lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [day] [month] [year] [list]
Message-ID: <CAJDTihxrzqGHwwPcb3BBYsqQOzZuycz=4=pUm_77t6U+ssawwQ@mail.gmail.com>
Date:   Mon, 12 Mar 2018 22:10:27 +0800
From:   焦晓冬 <milestonejxd@...il.com>
To:     Andrea Parri <parri.andrea@...il.com>
Cc:     Boqun Feng <boqun.feng@...il.com>, linux-kernel@...r.kernel.org,
        peterz@...radead.org, Alan Stern <stern@...land.harvard.edu>,
        will.deacon@....com, torvalds@...ux-foundation.org,
        npiggin@...il.com, mingo@...nel.org, mpe@...erman.id.au,
        oleg@...hat.com, benh@...nel.crashing.org,
        Paul McKenney <paulmck@...ux.vnet.ibm.com>
Subject: Re: smp_mb__after_spinlock requirement too strong?

On Mon, Mar 12, 2018 at 9:24 PM, Andrea Parri <parri.andrea@...il.com> wrote:
> Hi Trol,
>
> [...]
>
>
>> But this is just one special case that acquire-release chains promise us.
>>
>> A=B=0 as initial
>>
>>   CPU0                CPU1                CPU2                CPU3
>>  write A=1
>>                            read A=1
>>                            write B=1
>>                            release X
>>                                                  acquire X
>>                                                  read A=?
>>                                                  release Y
>>
>>     acquire Y
>>
>>     read B=?
>>
>> assurance 1: CPU3 will surely see B=1 writing by CPU1, and
>> assurance 2: CPU2 will also see A=1 writing by CPU0 as a special case
>>
>> The second assurance is both in theory and implemented by real hardware.
>>
>> As for theory, the C++11 memory model, which is a potential formal model
>> for kernel memory model as
>> http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0124r4.html
>> descripes, states that:
>>
>> If a value computation A of an atomic object M happens before a value
>> computation B of M, and A takes its value from a side effect X on M, then
>> the value computed by B shall either be the value stored by X or the value
>> stored by a side effect Y on M, where Y follows X in the modification
>> order of M.
>
> A formal memory consistency model for the Linux kernel is now available at:
>
>  git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu.git lkmm
>
> Commit
>
>   1c27b644c0fdbc61e113b8faee14baeb8df32486
>   ("Automate memory-barriers.txt; provide Linux-kernel memory model")
>
> provides some information (and references) on the development of this work.
>
> ---
>
> You can check the above observation against this model: unless I mis-typed
> your snippet,
>
> andrea@...rea:~/linux-rcu/tools/memory-model$ cat trol0.litmus
> C trol0
>
> {}
>
> P0(int *a)
> {
>         WRITE_ONCE(*a, 1);
> }
>
> P1(int *a, int *b, int *x)
> {
>         int r0;
>
>         r0 = READ_ONCE(*a);
>         WRITE_ONCE(*b, 1);
>         smp_store_release(x, 1);
> }
>
> P2(int *a, int *x, int *y)
> {
>         int r0;
>         int r1;
>
>         r0 = smp_load_acquire(x);
>         r1 = READ_ONCE(*a);
>         smp_store_release(y, 1);
> }
>
> P3(int *b, int *y)
> {
>         int r0;
>         int r1;
>
>         r0 = smp_load_acquire(y);
>         r1 = READ_ONCE(*b);
> }
>
> exists (1:r0=1 /\ 2:r0=1 /\ 3:r0=1 /\ (2:r1=0 \/ 3:r1=0))
>
> andrea@...rea:~/linux-rcu/tools/memory-model$ herd7 -conf linux-kernel.cfg trol0.litmus
> Test trol0 Allowed
> States 25
> 1:r0=0; 2:r0=0; 2:r1=0; 3:r0=0; 3:r1=0;
> 1:r0=0; 2:r0=0; 2:r1=0; 3:r0=0; 3:r1=1;
> 1:r0=0; 2:r0=0; 2:r1=0; 3:r0=1; 3:r1=0;
> 1:r0=0; 2:r0=0; 2:r1=0; 3:r0=1; 3:r1=1;
> 1:r0=0; 2:r0=0; 2:r1=1; 3:r0=0; 3:r1=0;
> 1:r0=0; 2:r0=0; 2:r1=1; 3:r0=0; 3:r1=1;
> 1:r0=0; 2:r0=0; 2:r1=1; 3:r0=1; 3:r1=0;
> 1:r0=0; 2:r0=0; 2:r1=1; 3:r0=1; 3:r1=1;
> 1:r0=0; 2:r0=1; 2:r1=0; 3:r0=0; 3:r1=0;
> 1:r0=0; 2:r0=1; 2:r1=0; 3:r0=0; 3:r1=1;
> 1:r0=0; 2:r0=1; 2:r1=0; 3:r0=1; 3:r1=1;
> 1:r0=0; 2:r0=1; 2:r1=1; 3:r0=0; 3:r1=0;
> 1:r0=0; 2:r0=1; 2:r1=1; 3:r0=0; 3:r1=1;
> 1:r0=0; 2:r0=1; 2:r1=1; 3:r0=1; 3:r1=1;
> 1:r0=1; 2:r0=0; 2:r1=0; 3:r0=0; 3:r1=0;
> 1:r0=1; 2:r0=0; 2:r1=0; 3:r0=0; 3:r1=1;
> 1:r0=1; 2:r0=0; 2:r1=0; 3:r0=1; 3:r1=0;
> 1:r0=1; 2:r0=0; 2:r1=0; 3:r0=1; 3:r1=1;
> 1:r0=1; 2:r0=0; 2:r1=1; 3:r0=0; 3:r1=0;
> 1:r0=1; 2:r0=0; 2:r1=1; 3:r0=0; 3:r1=1;
> 1:r0=1; 2:r0=0; 2:r1=1; 3:r0=1; 3:r1=0;
> 1:r0=1; 2:r0=0; 2:r1=1; 3:r0=1; 3:r1=1;
> 1:r0=1; 2:r0=1; 2:r1=1; 3:r0=0; 3:r1=0;
> 1:r0=1; 2:r0=1; 2:r1=1; 3:r0=0; 3:r1=1;
> 1:r0=1; 2:r0=1; 2:r1=1; 3:r0=1; 3:r1=1;
> No
> Witnesses
> Positive: 0 Negative: 25
> Condition exists (1:r0=1 /\ 2:r0=1 /\ 3:r0=1 /\ (2:r1=0 \/ 3:r1=0))
> Observation trol0 Never 0 25
> Time trol0 0.03
> Hash=21369772c98e442dd382bd84b43067ee
>
> Please see "tools/memory-model/README" or "tools/memory-model/Documentation/"
> for further information about these tools/model.
>
> Best,
>   Andrea
>

This work is amazingly great, Andrea.
I'd like to study on it.

>
>>
>> at
>> $1.10 rule 18, on page 14
>> http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4296.pdf
>>
>> As for real hardware, Luc provided detailed test and explanation on
>> ARM and POWER in 5.1 Cumulative Barriers for WRC  on page 19
>> in this paper:
>>
>> A Tutorial Introduction to the ARM and POWER Relaxed Memory Models
>> https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
>>
>> So, I think we may remove RCsc from smp_mb__after_spinlock which is
>> really confusing.
>>
>> Best Regards,
>> Trol
>>
>> >
>> >> And for stopped tasks,
>> >>
>> >>  CPU0         CPU1            CPU2
>> >>
>> >> <ACCESS before schedule out A>
>> >>
>> >> lock(rq0)
>> >> schedule out A
>> >> remove A from rq0
>> >> store-release(A->on_cpu)
>> >> unock(rq0)
>> >>
>> >>               load_acquire(A->on_cpu)
>> >>               set_task_cpu(A, 2)
>> >>
>> >>               lock(rq2)
>> >>               add A into rq2
>> >>               unlock(rq2)
>> >>
>> >>                                         lock(rq2)
>> >>                                         schedule in A
>> >>                                         unlock(rq2)
>> >>
>> >>                                         <ACCESS after schedule in A>
>> >>
>> >> <ACCESS before schedule out A> happens-before
>> >> store-release(A->on_cpu)  happens-before
>> >> load_acquire(A->on_cpu)  happens-before
>> >> unlock(rq2) happens-before
>> >> lock(rq2) happens-before
>> >> <ACCESS after schedule in A>
>> >>
>> >> So, I think the only requirement to smp_mb__after_spinlock is
>> >> to guarantee a STORE before the spin_lock() is ordered
>> >> against a LOAD after it. So we could remove the RCsc requirement
>> >> to allow more efficient implementation.
>> >>
>> >> Did I miss something or this RCsc requirement does not really matter?

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ