lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [thread-next>] [day] [month] [year] [list]
Message-Id: <8eccc9240041ea7cb94624cab8d07e2a6e911ba7.1507567665.git.luto@kernel.org>
Date:   Mon,  9 Oct 2017 09:50:49 -0700
From:   Andy Lutomirski <luto@...nel.org>
To:     x86@...nel.org
Cc:     linux-kernel@...r.kernel.org, Borislav Petkov <bp@...en8.de>,
        Markus Trippelsdorf <markus@...ppelsdorf.de>,
        Adam Borowski <kilobyte@...band.pl>,
        Andy Lutomirski <luto@...nel.org>,
        Brian Gerst <brgerst@...il.com>
Subject: [RFC PATCH] x86/mm: Flush more aggressively in lazy TLB mode

Since commit 94b1b03b519b, x86's lazy TLB mode has been all the way
lazy: when running a kernel thread (including the idle thread), the
kernel keeps using the last user mm's page tables without attempting
to maintain user TLB coherence at all.  From a pure semantic
perspective, this is fine -- kernel threads won't attempt to access
user pages, so having stale TLB entries doesn't matter.

Unfortunately, I forgot about a subtlety.  By skipping TLB flushes,
we also allow any paging-structure caches that may exist on the CPU
to become incoherent.  This means that we can have a
paging-structure cache entry that references a freed page table, and
the CPU is within its rights to do a speculative page walk starting
at the freed page table.

I can imagine this causing two different problems:

 - A speculative page walk starting from a bogus page table could read
   IO addresses.  I haven't seen any reports of this causing problems.

 - A speculative page walk that involves a bogus page table can install
   garbage in the TLB.  Such garbage would always be at a user VA, but
   some AMD CPUs have logic that triggers a machine check when it notices
   these bogus entries.  I've seen a couple reports of this.

Reinstate TLB coherence in lazy mode.  With this patch applied, we
do it in one of two ways.  If we have PCID, we simply switch back to
init_mm's page tables when we enter a kernel thread -- this seems to
be quite cheap except for the cost of serializing the CPU.  If we
don't have PCID, then we set a flag and switch to init_mm the first
time we would otherwise need to flush the TLB.

/sys/kernel/debug/x86/tlb_use_lazy_mode can be changed to override
the default mode for benchmarking.

In theory, we could optimize this better by only flushing the TLB in
lazy CPUs when a page table is freed.  Doing that would require
auditing the mm code to make sure that all page table freeing goes
through tlb_remove_page() as well as reworking some data structures
to implement the improved flush logic.

Fixes: 94b1b03b519b ("x86/mm: Rework lazy TLB mode and TLB freshness tracking")
Reported-by: Markus Trippelsdorf <markus@...ppelsdorf.de>
Reported-by: Adam Borowski <kilobyte@...band.pl>
Cc: Brian Gerst <brgerst@...il.com>
Cc: Borislav Petkov <bp@...en8.de>
Signed-off-by: Andy Lutomirski <luto@...nel.org>
---

There are two optimizations we should probably do on top of this.

 - In lazy mode, we should switch to init_mm when entering a long idle
   state.  We used to do this, but it was a mess.  I'm working on a clean
   patch to reinstate it.

 - In non-lazy mode with PCID, we could microoptimize switches to init_mm
   by hardcoding the ASID.

 arch/x86/include/asm/mmu_context.h |   8 +-
 arch/x86/include/asm/tlbflush.h    |  24 ++++++
 arch/x86/mm/tlb.c                  | 153 +++++++++++++++++++++++++++----------
 3 files changed, 136 insertions(+), 49 deletions(-)

diff --git a/arch/x86/include/asm/mmu_context.h b/arch/x86/include/asm/mmu_context.h
index c120b5db178a..3c856a15b98e 100644
--- a/arch/x86/include/asm/mmu_context.h
+++ b/arch/x86/include/asm/mmu_context.h
@@ -126,13 +126,7 @@ static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
 	DEBUG_LOCKS_WARN_ON(preemptible());
 }
 
-static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
-{
-	int cpu = smp_processor_id();
-
-	if (cpumask_test_cpu(cpu, mm_cpumask(mm)))
-		cpumask_clear_cpu(cpu, mm_cpumask(mm));
-}
+void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk);
 
 static inline int init_new_context(struct task_struct *tsk,
 				   struct mm_struct *mm)
diff --git a/arch/x86/include/asm/tlbflush.h b/arch/x86/include/asm/tlbflush.h
index 4893abf7f74f..d362161d3291 100644
--- a/arch/x86/include/asm/tlbflush.h
+++ b/arch/x86/include/asm/tlbflush.h
@@ -83,6 +83,13 @@ static inline u64 inc_mm_tlb_gen(struct mm_struct *mm)
 #endif
 
 /*
+ * If tlb_use_lazy_mode is true, then we try to avoid switching CR3 to point
+ * to init_mm when we switch to a kernel thread (e.g. the idle thread).  If
+ * it's false, then we immediately switch CR3 when entering a kernel thread.
+ */
+DECLARE_STATIC_KEY_TRUE(tlb_use_lazy_mode);
+
+/*
  * 6 because 6 should be plenty and struct tlb_state will fit in
  * two cache lines.
  */
@@ -105,6 +112,23 @@ struct tlb_state {
 	u16 next_asid;
 
 	/*
+	 * We can be in one of several states:
+	 *
+	 *  - Actively using an mm.  Our CPU's bit will be set in
+	 *    mm_cpumask(loaded_mm) and is_lazy == false;
+	 *
+	 *  - Not using a real mm.  loaded_mm == &init_mm.  Our CPU's bit
+	 *    will not be set in mm_cpumask(&init_mm) and is_lazy == false.
+	 *
+	 *  - Lazily using a real mm.  loaded_mm != &init_mm, our bit
+	 *    is set in mm_cpumask(loaded_mm), but is_lazy == true.
+	 *    We're heuristically guessing that the CR3 load we
+	 *    skipped more than makes up for the overhead added by
+	 *    lazy mode.
+	 */
+	bool is_lazy;
+
+	/*
 	 * Access to this CR4 shadow and to H/W CR4 is protected by
 	 * disabling interrupts when modifying either one.
 	 */
diff --git a/arch/x86/mm/tlb.c b/arch/x86/mm/tlb.c
index 5c52462fed19..4950f007a0a3 100644
--- a/arch/x86/mm/tlb.c
+++ b/arch/x86/mm/tlb.c
@@ -30,6 +30,8 @@
 
 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
 
+DEFINE_STATIC_KEY_TRUE(tlb_use_lazy_mode);
+
 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
 			    u16 *new_asid, bool *need_flush)
 {
@@ -80,7 +82,7 @@ void leave_mm(int cpu)
 		return;
 
 	/* Warn if we're not lazy. */
-	WARN_ON(cpumask_test_cpu(smp_processor_id(), mm_cpumask(loaded_mm)));
+	WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
 
 	switch_mm(NULL, &init_mm, NULL);
 }
@@ -142,45 +144,24 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
 		__flush_tlb_all();
 	}
 #endif
+	this_cpu_write(cpu_tlbstate.is_lazy, false);
 
 	if (real_prev == next) {
 		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
 			   next->context.ctx_id);
 
-		if (cpumask_test_cpu(cpu, mm_cpumask(next))) {
-			/*
-			 * There's nothing to do: we weren't lazy, and we
-			 * aren't changing our mm.  We don't need to flush
-			 * anything, nor do we need to update CR3, CR4, or
-			 * LDTR.
-			 */
-			return;
-		}
-
-		/* Resume remote flushes and then read tlb_gen. */
-		cpumask_set_cpu(cpu, mm_cpumask(next));
-		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
-
-		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) <
-		    next_tlb_gen) {
-			/*
-			 * Ideally, we'd have a flush_tlb() variant that
-			 * takes the known CR3 value as input.  This would
-			 * be faster on Xen PV and on hypothetical CPUs
-			 * on which INVPCID is fast.
-			 */
-			this_cpu_write(cpu_tlbstate.ctxs[prev_asid].tlb_gen,
-				       next_tlb_gen);
-			write_cr3(build_cr3(next, prev_asid));
-			trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH,
-					TLB_FLUSH_ALL);
-		}
-
 		/*
-		 * We just exited lazy mode, which means that CR4 and/or LDTR
-		 * may be stale.  (Changes to the required CR4 and LDTR states
-		 * are not reflected in tlb_gen.)
+		 * We don't currently support having a real mm loaded without
+		 * our cpu set in mm_cpumask().  We have all the bookkeeping
+		 * in place to figure out whether we would need to flush
+		 * if our cpu were cleared in mm_cpumask(), but we don't
+		 * currently use it.
 		 */
+		if (WARN_ON_ONCE(real_prev != &init_mm &&
+				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
+			cpumask_set_cpu(cpu, mm_cpumask(next));
+
+		return;
 	} else {
 		u16 new_asid;
 		bool need_flush;
@@ -199,10 +180,9 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
 		}
 
 		/* Stop remote flushes for the previous mm */
-		if (cpumask_test_cpu(cpu, mm_cpumask(real_prev)))
-			cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
-
-		VM_WARN_ON_ONCE(cpumask_test_cpu(cpu, mm_cpumask(next)));
+		VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
+				real_prev != &init_mm);
+		cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
 
 		/*
 		 * Start remote flushes and then read tlb_gen.
@@ -233,6 +213,37 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
 }
 
 /*
+ * enter_lazy_tlb() is a hint from the scheduler that we are entering a
+ * kernel thread or other context without an mm.  Acceptable implementations
+ * include doing nothing whatsoever, switching to init_mm, or various clever
+ * lazy tricks to try to minimize TLB flushes.
+ *
+ * The scheduler reserves the right to call enter_lazy_tlb() several times
+ * in a row.  It will notify us that we're going back to a real mm by
+ * calling switch_mm_irqs_off().
+ */
+void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
+{
+	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
+		return;
+
+	if (static_branch_unlikely(&tlb_use_lazy_mode)) {
+		/*
+		 * There's a significant optimization that may be possible
+		 * here.  We have accurate enough TLB flush tracking that we
+		 * don't need to maintain coherence of TLB per se when we're
+		 * lazy.  We do, however, need to maintain coherence of
+		 * paging-structure caches.  We could, in principle, leave our
+		 * old mm loaded and only switch to init_mm when
+		 * tlb_remove_page() happens.
+		 */
+		this_cpu_write(cpu_tlbstate.is_lazy, true);
+	} else {
+		switch_mm(NULL, &init_mm, NULL);
+	}
+}
+
+/*
  * Call this when reinitializing a CPU.  It fixes the following potential
  * problems:
  *
@@ -303,16 +314,20 @@ static void flush_tlb_func_common(const struct flush_tlb_info *f,
 	/* This code cannot presently handle being reentered. */
 	VM_WARN_ON(!irqs_disabled());
 
+	if (unlikely(loaded_mm == &init_mm))
+		return;
+
 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
 		   loaded_mm->context.ctx_id);
 
-	if (!cpumask_test_cpu(smp_processor_id(), mm_cpumask(loaded_mm))) {
+	if (this_cpu_read(cpu_tlbstate.is_lazy)) {
 		/*
-		 * We're in lazy mode -- don't flush.  We can get here on
-		 * remote flushes due to races and on local flushes if a
-		 * kernel thread coincidentally flushes the mm it's lazily
-		 * still using.
+		 * We're in lazy mode.  We need to at least flush our
+		 * paging-structure cache to avoid speculatively reading
+		 * garbage into our TLB.  Since switching to init_mm is barely
+		 * slower than a minimal flush, just switch to init_mm.
 		 */
+		switch_mm_irqs_off(NULL, &init_mm, NULL);
 		return;
 	}
 
@@ -611,3 +626,57 @@ static int __init create_tlb_single_page_flush_ceiling(void)
 	return 0;
 }
 late_initcall(create_tlb_single_page_flush_ceiling);
+
+static ssize_t tlblazy_read_file(struct file *file, char __user *user_buf,
+				 size_t count, loff_t *ppos)
+{
+	char buf[2];
+
+	buf[0] = static_branch_likely(&tlb_use_lazy_mode) ? '1' : '0';
+	buf[1] = '\n';
+
+	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
+}
+
+static ssize_t tlblazy_write_file(struct file *file,
+		 const char __user *user_buf, size_t count, loff_t *ppos)
+{
+	bool val;
+
+	if (kstrtobool_from_user(user_buf, count, &val))
+		return -EINVAL;
+
+	if (val)
+		static_branch_enable(&tlb_use_lazy_mode);
+	else
+		static_branch_disable(&tlb_use_lazy_mode);
+
+	return count;
+}
+
+static const struct file_operations fops_tlblazy = {
+	.read = tlblazy_read_file,
+	.write = tlblazy_write_file,
+	.llseek = default_llseek,
+};
+
+static int __init init_tlb_use_lazy_mode(void)
+{
+	if (boot_cpu_has(X86_FEATURE_PCID)) {
+		/*
+		 * Heuristic: with PCID on, switching to and from
+		 * init_mm is reasonably fast, but remote flush IPIs
+		 * as expensive as ever, so turn off lazy TLB mode.
+		 *
+		 * We can't do this in setup_pcid() because static keys
+		 * haven't been initialized yet, and it would blow up
+		 * badly.
+		 */
+		static_branch_disable(&tlb_use_lazy_mode);
+	}
+
+	debugfs_create_file("tlb_use_lazy_mode", S_IRUSR | S_IWUSR,
+			    arch_debugfs_dir, NULL, &fops_tlblazy);
+	return 0;
+}
+late_initcall(init_tlb_use_lazy_mode);
-- 
2.13.6

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ