[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <0ebef205-a6c8-0da2-86b4-6b1c982a1fdf@linaro.org>
Date: Thu, 28 Jun 2018 18:24:12 +0200
From: Daniel Lezcano <daniel.lezcano@...aro.org>
To: Alexandre Belloni <alexandre.belloni@...tlin.com>
Cc: Thomas Gleixner <tglx@...utronix.de>,
Nicolas Ferre <nicolas.ferre@...rochip.com>,
Alexander Dahl <ada@...rsis.com>,
Sebastian Andrzej Siewior <bigeasy@...utronix.de>,
linux-arm-kernel@...ts.infradead.org, linux-kernel@...r.kernel.org
Subject: Re: [PATCH v5 2/6] clocksource/drivers: Add a new driver for the
Atmel ARM TC blocks
On 19/06/2018 23:19, Alexandre Belloni wrote:
> Add a driver for the Atmel Timer Counter Blocks. This driver provides a
> clocksource and two clockevent devices.
>
> One of the clockevent device is linked to the clocksource counter and so it
> will run at the same frequency. This will be used when there is only on TCB
> channel available for timers.
>
> The other clockevent device runs on a separate TCB channel when available.
Can you split this patch in two. clockevent2 and clocksource/clockevent ?
> This driver uses regmap and syscon to be able to probe early in the boot
> and avoid having to switch on the TCB clocksource later. Using regmap also
> means that unused TCB channels may be used by other drivers (PWM for
> example). read/writel are still used to access channel specific registers
> to avoid the performance impact of regmap (mainly locking).
>
> Tested-by: Alexander Dahl <ada@...rsis.com>
> Tested-by: Andras Szemzo <szemzo.andras@...il.com>
> Signed-off-by: Alexandre Belloni <alexandre.belloni@...tlin.com>
> ---
> drivers/clocksource/Kconfig | 8 +
> drivers/clocksource/Makefile | 3 +-
> drivers/clocksource/timer-atmel-tcb.c | 630 ++++++++++++++++++++++++++
> 3 files changed, 640 insertions(+), 1 deletion(-)
> create mode 100644 drivers/clocksource/timer-atmel-tcb.c
>
> diff --git a/drivers/clocksource/Kconfig b/drivers/clocksource/Kconfig
> index dec0dd88ec15..0b1b0de2abcc 100644
> --- a/drivers/clocksource/Kconfig
> +++ b/drivers/clocksource/Kconfig
> @@ -403,6 +403,14 @@ config ATMEL_ST
> help
> Support for the Atmel ST timer.
>
> +config ATMEL_ARM_TCB_CLKSRC
> + bool "Microchip ARM TC Block" if COMPILE_TEST
> + select REGMAP_MMIO
> + depends on GENERIC_CLOCKEVENTS
> + help
> + This enables build of clocksource and clockevent driver for
> + the integrated Timer Counter Blocks in Microchip ARM SoCs.
> +
> config CLKSRC_EXYNOS_MCT
> bool "Exynos multi core timer driver" if COMPILE_TEST
> depends on ARM || ARM64
> diff --git a/drivers/clocksource/Makefile b/drivers/clocksource/Makefile
> index 00caf37e52f9..6991348aa24a 100644
> --- a/drivers/clocksource/Makefile
> +++ b/drivers/clocksource/Makefile
> @@ -3,7 +3,8 @@ obj-$(CONFIG_TIMER_OF) += timer-of.o
> obj-$(CONFIG_TIMER_PROBE) += timer-probe.o
> obj-$(CONFIG_ATMEL_PIT) += timer-atmel-pit.o
> obj-$(CONFIG_ATMEL_ST) += timer-atmel-st.o
> -obj-$(CONFIG_ATMEL_TCB_CLKSRC) += tcb_clksrc.o
> +obj-$(CONFIG_ATMEL_TCB_CLKSRC) += tcb_clksrc.o
> +obj-$(CONFIG_ATMEL_ARM_TCB_CLKSRC) += timer-atmel-tcb.o
> obj-$(CONFIG_X86_PM_TIMER) += acpi_pm.o
> obj-$(CONFIG_SCx200HR_TIMER) += scx200_hrt.o
> obj-$(CONFIG_CS5535_CLOCK_EVENT_SRC) += cs5535-clockevt.o
> diff --git a/drivers/clocksource/timer-atmel-tcb.c b/drivers/clocksource/timer-atmel-tcb.c
> new file mode 100644
> index 000000000000..73e6b2783dda
> --- /dev/null
> +++ b/drivers/clocksource/timer-atmel-tcb.c
> @@ -0,0 +1,630 @@
> +// SPDX-License-Identifier: GPL-2.0
> +#include <linux/clk.h>
> +#include <linux/clockchips.h>
> +#include <linux/clocksource.h>
> +#include <linux/interrupt.h>
> +#include <linux/kernel.h>
> +#include <linux/mfd/syscon.h>
> +#include <linux/of_address.h>
> +#include <linux/of_irq.h>
> +#include <linux/regmap.h>
> +#include <linux/sched_clock.h>
> +#include <soc/at91/atmel_tcb.h>
> +
> +static struct atmel_tcb_clksrc {
> + struct clocksource clksrc;
> + struct clock_event_device clkevt;
> + struct regmap *regmap;
> + void __iomem *base;
> + struct clk *clk[2];
> + char name[20];
> + int channels[2];
> + int bits;
> + int irq;
> + struct {
> + u32 cmr;
> + u32 imr;
> + u32 rc;
> + bool clken;
> + } cache[2];
> + u32 bmr_cache;
> + bool registered;
> +} tc = {
> + .clksrc = {
> + .rating = 200,
> + .mask = CLOCKSOURCE_MASK(32),
> + .flags = CLOCK_SOURCE_IS_CONTINUOUS,
> + },
> + .clkevt = {
> + .features = CLOCK_EVT_FEAT_ONESHOT,
> + /* Should be lower than at91rm9200's system timer */
> + .rating = 125,
> + },
> +};
> +
> +static struct tc_clkevt_device {
> + struct clock_event_device clkevt;
> + struct regmap *regmap;
> + void __iomem *base;
> + struct clk *slow_clk;
> + struct clk *clk;
> + char name[20];
> + int channel;
> + int irq;
> + struct {
> + u32 cmr;
> + u32 imr;
> + u32 rc;
> + bool clken;
> + } cache;
> + bool registered;
> + bool clk_enabled;
> +} tce = {
> + .clkevt = {
> + .features = CLOCK_EVT_FEAT_PERIODIC |
> + CLOCK_EVT_FEAT_ONESHOT,
> + /*
> + * Should be lower than at91rm9200's system timer
> + * but higher than tc.clkevt.rating
> + */
> + .rating = 140,
> + },
> +};
> +
> +/*
> + * Clockevent device using its own channel
> + */
> +
> +static void tc_clkevt2_clk_disable(struct clock_event_device *d)
> +{
> + clk_disable(tce.clk);
> + tce.clk_enabled = false;
> +}
> +
> +static void tc_clkevt2_clk_enable(struct clock_event_device *d)
> +{
> + if (tce.clk_enabled)
> + return;
Why this test ?
> + clk_enable(tce.clk);
> + tce.clk_enabled = true;
> +}
>
> +static int tc_clkevt2_stop(struct clock_event_device *d)
> +{
> + writel(0xff, tce.base + ATMEL_TC_IDR(tce.channel));
> + writel(ATMEL_TC_CCR_CLKDIS, tce.base + ATMEL_TC_CCR(tce.channel));
> +
> + return 0;
> +}
> +
> +static int tc_clkevt2_shutdown(struct clock_event_device *d)
> +{
> + tc_clkevt2_stop(d);
> + if (!clockevent_state_detached(d))
Why this test ?
> + tc_clkevt2_clk_disable(d);
> +
> + return 0;
> +}
> +
> +/* For now, we always use the 32K clock ... this optimizes for NO_HZ,
> + * because using one of the divided clocks would usually mean the
> + * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
> + *
> + * A divided clock could be good for high resolution timers, since
> + * 30.5 usec resolution can seem "low".
> + */
> +static int tc_clkevt2_set_oneshot(struct clock_event_device *d)
> +{
> + if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
> + tc_clkevt2_stop(d);
Why these tests ? :)
> + tc_clkevt2_clk_enable(d);
> +
> + /* slow clock, count up to RC, then irq and stop */
> + writel(ATMEL_TC_CMR_TCLK(4) | ATMEL_TC_CMR_CPCSTOP |
> + ATMEL_TC_CMR_WAVE | ATMEL_TC_CMR_WAVESEL_UPRC,
> + tce.base + ATMEL_TC_CMR(tce.channel));
> + writel(ATMEL_TC_CPCS, tce.base + ATMEL_TC_IER(tce.channel));
> +
> + return 0;
> +}
> +
> +static int tc_clkevt2_set_periodic(struct clock_event_device *d)
> +{
> + if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
> + tc_clkevt2_stop(d);
?
> + /* By not making the gentime core emulate periodic mode on top
> + * of oneshot, we get lower overhead and improved accuracy.
> + */
> + tc_clkevt2_clk_enable(d);
> +
> + /* slow clock, count up to RC, then irq and restart */
> + writel(ATMEL_TC_CMR_TCLK(4) | ATMEL_TC_CMR_WAVE |
> + ATMEL_TC_CMR_WAVESEL_UPRC,
> + tce.base + ATMEL_TC_CMR(tce.channel));
> + writel((32768 + HZ / 2) / HZ, tce.base + ATMEL_TC_RC(tce.channel));
Do this computation at init time.
> + /* Enable clock and interrupts on RC compare */
> + writel(ATMEL_TC_CPCS, tce.base + ATMEL_TC_IER(tce.channel));
> + writel(ATMEL_TC_CCR_CLKEN | ATMEL_TC_CCR_SWTRG,
> + tce.base + ATMEL_TC_CCR(tce.channel));
> +
> + return 0;
> +}
> +
> +static int tc_clkevt2_next_event(unsigned long delta,
> + struct clock_event_device *d)
> +{
> + writel(delta, tce.base + ATMEL_TC_RC(tce.channel));
> + writel(ATMEL_TC_CCR_CLKEN | ATMEL_TC_CCR_SWTRG,
> + tce.base + ATMEL_TC_CCR(tce.channel));
> +
> + return 0;
> +}
> +
> +static irqreturn_t tc_clkevt2_irq(int irq, void *handle)
> +{
> + unsigned int sr;
> +
> + sr = readl(tce.base + ATMEL_TC_SR(tce.channel));
> + if (sr & ATMEL_TC_CPCS) {
> + tce.clkevt.event_handler(&tce.clkevt);
> + return IRQ_HANDLED;
Isn't an clear irq missing ?
> + }
> +
> + return IRQ_NONE;
> +}
> +
> +static void tc_clkevt2_suspend(struct clock_event_device *d)
> +{
> + tce.cache.cmr = readl(tce.base + ATMEL_TC_CMR(tce.channel));
> + tce.cache.imr = readl(tce.base + ATMEL_TC_IMR(tce.channel));
> + tce.cache.rc = readl(tce.base + ATMEL_TC_RC(tce.channel));
> + tce.cache.clken = !!(readl(tce.base + ATMEL_TC_SR(tce.channel)) &
> + ATMEL_TC_CLKSTA);
Who is in charge of powering down the timer ?
> +}
> +
> +static void tc_clkevt2_resume(struct clock_event_device *d)
> +{
> + /* Restore registers for the channel, RA and RB are not used */
> + writel(tce.cache.cmr, tc.base + ATMEL_TC_CMR(tce.channel));
> + writel(tce.cache.rc, tc.base + ATMEL_TC_RC(tce.channel));
> + writel(0, tc.base + ATMEL_TC_RA(tce.channel));
> + writel(0, tc.base + ATMEL_TC_RB(tce.channel));
> + /* Disable all the interrupts */
> + writel(0xff, tc.base + ATMEL_TC_IDR(tce.channel));
> + /* Reenable interrupts that were enabled before suspending */
> + writel(tce.cache.imr, tc.base + ATMEL_TC_IER(tce.channel));
> +
> + /* Start the clock if it was used */
> + if (tce.cache.clken)
> + writel(ATMEL_TC_CCR_CLKEN | ATMEL_TC_CCR_SWTRG,
> + tc.base + ATMEL_TC_CCR(tce.channel));
> +}
> +
> +static int __init tc_clkevt_register(struct device_node *node,
> + struct regmap *regmap, void __iomem *base,
> + int channel, int irq, int bits)
> +{
> + int ret;
> +
> + tce.regmap = regmap;
> + tce.base = base;
> + tce.channel = channel;
> + tce.irq = irq;
> +
> + tce.slow_clk = of_clk_get_by_name(node->parent, "slow_clk");
> + if (IS_ERR(tce.slow_clk))
> + return PTR_ERR(tce.slow_clk);
> +
> + ret = clk_prepare_enable(tce.slow_clk);
> + if (ret)
> + return ret;
It is not mandatory to have the slow_clk variable in the structure, you
can declare it locally and for the rest use the timer-of API. That will
save you a lot of line of code.
> +
> + tce.clk = tcb_clk_get(node, tce.channel);
> + if (IS_ERR(tce.clk)) {
> + ret = PTR_ERR(tce.clk);
> + goto err_slow;
> + }
> +
> + snprintf(tce.name, sizeof(tce.name), "%s:%d",
> + kbasename(node->parent->full_name), channel);
> + tce.clkevt.cpumask = cpumask_of(0);
> + tce.clkevt.name = tce.name;
> + tce.clkevt.set_next_event = tc_clkevt2_next_event,
> + tce.clkevt.set_state_shutdown = tc_clkevt2_shutdown,
> + tce.clkevt.set_state_periodic = tc_clkevt2_set_periodic,
> + tce.clkevt.set_state_oneshot = tc_clkevt2_set_oneshot,
> + tce.clkevt.suspend = tc_clkevt2_suspend,
> + tce.clkevt.resume = tc_clkevt2_resume,
> +
> + /* try to enable clk to avoid future errors in mode change */
> + ret = clk_prepare_enable(tce.clk);
> + if (ret)
> + goto err_slow;
> + clk_disable(tce.clk);
> +
> + clockevents_config_and_register(&tce.clkevt, 32768, 1, BIT(bits) - 1);
s/BIT(bits) - 1/CLOCKSOURCE_MASK/
> + ret = request_irq(tce.irq, tc_clkevt2_irq, IRQF_TIMER | IRQF_SHARED,
> + tce.clkevt.name, &tce);
> + if (ret)
> + goto err_clk;
> +
> + tce.registered = true;
> +
> + return 0;
> +
> +err_clk:
> + clk_unprepare(tce.clk);
> +err_slow:
> + clk_disable_unprepare(tce.slow_clk);
> +
> + return ret;
> +}
I let you send the split version before continuing the review.
-- Daniel
> +/*
> + * Clocksource and clockevent using the same channel(s)
> + */
> +static u64 tc_get_cycles(struct clocksource *cs)
> +{
> + u32 lower, upper;
> +
> + do {
> + upper = readl_relaxed(tc.base + ATMEL_TC_CV(tc.channels[1]));
> + lower = readl_relaxed(tc.base + ATMEL_TC_CV(tc.channels[0]));
> + } while (upper != readl_relaxed(tc.base + ATMEL_TC_CV(tc.channels[1])));
> +
> + return (upper << 16) | lower;
> +}
> +
> +static u64 tc_get_cycles32(struct clocksource *cs)
> +{
> + return readl_relaxed(tc.base + ATMEL_TC_CV(tc.channels[0]));
> +}
> +
> +static u64 notrace tc_sched_clock_read(void)
> +{
> + return tc_get_cycles(&tc.clksrc);
> +}
> +
> +static u64 notrace tc_sched_clock_read32(void)
> +{
> + return tc_get_cycles32(&tc.clksrc);
> +}
> +
> +static int tcb_clkevt_next_event(unsigned long delta,
> + struct clock_event_device *d)
> +{
> + u32 old, next, cur;
> +
> + old = readl(tc.base + ATMEL_TC_CV(tc.channels[0]));
> + next = old + delta;
> + writel(next, tc.base + ATMEL_TC_RC(tc.channels[0]));
> + cur = readl(tc.base + ATMEL_TC_CV(tc.channels[0]));
> +
> + /* check whether the delta elapsed while setting the register */
> + if ((next < old && cur < old && cur > next) ||
> + (next > old && (cur < old || cur > next))) {
> + /*
> + * Clear the CPCS bit in the status register to avoid
> + * generating a spurious interrupt next time a valid
> + * timer event is configured.
> + */
> + old = readl(tc.base + ATMEL_TC_SR(tc.channels[0]));
> + return -ETIME;
> + }
> +
> + writel(ATMEL_TC_CPCS, tc.base + ATMEL_TC_IER(tc.channels[0]));
> +
> + return 0;
> +}
> +
> +static irqreturn_t tc_clkevt_irq(int irq, void *handle)
> +{
> + unsigned int sr;
> +
> + sr = readl(tc.base + ATMEL_TC_SR(tc.channels[0]));
> + if (sr & ATMEL_TC_CPCS) {
> + tc.clkevt.event_handler(&tc.clkevt);
> + return IRQ_HANDLED;
> + }
> +
> + return IRQ_NONE;
> +}
> +
> +static int tcb_clkevt_oneshot(struct clock_event_device *dev)
> +{
> + if (clockevent_state_oneshot(dev))
> + return 0;
> +
> + /*
> + * Because both clockevent devices may share the same IRQ, we don't want
> + * the less likely one to stay requested
> + */
> + return request_irq(tc.irq, tc_clkevt_irq, IRQF_TIMER | IRQF_SHARED,
> + tc.name, &tc);
> +}
> +
> +static int tcb_clkevt_shutdown(struct clock_event_device *dev)
> +{
> + writel(0xff, tc.base + ATMEL_TC_IDR(tc.channels[0]));
> + if (tc.bits == 16)
> + writel(0xff, tc.base + ATMEL_TC_IDR(tc.channels[1]));
> +
> + if (!clockevent_state_detached(dev))
> + free_irq(tc.irq, &tc);
> +
> + return 0;
> +}
> +
> +static void __init tcb_setup_dual_chan(struct atmel_tcb_clksrc *tc,
> + int mck_divisor_idx)
> +{
> + /* first channel: waveform mode, input mclk/8, clock TIOA on overflow */
> + writel(mck_divisor_idx /* likely divide-by-8 */
> + | ATMEL_TC_CMR_WAVE
> + | ATMEL_TC_CMR_WAVESEL_UP /* free-run */
> + | ATMEL_TC_CMR_ACPA(SET) /* TIOA rises at 0 */
> + | ATMEL_TC_CMR_ACPC(CLEAR), /* (duty cycle 50%) */
> + tc->base + ATMEL_TC_CMR(tc->channels[0]));
> + writel(0x0000, tc->base + ATMEL_TC_RA(tc->channels[0]));
> + writel(0x8000, tc->base + ATMEL_TC_RC(tc->channels[0]));
> + writel(0xff, tc->base + ATMEL_TC_IDR(tc->channels[0])); /* no irqs */
> + writel(ATMEL_TC_CCR_CLKEN, tc->base + ATMEL_TC_CCR(tc->channels[0]));
> +
> + /* second channel: waveform mode, input TIOA */
> + writel(ATMEL_TC_CMR_XC(tc->channels[1]) /* input: TIOA */
> + | ATMEL_TC_CMR_WAVE
> + | ATMEL_TC_CMR_WAVESEL_UP, /* free-run */
> + tc->base + ATMEL_TC_CMR(tc->channels[1]));
> + writel(0xff, tc->base + ATMEL_TC_IDR(tc->channels[1])); /* no irqs */
> + writel(ATMEL_TC_CCR_CLKEN, tc->base + ATMEL_TC_CCR(tc->channels[1]));
> +
> + /* chain both channel, we assume the previous channel */
> + regmap_write(tc->regmap, ATMEL_TC_BMR,
> + ATMEL_TC_BMR_TCXC(1 + tc->channels[1], tc->channels[1]));
> + /* then reset all the timers */
> + regmap_write(tc->regmap, ATMEL_TC_BCR, ATMEL_TC_BCR_SYNC);
> +}
> +
> +static void __init tcb_setup_single_chan(struct atmel_tcb_clksrc *tc,
> + int mck_divisor_idx)
> +{
> + /* channel 0: waveform mode, input mclk/8 */
> + writel(mck_divisor_idx /* likely divide-by-8 */
> + | ATMEL_TC_CMR_WAVE
> + | ATMEL_TC_CMR_WAVESEL_UP, /* free-run */
> + tc->base + ATMEL_TC_CMR(tc->channels[0]));
> + writel(0xff, tc->base + ATMEL_TC_IDR(tc->channels[0])); /* no irqs */
> + writel(ATMEL_TC_CCR_CLKEN, tc->base + ATMEL_TC_CCR(tc->channels[0]));
> +
> + /* then reset all the timers */
> + regmap_write(tc->regmap, ATMEL_TC_BCR, ATMEL_TC_BCR_SYNC);
> +}
> +
> +static void tc_clksrc_suspend(struct clocksource *cs)
> +{
> + int i;
> +
> + for (i = 0; i < 1 + (tc.bits == 16); i++) {
> + tc.cache[i].cmr = readl(tc.base + ATMEL_TC_CMR(tc.channels[i]));
> + tc.cache[i].imr = readl(tc.base + ATMEL_TC_IMR(tc.channels[i]));
> + tc.cache[i].rc = readl(tc.base + ATMEL_TC_RC(tc.channels[i]));
> + tc.cache[i].clken = !!(readl(tc.base +
> + ATMEL_TC_SR(tc.channels[i])) &
> + ATMEL_TC_CLKSTA);
> + }
> +
> + if (tc.bits == 16)
> + regmap_read(tc.regmap, ATMEL_TC_BMR, &tc.bmr_cache);
> +}
> +
> +static void tc_clksrc_resume(struct clocksource *cs)
> +{
> + int i;
> +
> + for (i = 0; i < 1 + (tc.bits == 16); i++) {
> + /* Restore registers for the channel, RA and RB are not used */
> + writel(tc.cache[i].cmr, tc.base + ATMEL_TC_CMR(tc.channels[i]));
> + writel(tc.cache[i].rc, tc.base + ATMEL_TC_RC(tc.channels[i]));
> + writel(0, tc.base + ATMEL_TC_RA(tc.channels[i]));
> + writel(0, tc.base + ATMEL_TC_RB(tc.channels[i]));
> + /* Disable all the interrupts */
> + writel(0xff, tc.base + ATMEL_TC_IDR(tc.channels[i]));
> + /* Reenable interrupts that were enabled before suspending */
> + writel(tc.cache[i].imr, tc.base + ATMEL_TC_IER(tc.channels[i]));
> +
> + /* Start the clock if it was used */
> + if (tc.cache[i].clken)
> + writel(ATMEL_TC_CCR_CLKEN, tc.base +
> + ATMEL_TC_CCR(tc.channels[i]));
> + }
> +
> + /* in case of dual channel, chain channels */
> + if (tc.bits == 16)
> + regmap_write(tc.regmap, ATMEL_TC_BMR, tc.bmr_cache);
> + /* Finally, trigger all the channels*/
> + regmap_write(tc.regmap, ATMEL_TC_BCR, ATMEL_TC_BCR_SYNC);
> +}
> +
> +static int __init tcb_clksrc_register(struct device_node *node,
> + struct regmap *regmap, void __iomem *base,
> + int channel, int channel1, int irq,
> + int bits)
> +{
> + u32 rate, divided_rate = 0;
> + int best_divisor_idx = -1;
> + int i, err = -1;
> + u64 (*tc_sched_clock)(void);
> +
> + tc.regmap = regmap;
> + tc.base = base;
> + tc.channels[0] = channel;
> + tc.channels[1] = channel1;
> + tc.irq = irq;
> + tc.bits = bits;
> +
> + tc.clk[0] = tcb_clk_get(node, tc.channels[0]);
> + if (IS_ERR(tc.clk[0]))
> + return PTR_ERR(tc.clk[0]);
> + err = clk_prepare_enable(tc.clk[0]);
> + if (err) {
> + pr_debug("can't enable T0 clk\n");
> + goto err_clk;
> + }
> +
> + /* How fast will we be counting? Pick something over 5 MHz. */
> + rate = (u32)clk_get_rate(tc.clk[0]);
> + for (i = 0; i < 5; i++) {
> + unsigned int divisor = atmel_tc_divisors[i];
> + unsigned int tmp;
> +
> + if (!divisor)
> + continue;
> +
> + tmp = rate / divisor;
> + pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
> + if (best_divisor_idx > 0) {
> + if (tmp < 5 * 1000 * 1000)
> + continue;
> + }
> + divided_rate = tmp;
> + best_divisor_idx = i;
> + }
> +
> + if (tc.bits == 32) {
> + tc.clksrc.read = tc_get_cycles32;
> + tcb_setup_single_chan(&tc, best_divisor_idx);
> + tc_sched_clock = tc_sched_clock_read32;
> + snprintf(tc.name, sizeof(tc.name), "%s:%d",
> + kbasename(node->parent->full_name), tc.channels[0]);
> + } else {
> + tc.clk[1] = tcb_clk_get(node, tc.channels[1]);
> + if (IS_ERR(tc.clk[1]))
> + goto err_disable_t0;
> +
> + err = clk_prepare_enable(tc.clk[1]);
> + if (err) {
> + pr_debug("can't enable T1 clk\n");
> + goto err_clk1;
> + }
> + tc.clksrc.read = tc_get_cycles,
> + tcb_setup_dual_chan(&tc, best_divisor_idx);
> + tc_sched_clock = tc_sched_clock_read;
> + snprintf(tc.name, sizeof(tc.name), "%s:%d,%d",
> + kbasename(node->parent->full_name), tc.channels[0],
> + tc.channels[1]);
> + }
> +
> + pr_debug("%s at %d.%03d MHz\n", tc.name,
> + divided_rate / 1000000,
> + ((divided_rate + 500000) % 1000000) / 1000);
> +
> + tc.clksrc.name = tc.name;
> + tc.clksrc.suspend = tc_clksrc_suspend;
> + tc.clksrc.resume = tc_clksrc_resume;
> +
> + err = clocksource_register_hz(&tc.clksrc, divided_rate);
> + if (err)
> + goto err_disable_t1;
> +
> + sched_clock_register(tc_sched_clock, 32, divided_rate);
> +
> + tc.registered = true;
> +
> + /* Set up and register clockevents */
> + tc.clkevt.name = tc.name;
> + tc.clkevt.cpumask = cpumask_of(0);
> + tc.clkevt.set_next_event = tcb_clkevt_next_event;
> + tc.clkevt.set_state_oneshot = tcb_clkevt_oneshot;
> + tc.clkevt.set_state_shutdown = tcb_clkevt_shutdown;
> + clockevents_config_and_register(&tc.clkevt, divided_rate, 1,
> + BIT(tc.bits) - 1);
> +
> + return 0;
> +
> +err_disable_t1:
> + if (tc.bits == 16)
> + clk_disable_unprepare(tc.clk[1]);
> +
> +err_clk1:
> + if (tc.bits == 16)
> + clk_put(tc.clk[1]);
> +
> +err_disable_t0:
> + clk_disable_unprepare(tc.clk[0]);
> +
> +err_clk:
> + clk_put(tc.clk[0]);
> +
> + pr_err("%s: unable to register clocksource/clockevent\n",
> + tc.clksrc.name);
> +
> + return err;
> +}
> +
> +static int __init tcb_clksrc_init(struct device_node *node)
> +{
> + const struct of_device_id *match;
> + const struct atmel_tcb_info *tcb_info;
> + struct regmap *regmap;
> + void __iomem *tcb_base;
> + u32 channel;
> + int bits, irq, err, chan1 = -1;
> +
> + if (tc.registered && tce.registered)
> + return -ENODEV;
> +
> + /*
> + * The regmap has to be used to access registers that are shared
> + * between channels on the same TCB but we keep direct IO access for
> + * the counters to avoid the impact on performance
> + */
> + regmap = syscon_node_to_regmap(node->parent);
> + if (IS_ERR(regmap))
> + return PTR_ERR(regmap);
> +
> + tcb_base = of_iomap(node->parent, 0);
> + if (!tcb_base) {
> + pr_err("%s +%d %s\n", __FILE__, __LINE__, __func__);
> + return -ENXIO;
> + }
> +
> + match = of_match_node(atmel_tcb_dt_ids, node->parent);
> + tcb_info = match->data;
> + bits = tcb_info->bits;
> +
> + err = of_property_read_u32_index(node, "reg", 0, &channel);
> + if (err)
> + return err;
> +
> + irq = tcb_irq_get(node, channel);
> + if (irq < 0)
> + return irq;
> +
> + if (tc.registered)
> + return tc_clkevt_register(node, regmap, tcb_base, channel, irq,
> + bits);
> +
> + if (bits == 16) {
> + of_property_read_u32_index(node, "reg", 1, &chan1);
> + if (chan1 == -1) {
> + if (tce.registered) {
> + pr_err("%s: clocksource needs two channels\n",
> + node->parent->full_name);
> + return -EINVAL;
> + } else {
> + return tc_clkevt_register(node, regmap,
> + tcb_base, channel,
> + irq, bits);
> + }
> + }
> + }
> +
> + return tcb_clksrc_register(node, regmap, tcb_base, channel, chan1, irq,
> + bits);
> +}
> +CLOCKSOURCE_OF_DECLARE(atmel_tcb_clksrc, "atmel,tcb-timer",
> + tcb_clksrc_init);
>
--
<http://www.linaro.org/> Linaro.org │ Open source software for ARM SoCs
Follow Linaro: <http://www.facebook.com/pages/Linaro> Facebook |
<http://twitter.com/#!/linaroorg> Twitter |
<http://www.linaro.org/linaro-blog/> Blog
Powered by blists - more mailing lists