lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <yq1in4gq5jf.fsf@oracle.com>
Date:   Sat, 11 Aug 2018 11:36:20 -0400
From:   "Martin K. Petersen" <martin.petersen@...cle.com>
To:     Jeff Lien <jeff.lien@....com>
Cc:     linux-kernel@...r.kernel.org, linux-crypto@...r.kernel.org,
        linux-block@...r.kernel.org, linux-scsi@...r.kernel.org,
        herbert@...dor.apana.org.au, tim.c.chen@...ux.intel.com,
        martin.petersen@...cle.com, david.darrington@....com,
        jeff.furlong@....com
Subject: Re: [PATCH] Performance Improvement in CRC16 Calculations.


Jeff,

> This patch provides a performance improvement for the CRC16
> calculations done in read/write workloads using the T10 Type 1/2/3
> guard field.  For example, today with sequential write workloads (one
> thread/CPU of IO) we consume 100% of the CPU because of the CRC16
> computation bottleneck.  Today's block devices are considerably
> faster, but the CRC16 calculation prevents folks from utilizing the
> throughput of such devices.  To speed up this calculation and expose
> the block device throughput, we slice the old single byte for loop
> into a 16 byte for loop, with a larger CRC table to match.  The result
> has shown 5x performance improvements on various big endian and little
> endian systems running the 4.18.0 kernel version.

The reason I went with a simple slice-by-one approach was that the
larger tables had a negative impact on the CPU caches. So while
slice-by-N numbers looked better in synthetic benchmarks, actual
application performance started getting affected as the tables grew
larger.

These days we obviously use the hardware-accelerated CRC calculation so
the software table approach mostly serves as a reference
implementation. But given your big vs. little endian performance
metrics, I'm assuming you guys are focused on embedded processors
without support for CRC acceleration?

I have no problem providing a choice for bigger tables. My only concern
is that the selection heuristics need to be more than one-dimensional.
Latency and cache side effects are often more important than throughput.
At least on the initiator side.

Also, I'd like to keep the original slice-by-one implementation for
reference purposes.

-- 
Martin K. Petersen	Oracle Linux Engineering

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ