[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <1920107276.18703.1511217963487.JavaMail.zimbra@efficios.com>
Date: Mon, 20 Nov 2017 22:46:03 +0000 (UTC)
From: Mathieu Desnoyers <mathieu.desnoyers@...icios.com>
To: Andi Kleen <andi@...stfloor.org>
Cc: Thomas Gleixner <tglx@...utronix.de>,
Peter Zijlstra <peterz@...radead.org>,
"Paul E. McKenney" <paulmck@...ux.vnet.ibm.com>,
Boqun Feng <boqun.feng@...il.com>,
Andy Lutomirski <luto@...capital.net>,
Dave Watson <davejwatson@...com>,
linux-kernel <linux-kernel@...r.kernel.org>,
linux-api <linux-api@...r.kernel.org>,
Paul Turner <pjt@...gle.com>,
Andrew Morton <akpm@...ux-foundation.org>,
Russell King <linux@....linux.org.uk>,
Ingo Molnar <mingo@...hat.com>,
"H. Peter Anvin" <hpa@...or.com>, Andrew Hunter <ahh@...gle.com>,
Chris Lameter <cl@...ux.com>, Ben Maurer <bmaurer@...com>,
rostedt <rostedt@...dmis.org>,
Josh Triplett <josh@...htriplett.org>,
Linus Torvalds <torvalds@...ux-foundation.org>,
Catalin Marinas <catalin.marinas@....com>,
Will Deacon <will.deacon@....com>,
Michael Kerrisk <mtk.manpages@...il.com>
Subject: Re: [RFC PATCH v3 for 4.15 08/24] Provide cpu_opv system call
----- On Nov 20, 2017, at 1:49 PM, Andi Kleen andi@...stfloor.org wrote:
>> Having cpu_opv do a 4k memcpy allow it to handle scenarios where
>> rseq fails to progress.
>
> If anybody ever gets that right. It will be really hard to just
> test such a path.
>
> It also seems fairly theoretical to me. Do you even have a
> test case where the normal path stops making forward progress?
We expect the following loop to progress, typically after a single
iteration:
do {
cpu = rseq_cpu_start();
ret = rseq_addv(&v, 1, cpu);
attempts++;
} while (ret);
Now runnig this in gdb, break on "main", run, and single-step
execution with "next", the program is stuck in an infinite loop.
What solution do you have in mind to handle this kind of
scenario without breaking pre-existing debuggers ?
Looking at vDSO examples of vgetcpu and vclock_gettime under
gdb 7.7.1 (debian) with glibc 2.19:
sched_getcpu behavior under single-stepping per source line
with "step" seems to only see the ../sysdeps/unix/sysv/linux/x86_64/sched_getcpu.S
source lines, which makes it skip single-stepping of the vDSO.
sched_getcpu under "stepi": it does go through the vDSO instruction
addresses. It does progress, given that there is no loop there.
clock_gettime under "step": it only sees source lines of
../sysdeps/unix/clock_gettime.c.
clock_gettime under "stepi": it's stuck in an infinite loop.
So instruction-level stepping from gdb turns clock_gettime vDSO
into a never-ending loop, which is already bad. But with rseq,
the situation is even worse, because it turns source line level
single-stepping into infinite loops.
My understanding from https://sourceware.org/bugzilla/show_bug.cgi?id=14466
is that GDB currently simply removes the vDSO from its list of library
mappings, which is probably why it skips over vDSO for the source
lines single-stepping case. We cannot do that with rseq, because we
_want_ the rseq critical section to be inlined into the application
or library. A function call costs more than most rseq critical sections.
I plan to have the rseq user-space code provide a "__rseq_table" section
so debuggers can eventually figure out that they need to skip over the
rseq critical sections. However, it won't help the fact that pre-existing
debugger single-stepping will start turning perfectly working programs
into never-ending loops simply by having glibc use rseq for memory
allocation.
Using the cpu_opv system call on rseq failure solves this problem
entirely.
I would even go further and recommend to take a similar approach when
lack of progress is detected in a vDSO, and invoke the equivalent
system call. The current implementation of the clock_gettime()
vDSO turns instruction-level single-stepping into never
ending loops, which is far from being elegant.
Thanks,
Mathieu
--
Mathieu Desnoyers
EfficiOS Inc.
http://www.efficios.com
Powered by blists - more mailing lists