[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <alpine.DEB.2.21.1804241526320.238665@chino.kir.corp.google.com>
Date: Tue, 24 Apr 2018 15:34:03 -0700 (PDT)
From: David Rientjes <rientjes@...gle.com>
To: Andrew Morton <akpm@...ux-foundation.org>,
Tetsuo Handa <penguin-kernel@...ove.sakura.ne.jp>,
Linus Torvalds <torvalds@...ux-foundation.org>
cc: mhocko@...nel.org, Andrea Arcangeli <aarcange@...hat.com>,
guro@...com, linux-kernel@...r.kernel.org, linux-mm@...ck.org
Subject: [patch v3 for-4.17] mm, oom: fix concurrent munlock and oom reaper
unmap
Since exit_mmap() is done without the protection of mm->mmap_sem, it is
possible for the oom reaper to concurrently operate on an mm until
MMF_OOM_SKIP is set.
This allows munlock_vma_pages_all() to concurrently run while the oom
reaper is operating on a vma. Since munlock_vma_pages_range() depends on
clearing VM_LOCKED from vm_flags before actually doing the munlock to
determine if any other vmas are locking the same memory, the check for
VM_LOCKED in the oom reaper is racy.
This is especially noticeable on architectures such as powerpc where
clearing a huge pmd requires serialize_against_pte_lookup(). If the pmd
is zapped by the oom reaper during follow_page_mask() after the check for
pmd_none() is bypassed, this ends up deferencing a NULL ptl or a kernel
oops.
Fix this by manually freeing all possible memory from the mm before doing
the munlock and then setting MMF_OOM_SKIP. The oom reaper can not run on
the mm anymore so the munlock is safe to do in exit_mmap(). It also
matches the logic that the oom reaper currently uses for determining when
to set MMF_OOM_SKIP itself, so there's no new risk of excessive oom
killing.
This issue fixes CVE-2018-1000200.
Fixes: 212925802454 ("mm: oom: let oom_reap_task and exit_mmap run concurrently")
Cc: stable@...r.kernel.org [4.14+]
Suggested-by: Tetsuo Handa <penguin-kernel@...ove.SAKURA.ne.jp>
Signed-off-by: David Rientjes <rientjes@...gle.com>
---
include/linux/oom.h | 2 ++
mm/mmap.c | 44 ++++++++++++++----------
mm/oom_kill.c | 81 ++++++++++++++++++++++++---------------------
3 files changed, 71 insertions(+), 56 deletions(-)
diff --git a/include/linux/oom.h b/include/linux/oom.h
--- a/include/linux/oom.h
+++ b/include/linux/oom.h
@@ -95,6 +95,8 @@ static inline int check_stable_address_space(struct mm_struct *mm)
return 0;
}
+void __oom_reap_task_mm(struct mm_struct *mm);
+
extern unsigned long oom_badness(struct task_struct *p,
struct mem_cgroup *memcg, const nodemask_t *nodemask,
unsigned long totalpages);
diff --git a/mm/mmap.c b/mm/mmap.c
--- a/mm/mmap.c
+++ b/mm/mmap.c
@@ -3015,6 +3015,32 @@ void exit_mmap(struct mm_struct *mm)
/* mm's last user has gone, and its about to be pulled down */
mmu_notifier_release(mm);
+ if (unlikely(mm_is_oom_victim(mm))) {
+ /*
+ * Manually reap the mm to free as much memory as possible.
+ * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
+ * this mm from further consideration. Taking mm->mmap_sem for
+ * write after setting MMF_OOM_SKIP will guarantee that the oom
+ * reaper will not run on this mm again after mmap_sem is
+ * dropped.
+ *
+ * Nothing can be holding mm->mmap_sem here and the above call
+ * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
+ * __oom_reap_task_mm() will not block.
+ *
+ * This needs to be done before calling munlock_vma_pages_all(),
+ * which clears VM_LOCKED, otherwise the oom reaper cannot
+ * reliably test it.
+ */
+ mutex_lock(&oom_lock);
+ __oom_reap_task_mm(mm);
+ mutex_unlock(&oom_lock);
+
+ set_bit(MMF_OOM_SKIP, &mm->flags);
+ down_write(&mm->mmap_sem);
+ up_write(&mm->mmap_sem);
+ }
+
if (mm->locked_vm) {
vma = mm->mmap;
while (vma) {
@@ -3036,24 +3062,6 @@ void exit_mmap(struct mm_struct *mm)
/* update_hiwater_rss(mm) here? but nobody should be looking */
/* Use -1 here to ensure all VMAs in the mm are unmapped */
unmap_vmas(&tlb, vma, 0, -1);
-
- if (unlikely(mm_is_oom_victim(mm))) {
- /*
- * Wait for oom_reap_task() to stop working on this
- * mm. Because MMF_OOM_SKIP is already set before
- * calling down_read(), oom_reap_task() will not run
- * on this "mm" post up_write().
- *
- * mm_is_oom_victim() cannot be set from under us
- * either because victim->mm is already set to NULL
- * under task_lock before calling mmput and oom_mm is
- * set not NULL by the OOM killer only if victim->mm
- * is found not NULL while holding the task_lock.
- */
- set_bit(MMF_OOM_SKIP, &mm->flags);
- down_write(&mm->mmap_sem);
- up_write(&mm->mmap_sem);
- }
free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
tlb_finish_mmu(&tlb, 0, -1);
diff --git a/mm/oom_kill.c b/mm/oom_kill.c
--- a/mm/oom_kill.c
+++ b/mm/oom_kill.c
@@ -469,7 +469,6 @@ bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
return false;
}
-
#ifdef CONFIG_MMU
/*
* OOM Reaper kernel thread which tries to reap the memory used by the OOM
@@ -480,16 +479,54 @@ static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
static struct task_struct *oom_reaper_list;
static DEFINE_SPINLOCK(oom_reaper_lock);
-static bool __oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
+void __oom_reap_task_mm(struct mm_struct *mm)
{
- struct mmu_gather tlb;
struct vm_area_struct *vma;
+
+ /*
+ * Tell all users of get_user/copy_from_user etc... that the content
+ * is no longer stable. No barriers really needed because unmapping
+ * should imply barriers already and the reader would hit a page fault
+ * if it stumbled over a reaped memory.
+ */
+ set_bit(MMF_UNSTABLE, &mm->flags);
+
+ for (vma = mm->mmap ; vma; vma = vma->vm_next) {
+ if (!can_madv_dontneed_vma(vma))
+ continue;
+
+ /*
+ * Only anonymous pages have a good chance to be dropped
+ * without additional steps which we cannot afford as we
+ * are OOM already.
+ *
+ * We do not even care about fs backed pages because all
+ * which are reclaimable have already been reclaimed and
+ * we do not want to block exit_mmap by keeping mm ref
+ * count elevated without a good reason.
+ */
+ if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
+ const unsigned long start = vma->vm_start;
+ const unsigned long end = vma->vm_end;
+ struct mmu_gather tlb;
+
+ tlb_gather_mmu(&tlb, mm, start, end);
+ mmu_notifier_invalidate_range_start(mm, start, end);
+ unmap_page_range(&tlb, vma, start, end, NULL);
+ mmu_notifier_invalidate_range_end(mm, start, end);
+ tlb_finish_mmu(&tlb, start, end);
+ }
+ }
+}
+
+static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
+{
bool ret = true;
/*
* We have to make sure to not race with the victim exit path
* and cause premature new oom victim selection:
- * __oom_reap_task_mm exit_mm
+ * oom_reap_task_mm exit_mm
* mmget_not_zero
* mmput
* atomic_dec_and_test
@@ -534,39 +571,8 @@ static bool __oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
trace_start_task_reaping(tsk->pid);
- /*
- * Tell all users of get_user/copy_from_user etc... that the content
- * is no longer stable. No barriers really needed because unmapping
- * should imply barriers already and the reader would hit a page fault
- * if it stumbled over a reaped memory.
- */
- set_bit(MMF_UNSTABLE, &mm->flags);
-
- for (vma = mm->mmap ; vma; vma = vma->vm_next) {
- if (!can_madv_dontneed_vma(vma))
- continue;
+ __oom_reap_task_mm(mm);
- /*
- * Only anonymous pages have a good chance to be dropped
- * without additional steps which we cannot afford as we
- * are OOM already.
- *
- * We do not even care about fs backed pages because all
- * which are reclaimable have already been reclaimed and
- * we do not want to block exit_mmap by keeping mm ref
- * count elevated without a good reason.
- */
- if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
- const unsigned long start = vma->vm_start;
- const unsigned long end = vma->vm_end;
-
- tlb_gather_mmu(&tlb, mm, start, end);
- mmu_notifier_invalidate_range_start(mm, start, end);
- unmap_page_range(&tlb, vma, start, end, NULL);
- mmu_notifier_invalidate_range_end(mm, start, end);
- tlb_finish_mmu(&tlb, start, end);
- }
- }
pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
task_pid_nr(tsk), tsk->comm,
K(get_mm_counter(mm, MM_ANONPAGES)),
@@ -587,14 +593,13 @@ static void oom_reap_task(struct task_struct *tsk)
struct mm_struct *mm = tsk->signal->oom_mm;
/* Retry the down_read_trylock(mmap_sem) a few times */
- while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task_mm(tsk, mm))
+ while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
schedule_timeout_idle(HZ/10);
if (attempts <= MAX_OOM_REAP_RETRIES ||
test_bit(MMF_OOM_SKIP, &mm->flags))
goto done;
-
pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
task_pid_nr(tsk), tsk->comm);
debug_show_all_locks();
Powered by blists - more mailing lists