
+ while (nbytes) {
+ u32 todo = min_t(u32, nbytes, tmplen);
+ int rc = 0;
+
+ /* Reschedule if we received a large request. */
+ if ((tmp_large) && need_resched()) {
+ if (signal_pending(current)) {
+ if (ret == 0)
+ ret = -ERESTARTSYS;
+ break;
+ }
+ schedule();
+ }
+
+ rc = lrng_read_random(tmp, todo);
+ if (rc <= 0)
+ break;
+ if (copy_to_user(buf, tmp, rc)) {
+ ret = -EFAULT;
+ break;
+ }
+
+ nbytes -= rc;
+ buf += rc;
+ ret += rc;
+ }
+
+ /* Wipe data just returned from memory */
+ if (tmp_large)
+ kzfree(tmp_large);
+ else
+ memzero_explicit(tmpbuf, sizeof(tmpbuf));
+
+ return ret;
+}
+
+static ssize_t
+lrng_pdrbg_read_common(int nonblock, char __user *buf, size_t nbytes)
+{
+ if (nbytes == 0)
+ return 0;
+
+ nbytes = min_t(u32, nbytes, LRNG_DRBG_BLOCKSIZE);
+ while (1) {
+ ssize_t n;
+
+ n = lrng_read_common(buf, nbytes, lrng_pdrbg_get);
+ if (n)
+ return n;
+
+ /* No entropy available. Maybe wait and retry. */
+ if (nonblock)
+ return -EAGAIN;
+
+ wait_event_interruptible(lrng_read_wait,
+ lrng_have_entropy_full());
+ if (signal_pending(current))
+ return -ERESTARTSYS;
+ }
+}
+
+static ssize_t lrng_pdrbg_read(struct file *file, char __user *buf,
+ size_t nbytes, loff_t *ppos)
+{
+ return lrng_pdrbg_read_common(file->f_flags & O_NONBLOCK, buf, nbytes);
+}
+
+static unsigned int lrng_pdrbg_poll(struct file *file, poll_table *wait)
+{
+ unsigned int mask;
+
+ poll_wait(file, &lrng_read_wait, wait);
+ poll_wait(file, &lrng_write_wait, wait);
+ mask = 0;
+ if (lrng_have_entropy_full())
+ mask |= POLLIN | POLLRDNORM;
+ if (lrng_need_entropy())
+ mask |= POLLOUT | POLLWRNORM;
+ return mask;
+}
+
+static ssize_t lrng_drbg_write_common(const char __user *buffer, size_t count,
+ u32 entropy_bits)
+{
+ ssize_t ret = 0;
+ u8 buf[64] __aligned(LRNG_KCAPI_ALIGN);
+ const char __user *p = buffer;
+ u32 node, orig_entropy_bits = entropy_bits;
+
+ if (!atomic_read(&lrng_pdrbg_avail))
+ return -EAGAIN;
+
+ count = min_t(size_t, count, INT_MAX);
+ while (count > 0) {
+ size_t bytes = min_t(size_t, count, sizeof(buf));
+ u32 ent = min_t(u32, bytes<<3, entropy_bits);
+
+ if (copy_from_user(&buf, p, bytes))
+ return -EFAULT;
+ /* Inject data into primary DRBG */
+ lrng_pdrbg_inject(buf, bytes, ent, NULL, 0, false);
+
+ count -= bytes;
+ p += bytes;
+ ret += bytes;
+ entropy_bits -= ent;
+
+ cond_resched();
+ }
+
+ /*
+ * Force reseed of secondary DRBG during next data request. Data with
+ * entropy is assumed to be intended for the primary DRBG and thus
+ * will not cause a reseed of the secondary DRBGs.
+ */
+ if (!orig_entropy_bits) {
+ for_each_online_node(node) {
+ struct lrng_sdrbg *sdrbg = lrng_sdrbg[node];
+
+ if (!sdrbg)
+ continue;
+
+ sdrbg->force_reseed = true;
+ }
+ }
+
+ return ret;
+}
+
+static ssize_t lrng_sdrbg_read(struct file *file, char __user *buf,
+ size_t nbytes, loff_t *ppos)
+{
+ if (!lrng_pdrbg.pdrbg_min_seeded)
+ pr_notice_ratelimited("%s - use of insufficiently seeded DRBG "
+ "(%zu bytes read)\n", current->comm,
+ nbytes);
+ else if (!lrng_pdrbg.pdrbg_fully_seeded)
+ pr_debug_ratelimited("%s - use of not fully seeded DRBG (%zu "
+ "bytes read)\n", current->comm, nbytes);
+
+ return lrng_read_common(buf, nbytes, lrng_sdrbg_get);
+}
+
+static ssize_t lrng_drbg_write(struct file *file, const char __user *buffer,
+ size_t count, loff_t *ppos)
+{
+ return lrng_drbg_write_common(buffer, count, 0);
+}
+
+static long lrng_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
+{
+ int size, ent_count_bits;
+ int __user *p = (int __user *)arg;
+
+ switch (cmd) {
+ case RNDGETENTCNT:
+ ent_count_bits = lrng_avail_entropy();
+ if (put_user(ent_count_bits, p))
+ return -EFAULT;
+ return 0;
+ case RNDADDTOENTCNT:
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+ if (get_user(ent_count_bits, p))
+ return -EFAULT;
+ ent_count_bits = (int)lrng_avail_entropy() + ent_count_bits;
+ if (ent_count_bits < 0)
+ ent_count_bits = 0;
+ if (ent_count_bits > LRNG_POOL_SIZE_BITS)
+ ent_count_bits = LRNG_POOL_SIZE_BITS;
+ atomic_set(&lrng_pool.irq_info.num_events,
+ lrng_entropy_to_data(ent_count_bits));
+ return 0;
+ case RNDADDENTROPY:
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+ if (get_user(ent_count_bits, p++))
+ return -EFAULT;
+ if (ent_count_bits < 0)
+ return -EINVAL;
+ if (get_user(size, p++))
+ return -EFAULT;
+ if (size < 0)
+ return -EINVAL;
+ /* there cannot be more entropy than data */
+ ent_count_bits = min(ent_count_bits, size<<3);
+ return lrng_drbg_write_common((const char __user *)p, size,
+ ent_count_bits);
+ case RNDZAPENTCNT:
+ case RNDCLEARPOOL:
+ /* Clear the entropy pool counter. */
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+ atomic_set(&lrng_pool.irq_info.num_events, 0);
+ return 0;
+ default:
+ return -EINVAL;
+ }
+}
+
+static int lrng_fasync(int fd, struct file *filp, int on)
+{
+ return fasync_helper(fd, filp, on, &fasync);
+}
+
+const struct file_operations random_fops = {
+ .read = lrng_pdrbg_read,
+ .write = lrng_drbg_write,
+ .poll = lrng_pdrbg_poll,
+ .unlocked_ioctl = lrng_ioctl,
+ .fasync = lrng_fasync,
+ .llseek = noop_llseek,
+};
+
+const struct file_operations urandom_fops = {
+ .read = lrng_sdrbg_read,
+ .write = lrng_drbg_write,
+ .unlocked_ioctl = lrng_ioctl,
+ .fasync = lrng_fasync,
+ .llseek = noop_llseek,
+};
+
+SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
+ unsigned int, flags)
+{
+ if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
+ return -EINVAL;
+
+ if (count > INT_MAX)
+ count = INT_MAX;
+
+ if (flags & GRND_RANDOM)
+ return lrng_pdrbg_read_common(flags & GRND_NONBLOCK, buf,
+ count);
+
+ if (unlikely(!lrng_pdrbg.pdrbg_fully_seeded)) {
+ if (flags & GRND_NONBLOCK)
+ return -EAGAIN;
+ wait_event_interruptible(lrng_pdrbg_init_wait,
+ lrng_pdrbg.pdrbg_fully_seeded);
+ if (signal_pending(current))
+ return -ERESTARTSYS;
+ }
+
+ return lrng_sdrbg_read(NULL, buf, count, NULL);
+}
+
+/*************************** LRNG proc interfaces ****************************/
+
+#ifdef CONFIG_SYSCTL
+
+#include <linux/sysctl.h>
+
+static int lrng_min_read_thresh = LRNG_POOL_WORD_BITS;
+static int lrng_min_write_thresh;
+static int lrng_max_read_thresh = LRNG_POOL_SIZE_BITS;
+static int lrng_max_write_thresh = LRNG_POOL_SIZE_BITS;
+static char lrng_sysctl_bootid[16];
+static int lrng_sdrbg_reseed_max_min;
+
+/*
+ * This function is used to return both the bootid UUID, and random
+ * UUID. The difference is in whether table->data is NULL; if it is,
+ * then a new UUID is generated and returned to the user.
+ *
+ * If the user accesses this via the proc interface, the UUID will be
+ * returned as an ASCII string in the standard UUID format; if via the
+ * sysctl system call, as 16 bytes of binary data.
+ */
+static int lrng_proc_do_uuid(struct ctl_table *table, int write,
+ void __user *buffer, size_t *lenp, loff_t *ppos)
+{
+ struct ctl_table fake_table;
+ unsigned char buf[64], tmp_uuid[16], *uuid;
+
+ uuid = table->data;
+ if (!uuid) {
+ uuid = tmp_uuid;
+ generate_random_uuid(uuid);
+ } else {
+ static DEFINE_SPINLOCK(bootid_spinlock);
+
+ spin_lock(&bootid_spinlock);
+ if (!uuid[8])
+ generate_random_uuid(uuid);
+ spin_unlock(&bootid_spinlock);
+ }
+
+ sprintf(buf, "%pU", uuid);
+
+ fake_table.data = buf;
+ fake_table.maxlen = sizeof(buf);
+
+ return proc_dostring(&fake_table, write, buffer, lenp, ppos);
+}
+
+static int lrng_proc_do_type(struct ctl_table *table, int write,
+ void __user *buffer, size_t *lenp, loff_t *ppos)
+{
+ struct ctl_table fake_table;
+ unsigned char buf[150];
+
+ snprintf(buf, sizeof(buf),
+ "%s: %s\n"
+ "DRNG security strength: %u bits\n"
+ "entropy pool read hash: %s\n"
+ "number of secondary DRNG instances: %u",
+#ifdef CONFIG_CRYPTO_DRBG_CTR
+ "CTR DRBG",
+#elif defined CONFIG_CRYPTO_DRBG_HMAC
+ "HMAC DRBG",
+#elif defined CONFIG_CRYPTO_DRBG_HASH
+ "HASH DRBG",
+#else
+ "ChaCha20 DRNG",
+#endif
+ LRNG_DRBG_CORE, LRNG_DRBG_SECURITY_STRENGTH_BITS,
+ LRNG_HASH_NAME, lrng_pool.numa_drngs);
+
+ fake_table.data = buf;
+ fake_table.maxlen = sizeof(buf);
+
+ return proc_dostring(&fake_table, write, buffer, lenp, ppos);
+}
+
+/* Return entropy available scaled to integral bits */
+static int lrng_proc_do_entropy(struct ctl_table *table, int write,
+ void __user *buffer, size_t *lenp, loff_t *ppos)
+{
+ struct ctl_table fake_table;
+ int entropy_count;
+
+ entropy_count = lrng_avail_entropy();
+
+ fake_table.data = &entropy_count;
+ fake_table.maxlen = sizeof(entropy_count);
+
+ return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
+}
+
+static int lrng_proc_bool(struct ctl_table *table, int write,
+ void __user *buffer, size_t *lenp, loff_t *ppos)
+{
+ struct ctl_table fake_table;
+ int loc_boolean = 0;
+ bool *boolean = (bool *)table->data;
+
+ if (*boolean)
+ loc_boolean = 1;
+
+ fake_table.data = &loc_boolean;
+ fake_table.maxlen = sizeof(loc_boolean);
+
+ return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
+}
+
+static int lrng_sysctl_poolsize = LRNG_POOL_SIZE_BITS;
+static int pdrbg_security_strength = LRNG_DRBG_SECURITY_STRENGTH_BYTES;
+extern struct ctl_table random_table[];
+struct ctl_table random_table[] = {
+ {
+ .procname = "poolsize",
+ .data = &lrng_sysctl_poolsize,
+ .maxlen = sizeof(int),
+ .mode = 0444,
+ .proc_handler = proc_dointvec,
+ },
+ {
+ .procname = "entropy_avail",
+ .maxlen = sizeof(int),
+ .mode = 0444,
+ .proc_handler = lrng_proc_do_entropy,
+ },
+ {
+ .procname = "read_wakeup_threshold",
+ .data = &lrng_read_wakeup_bits,
+ .maxlen = sizeof(int),
+ .mode = 0644,
+ .proc_handler = proc_dointvec_minmax,
+ .extra1 = &lrng_min_read_thresh,
+ .extra2 = &lrng_max_read_thresh,
+ },
+ {
+ .procname = "write_wakeup_threshold",
+ .data = &lrng_write_wakeup_bits,
+ .maxlen = sizeof(int),
+ .mode = 0644,
+ .proc_handler = proc_dointvec_minmax,
+ .extra1 = &lrng_min_write_thresh,
+ .extra2 = &lrng_max_write_thresh,
+ },
+ {
+ .procname = "boot_id",
+ .data = &lrng_sysctl_bootid,
+ .maxlen = 16,
+ .mode = 0444,
+ .proc_handler = lrng_proc_do_uuid,
+ },
+ {
+ .procname = "uuid",
+ .maxlen = 16,
+ .mode = 0444,
+ .proc_handler = lrng_proc_do_uuid,
+ },
+ {
+ .procname = "urandom_min_reseed_secs",
+ .data = &lrng_sdrbg_reseed_max_time,
+ .maxlen = sizeof(int),
+ .mode = 0644,
+ .proc_handler = proc_dointvec,
+ .extra1 = &lrng_sdrbg_reseed_max_min,
+ },
+ {
+ .procname = "drbg_fully_seeded",
+ .data = &lrng_pdrbg.pdrbg_fully_seeded,
+ .maxlen = sizeof(int),
+ .mode = 0444,
+ .proc_handler = lrng_proc_bool,
+ },
+ {
+ .procname = "drbg_minimally_seeded",
+ .data = &lrng_pdrbg.pdrbg_min_seeded,
+ .maxlen = sizeof(int),
+ .mode = 0444,
+ .proc_handler = lrng_proc_bool,
+ },
+ {
+ .procname = "lrng_type",
+ .maxlen = 30,
+ .mode = 0444,
+ .proc_handler = lrng_proc_do_type,
+ },
+ {
+ .procname = "drbg_security_strength",
+ .data = &pdrbg_security_strength,
+ .maxlen = sizeof(int),
+ .mode = 0444,
+ .proc_handler = proc_dointvec,
+ },
+ {
+ .procname = "high_resolution_timer",
+ .data = &lrng_pool.irq_info.irq_highres_timer,
+ .maxlen = sizeof(int),
+ .mode = 0444,
+ .proc_handler = lrng_proc_bool,
+ },
+ { }
+};
+#endif /* CONFIG_SYSCTL */
+
+/************************ LRNG auxiliary interfaces **************************/
+
+struct batched_entropy {
+ union {
+ u64 entropy_u64[LRNG_DRBG_BLOCKSIZE / sizeof(u64)];
+ u32 entropy_u32[LRNG_DRBG_BLOCKSIZE / sizeof(u32)];
+ };
+ unsigned int position;
+};
+
+/*
+ * Get a random word for internal kernel use only. The quality of the random
+ * number is either as good as RDRAND or as good as /dev/urandom, with the
+ * goal of being quite fast and not depleting entropy.
+ */
+static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
+u64 get_random_u64(void)
+{
+ u64 ret;
+ struct batched_entropy *batch;
+
+#if BITS_PER_LONG == 64
+ if (arch_get_random_long((unsigned long *)&ret))
+ return ret;
+#else
+ if (arch_get_random_long((unsigned long *)&ret) &&
+ arch_get_random_long((unsigned long *)&ret + 1))
+ return ret;
+#endif
+
+ batch = &get_cpu_var(batched_entropy_u64);
+ if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
+ lrng_sdrbg_get((u8 *)batch->entropy_u64, LRNG_DRBG_BLOCKSIZE);
+ batch->position = 0;
+ }
+ ret = batch->entropy_u64[batch->position++];
+ put_cpu_var(batched_entropy_u64);
+ return ret;
+}
+EXPORT_SYMBOL(get_random_u64);
+
+static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
+u32 get_random_u32(void)
+{
+ u32 ret;
+ struct batched_entropy *batch;
+
+ if (arch_get_random_int(&ret))
+ return ret;
+
+ batch = &get_cpu_var(batched_entropy_u32);
+ if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
+ lrng_sdrbg_get((u8 *)batch->entropy_u32, LRNG_DRBG_BLOCKSIZE);
+ batch->position = 0;
+ }
+ ret = batch->entropy_u32[batch->position++];
+ put_cpu_var(batched_entropy_u32);
+ return ret;
+}
+EXPORT_SYMBOL(get_random_u32);
+
+/**
+ * randomize_page - Generate a random, page aligned address
+ * @start: The smallest acceptable address the caller will take.
+ * @range: The size of the area, starting at @start, within which the
+ * random address must fall.
+ *
+ * If @start + @range would overflow, @range is capped.
+ *
+ * NOTE: Historical use of randomize_range, which this replaces, presumed that
+ * @start was already page aligned. We now align it regardless.
+ *
+ * Return: A page aligned address within [start, start + range). On error,
+ * @start is returned.
+ */
+unsigned long
+randomize_page(unsigned long start, unsigned long range)
+{
+ if (!PAGE_ALIGNED(start)) {
+ range -= PAGE_ALIGN(start) - start;
+ start = PAGE_ALIGN(start);
+ }
+
+ if (start > ULONG_MAX - range)
+ range = ULONG_MAX - start;
+
+ range >>= PAGE_SHIFT;
+
+ if (range == 0)
+ return start;
+
+ return start + (get_random_long() % range << PAGE_SHIFT);
+}
+
+/***************************** Initialize LRNG *******************************/
+
+static int __init lrng_init(void)
+{
+ unsigned long flags;
+
+ BUG_ON(lrng_alloc());
+
+ spin_lock_irqsave(&lrng_init_rng_lock, flags);
+
+ if (random_get_entropy() || random_get_entropy()) {
+ /*
+ * As the highres timer is identified here, previous interrupts
+ * obtained during boot time are treated like a lowres timer
+ * would have been present.
+ */
+ lrng_pool.irq_info.irq_highres_timer = true;
+ lrng_pool.irq_info.irq_entropy_bits = LRNG_IRQ_ENTROPY_BITS;
+ } else {
+ lrng_pool.irq_info.irq_entropy_bits =
+ LRNG_IRQ_ENTROPY_BITS * LRNG_IRQ_OVERSAMPLING_FACTOR;
+ pr_warn("operating without high-resolution timer and applying IRQ oversampling factor %u\n",
+ LRNG_IRQ_OVERSAMPLING_FACTOR);
+ }
+ lrng_set_entropy_thresh(LRNG_INIT_ENTROPY_BITS);
+
+ /*
+ * As we use the IRQ entropic input data processed by the init RNG
+ * again during lrng_pdrbg_seed_internal, we must not claim that
+ * the init RNG state has any entropy when injecting its contents as
+ * an initial seed into the DRBG.
+ */
+ lrng_pdrbg_inject((u8 *)&lrng_init_state,
+ SHA_WORKSPACE_WORDS * sizeof(lrng_init_state[0]),
+ 0, NULL, 0, false);
+ lrng_sdrbg_seed(lrng_sdrbg[0], lrng_pdrbg_seed);
+ atomic_inc(&lrng_pdrbg_avail);
+ memzero_explicit(&lrng_init_state,
+ SHA_WORKSPACE_WORDS * sizeof(lrng_init_state[0]));
+ spin_unlock_irqrestore(&lrng_init_rng_lock, flags);
+ pr_info("deactivating initial RNG - %d bytes delivered\n",
+ atomic_read(&lrng_initrng_bytes));
+ return 0;
+}
+
+/* A late init implies that more interrupts are collected for initial seeding */
+late_initcall(lrng_init);
+
+MODULE_LICENSE("Dual BSD/GPL");
+MODULE_AUTHOR("Stephan Mueller <smueller@...onox.de>");
+MODULE_DESCRIPTION("Linux Random Number Generator");
diff --git a/drivers/char/lrng_kcapi.c b/drivers/char/lrng_kcapi.c
new file mode 100644
index 0000000..e259a5f
--- /dev/null
+++ b/drivers/char/lrng_kcapi.c
@@ -0,0 +1,173 @@
+/*
+ * Backend for the LRNG providing the cryptographic primitives using the
+ * kernel crypto API.
+ *
+ * Copyright (C) 2016 - 2017, Stephan Mueller <smueller@...onox.de>
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, and the entire permission notice in its entirety,
+ * including the disclaimer of warranties.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. The name of the author may not be used to endorse or promote
+ * products derived from this software without specific prior
+ * written permission.
+ *
+ * ALTERNATIVELY, this product may be distributed under the terms of
+ * the GNU General Public License, in which case the provisions of the GPL2
+ * are required INSTEAD OF the above restrictions. (This clause is
+ * necessary due to a potential bad interaction between the GPL and
+ * the restrictions contained in a BSD-style copyright.)
+ *
+ * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
+ * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
+ * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
+ * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
+ * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <crypto/drbg.h>
+
+struct lrng_hash_info {
+ struct shash_desc shash;
+ char ctx[];
+};
+
+int lrng_drng_seed_helper(void *drng, const u8 *inbuf, u32 inbuflen)
+{
+ struct drbg_state *drbg = (struct drbg_state *)drng;
+ LIST_HEAD(seedlist);
+ struct drbg_string data;
+ int ret;
+
+ drbg_string_fill(&data, inbuf, inbuflen);
+ list_add_tail(&data.list, &seedlist);
+ ret = drbg->d_ops->update(drbg, &seedlist, drbg->seeded);
+
+ if (ret >= 0)
+ drbg->seeded = true;
+
+ return ret;
+}
+
+int lrng_drng_generate_helper(void *drng, u8 *outbuf, u32 outbuflen)
+{
+ struct drbg_state *drbg = (struct drbg_state *)drng;
+
+ return drbg->d_ops->generate(drbg, outbuf, outbuflen, NULL);
+}
+
+int lrng_drng_generate_helper_full(void *drng, u8 *outbuf, u32 outbuflen)
+{
+ struct drbg_state *drbg = (struct drbg_state *)drng;
+
+ return drbg->d_ops->generate(drbg, outbuf, outbuflen, NULL);
+}
+
+void *lrng_drng_alloc(const u8 *drng_name, u32 sec_strength)
+{
+ struct drbg_state *drbg = NULL;
+ int coreref = -1;
+ bool pr = false;
+ int ret;
+
+ drbg_convert_tfm_core(drng_name, &coreref, &pr);
+ if (coreref < 0)
+ return ERR_PTR(-EFAULT);
+
+ drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
+ if (!drbg)
+ return ERR_PTR(-ENOMEM);
+
+ drbg->core = &drbg_cores[coreref];
+ drbg->seeded = false;
+ ret = drbg_alloc_state(drbg);
+ if (ret)
+ goto err;
+
+ if (sec_strength > drbg_sec_strength(drbg->core->flags))
+ goto dealloc;
+
+ pr_info("DRBG with %s core allocated\n", drbg->core->backend_cra_name);
+
+ return drbg;
+
+dealloc:
+ if (drbg->d_ops)
+ drbg->d_ops->crypto_fini(drbg);
+ drbg_dealloc_state(drbg);
+err:
+ kfree(drbg);
+ return ERR_PTR(-EINVAL);
+}
+
+void lrng_drng_dealloc(void *drng)
+{
+ struct drbg_state *drbg = (struct drbg_state *)drng;
+
+ drbg_dealloc_state(drbg);
+ kzfree(drbg);
+}
+
+void *lrng_hash_alloc(const u8 *hashname, const u8 *key, u32 keylen)
+{
+ struct lrng_hash_info *lrng_hash;
+ struct crypto_shash *tfm;
+ int size, ret;
+
+ tfm = crypto_alloc_shash(hashname, 0, 0);
+ if (IS_ERR(tfm)) {
+ pr_err("could not allocate hash %s\n", hashname);
+ return ERR_CAST(tfm);
+ }
+
+ size = sizeof(struct lrng_hash_info) + crypto_shash_descsize(tfm);
+ lrng_hash = kmalloc(size, GFP_KERNEL);
+ if (!lrng_hash) {
+ crypto_free_shash(tfm);
+ return ERR_PTR(-ENOMEM);
+ }
+
+ lrng_hash->shash.tfm = tfm;
+ lrng_hash->shash.flags = 0x0;
+
+ /* If the used hash is no MAC, ignore the ENOSYS return code */
+ ret = crypto_shash_setkey(tfm, key, keylen);
+ if (ret && ret != -ENOSYS) {
+ pr_err("could not set the key for MAC\n");
+ crypto_free_shash(tfm);
+ kfree(lrng_hash);
+ return ERR_PTR(ret);
+ }
+
+ return lrng_hash;
+}
+
+u32 lrng_hash_digestsize(void *hash)
+{
+ struct lrng_hash_info *lrng_hash = (struct lrng_hash_info *)hash;
+ struct shash_desc *shash = &lrng_hash->shash;
+
+ return crypto_shash_digestsize(shash->tfm);
+}
+
+int lrng_hash_buffer(void *hash, const u8 *inbuf, u32 inbuflen, u8 *digest)
+{
+ struct lrng_hash_info *lrng_hash = (struct lrng_hash_info *)hash;
+ struct shash_desc *shash = &lrng_hash->shash;
+
+ return crypto_shash_digest(shash, inbuf, inbuflen, digest);
+}
--
2.9.3
Powered by blists - more mailing lists