[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <CAGXu5jJ9nZYbVn5xdi7nsMJRD6ScLeWP2DWjrD8yEfwi-XXcRw@mail.gmail.com>
Date: Fri, 21 Sep 2018 12:05:03 -0700
From: Kees Cook <keescook@...omium.org>
To: Rick Edgecombe <rick.p.edgecombe@...el.com>
Cc: Thomas Gleixner <tglx@...utronix.de>,
Ingo Molnar <mingo@...hat.com>,
"H. Peter Anvin" <hpa@...or.com>, X86 ML <x86@...nel.org>,
LKML <linux-kernel@...r.kernel.org>,
Linux-MM <linux-mm@...ck.org>,
Kernel Hardening <kernel-hardening@...ts.openwall.com>,
Daniel Borkmann <daniel@...earbox.net>,
Jann Horn <jannh@...gle.com>,
Alexei Starovoitov <alexei.starovoitov@...il.com>,
Kristen Carlson Accardi <kristen@...ux.intel.com>,
Dave Hansen <dave.hansen@...el.com>,
Arjan van de Ven <arjan@...ux.intel.com>
Subject: Re: [PATCH v6 2/4] x86/modules: Increase randomization for modules
On Thu, Sep 13, 2018 at 2:31 PM, Rick Edgecombe
<rick.p.edgecombe@...el.com> wrote:
> This changes the behavior of the KASLR logic for allocating memory for the text
> sections of loadable modules. It randomizes the location of each module text
> section with about 17 bits of entropy in typical use. This is enabled on X86_64
> only. For 32 bit, the behavior is unchanged.
>
> It refactors existing code around module randomization somewhat. There are now
> three different behaviors for x86 module_alloc depending on config.
> RANDOMIZE_BASE=n, and RANDOMIZE_BASE=y ARCH=x86_64, and RANDOMIZE_BASE=y
> ARCH=i386. The refactor of the existing code is to try to clearly show what
> those behaviors are without having three separate versions or threading the
> behaviors in a bunch of little spots. The reason it is not enabled on 32 bit
> yet is because the module space is much smaller and simulations haven't been
> run to see how it performs.
>
> The new algorithm breaks the module space in two, a random area and a backup
> area. It first tries to allocate at a number of randomly located starting pages
> inside the random section without purging any lazy free vmap areas and
> triggering the associated TLB flush. If this fails, it will try again a number
> of times allowing for purges if needed. It also saves any position that could
> have succeeded if it was allowed to purge, which doubles the chances of finding
> a spot that would fit. Finally if those both fail to find a position it will
> allocate in the backup area. The backup area base will be offset in the same
> way as the current algorithm does for the base area, 1024 possible locations.
>
> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@...el.com>
I'm excited to get fine-grained module randomization. I think it's a
good first step to getting other fine-grained KASLR in other places.
Thanks for working on this!
> ---
> arch/x86/include/asm/pgtable_64_types.h | 7 ++
> arch/x86/kernel/module.c | 165 +++++++++++++++++++++++++++-----
> 2 files changed, 149 insertions(+), 23 deletions(-)
>
> diff --git a/arch/x86/include/asm/pgtable_64_types.h b/arch/x86/include/asm/pgtable_64_types.h
> index 04edd2d..5e26369 100644
> --- a/arch/x86/include/asm/pgtable_64_types.h
> +++ b/arch/x86/include/asm/pgtable_64_types.h
> @@ -143,6 +143,13 @@ extern unsigned int ptrs_per_p4d;
> #define MODULES_END _AC(0xffffffffff000000, UL)
> #define MODULES_LEN (MODULES_END - MODULES_VADDR)
>
> +/*
> + * Dedicate the first part of the module space to a randomized area when KASLR
> + * is in use. Leave the remaining part for a fallback if we are unable to
> + * allocate in the random area.
> + */
> +#define MODULES_RAND_LEN PAGE_ALIGN((MODULES_LEN/3)*2)
> +
> #define ESPFIX_PGD_ENTRY _AC(-2, UL)
> #define ESPFIX_BASE_ADDR (ESPFIX_PGD_ENTRY << P4D_SHIFT)
>
> diff --git a/arch/x86/kernel/module.c b/arch/x86/kernel/module.c
> index f58336a..d50a0a0 100644
> --- a/arch/x86/kernel/module.c
> +++ b/arch/x86/kernel/module.c
> @@ -48,34 +48,151 @@ do { \
> } while (0)
> #endif
>
> -#ifdef CONFIG_RANDOMIZE_BASE
> +#if defined(CONFIG_X86_64) && defined(CONFIG_RANDOMIZE_BASE)
> +static inline unsigned long get_modules_rand_len(void)
> +{
> + return MODULES_RAND_LEN;
> +}
> +#else
> +static inline unsigned long get_modules_rand_len(void)
> +{
> + BUILD_BUG();
> + return 0;
> +}
> +
> +inline bool kaslr_enabled(void);
> +#endif
> +
> +static inline int kaslr_randomize_each_module(void)
> +{
> + return IS_ENABLED(CONFIG_RANDOMIZE_BASE)
> + && IS_ENABLED(CONFIG_X86_64)
> + && kaslr_enabled();
> +}
> +
> +static inline int kaslr_randomize_base(void)
> +{
> + return IS_ENABLED(CONFIG_RANDOMIZE_BASE)
> + && !IS_ENABLED(CONFIG_X86_64)
> + && kaslr_enabled();
> +}
> +
> static unsigned long module_load_offset;
> +static const unsigned long NR_NO_PURGE = 5000;
> +static const unsigned long NR_TRY_PURGE = 5000;
>
> /* Mutex protects the module_load_offset. */
> static DEFINE_MUTEX(module_kaslr_mutex);
>
> static unsigned long int get_module_load_offset(void)
> {
> - if (kaslr_enabled()) {
> - mutex_lock(&module_kaslr_mutex);
> - /*
> - * Calculate the module_load_offset the first time this
> - * code is called. Once calculated it stays the same until
> - * reboot.
> - */
> - if (module_load_offset == 0)
> - module_load_offset =
> - (get_random_int() % 1024 + 1) * PAGE_SIZE;
> - mutex_unlock(&module_kaslr_mutex);
> - }
> + mutex_lock(&module_kaslr_mutex);
> + /*
> + * Calculate the module_load_offset the first time this
> + * code is called. Once calculated it stays the same until
> + * reboot.
> + */
> + if (module_load_offset == 0)
> + module_load_offset = (get_random_int() % 1024 + 1) * PAGE_SIZE;
> + mutex_unlock(&module_kaslr_mutex);
> +
> return module_load_offset;
> }
> -#else
> -static unsigned long int get_module_load_offset(void)
> +
> +static unsigned long get_module_vmalloc_start(void)
> {
> - return 0;
> + if (kaslr_randomize_each_module())
> + return MODULES_VADDR + get_modules_rand_len()
> + + get_module_load_offset();
> + else if (kaslr_randomize_base())
> + return MODULES_VADDR + get_module_load_offset();
> +
> + return MODULES_VADDR;
> +}
I would find this much more readable as:
static unsigned long get_module_vmalloc_start(void)
{
unsigned long addr = MODULES_VADDR;
if (kaslr_randomize_base())
addr += get_module_load_offset();
if (kaslr_randomize_each_module())
addr += get_modules_rand_len();
return addr;
}
> +
> +static void *try_module_alloc(unsigned long addr, unsigned long size,
> + int try_purge)
> +{
> + const unsigned long vm_flags = 0;
> +
> + return __vmalloc_node_try_addr(addr, size, GFP_KERNEL, PAGE_KERNEL_EXEC,
> + vm_flags, NUMA_NO_NODE, try_purge,
> + __builtin_return_address(0));
> +}
> +
> +/*
> + * Find a random address to try that won't obviously not fit. Random areas are
> + * allowed to overflow into the backup area
> + */
> +static unsigned long get_rand_module_addr(unsigned long size)
> +{
> + unsigned long nr_max_pos = (MODULES_LEN - size) / MODULE_ALIGN + 1;
> + unsigned long nr_rnd_pos = get_modules_rand_len() / MODULE_ALIGN;
> + unsigned long nr_pos = min(nr_max_pos, nr_rnd_pos);
> +
> + unsigned long module_position_nr = get_random_long() % nr_pos;
> + unsigned long offset = module_position_nr * MODULE_ALIGN;
> +
> + return MODULES_VADDR + offset;
> +}
> +
> +/*
> + * Try to allocate in the random area. First 5000 times without purging, then
> + * 5000 times with purging. If these fail, return NULL.
> + */
> +static void *try_module_randomize_each(unsigned long size)
> +{
> + void *p = NULL;
> + unsigned int i;
> + unsigned long last_lazy_free_blocked = 0;
> +
> + /* This will have a guard page */
> + unsigned long va_size = PAGE_ALIGN(size) + PAGE_SIZE;
> +
> + if (!kaslr_randomize_each_module())
> + return NULL;
> +
> + /* Make sure there is at least one address that might fit. */
> + if (va_size < PAGE_ALIGN(size) || va_size > MODULES_LEN)
> + return NULL;
> +
> + /* Try to find a spot that doesn't need a lazy purge */
> + for (i = 0; i < NR_NO_PURGE; i++) {
> + unsigned long addr = get_rand_module_addr(va_size);
> +
> + /* First try to avoid having to purge */
> + p = try_module_alloc(addr, size, 0);
> +
> + /*
> + * Save the last value that was blocked by a
> + * lazy purge area.
> + */
> + if (IS_ERR(p) && PTR_ERR(p) == -EUCLEAN)
> + last_lazy_free_blocked = addr;
> + else if (!IS_ERR(p))
> + return p;
> + }
> +
> + /* Try the most recent spot that could be used after a lazy purge */
> + if (last_lazy_free_blocked) {
> + p = try_module_alloc(last_lazy_free_blocked, size, 1);
> +
> + if (!IS_ERR(p))
> + return p;
> + }
> +
> + /* Look for more spots and allow lazy purges */
> + for (i = 0; i < NR_TRY_PURGE; i++) {
> + unsigned long addr = get_rand_module_addr(va_size);
> +
> + /* Give up and allow for purges */
> + p = try_module_alloc(addr, size, 1);
> +
> + if (!IS_ERR(p))
> + return p;
> + }
> + return NULL;
> }
> -#endif
>
> void *module_alloc(unsigned long size)
> {
> @@ -84,16 +201,18 @@ void *module_alloc(unsigned long size)
> if (PAGE_ALIGN(size) > MODULES_LEN)
> return NULL;
>
> - p = __vmalloc_node_range(size, MODULE_ALIGN,
> - MODULES_VADDR + get_module_load_offset(),
> - MODULES_END, GFP_KERNEL,
> - PAGE_KERNEL_EXEC, 0, NUMA_NO_NODE,
> - __builtin_return_address(0));
> + p = try_module_randomize_each(size);
> +
> + if (!p)
> + p = __vmalloc_node_range(size, MODULE_ALIGN,
> + get_module_vmalloc_start(), MODULES_END,
> + GFP_KERNEL, PAGE_KERNEL_EXEC, 0,
> + NUMA_NO_NODE, __builtin_return_address(0));
Instead of having two open-coded __vmalloc_node_range() calls left in
this after the change, can this be done in terms of a call to
try_module_alloc() instead? I see they're slightly different, but it
might be nice for making the two paths share more code.
> +
> if (p && (kasan_module_alloc(p, size) < 0)) {
> vfree(p);
> return NULL;
> }
> -
> return p;
> }
>
> --
> 2.7.4
>
Looks promising!
-Kees
--
Kees Cook
Pixel Security
Powered by blists - more mailing lists