[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <20181019173538.590-2-urezki@gmail.com>
Date: Fri, 19 Oct 2018 19:35:37 +0200
From: "Uladzislau Rezki (Sony)" <urezki@...il.com>
To: Matthew Wilcox <willy@...radead.org>,
Andrew Morton <akpm@...ux-foundation.org>, linux-mm@...ck.org
Cc: LKML <linux-kernel@...r.kernel.org>,
Michal Hocko <mhocko@...e.com>,
Thomas Garnier <thgarnie@...gle.com>,
Oleksiy Avramchenko <oleksiy.avramchenko@...ymobile.com>,
Steven Rostedt <rostedt@...dmis.org>,
Joel Fernandes <joelaf@...gle.com>,
Thomas Gleixner <tglx@...utronix.de>,
Ingo Molnar <mingo@...e.hu>, Tejun Heo <tj@...nel.org>,
"Uladzislau Rezki (Sony)" <urezki@...il.com>
Subject: [RFC PATCH 1/2] mm/vmalloc: keep track of free blocks for allocation
Currently an allocation of the new VA area is done over
busy list iteration until a suitable hole is found between
two busy areas. Therefore each new allocation causes the
list being grown. Due to long list and different permissive
parameters an allocation can take a long time on embedded
devices(milliseconds).
This patch organizes the vmalloc memory layout into free
areas of the VMALLOC_START-VMALLOC_END range. It uses a
red-black tree that keeps blocks sorted by their offsets
in pair with linked list keeping the free space in order
of increasing addresses.
Allocation: to allocate a new block a search is done over
free list areas until a suitable block is large enough to
encompass the requested size. If the block is bigger than
requested size - it is split.
De-allocation: red-black tree allows efficiently find a
spot in the tree whereas a linked list allows fast merge
of de-allocated memory chunks with existing free blocks
creating large coalesced areas.
model name: Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz
test_1:
<measure this loop time>
for (n = 0; n < 1000000; n++) {
void *ptr_1 = vmalloc(3 * PAGE_SIZE);
*((__u8 *)ptr_1) = 0; /* Pretend we used the mem */
vfree(ptr_1);
}
<measure this loop time>
1218459(us) vs 1146597(us) 5%
1219721(us) vs 1145212(us) 6%
1226255(us) vs 1142134(us) 6%
1239828(us) vs 1144809(us) 7%
1232131(us) vs 1144775(us) 7%
test_2:
for (n = 0; n < 15000; n++)
ptr[n] = vmalloc(1 * PAGE_SIZE);
<measure this loop time>
for (n = 0; n < 1000000; n++) {
void *ptr_1 = vmalloc(100 * PAGE_SIZE);
void *ptr_2 = vmalloc(1 * PAGE_SIZE);
*((__u8 *)ptr_1) = 0; /* Pretend we used the mem */
*((__u8 *)ptr_2) = 1; /* Pretend we used the mem */
vfree(ptr_1);
vfree(ptr_2);
}
<measure this loop time>
55866315(us) vs 15037680(us) 73%
57601435(us) vs 14809454(us) 74%
52612371(us) vs 14550292(us) 72%
48894648(us) vs 14769538(us) 69%
55718063(us) vs 14727350(us) 73%
Signed-off-by: Uladzislau Rezki (Sony) <urezki@...il.com>
---
include/linux/vmalloc.h | 2 +-
mm/vmalloc.c | 836 ++++++++++++++++++++++++++++++++++++++----------
2 files changed, 668 insertions(+), 170 deletions(-)
diff --git a/include/linux/vmalloc.h b/include/linux/vmalloc.h
index 398e9c95cd61..01a73d4795f4 100644
--- a/include/linux/vmalloc.h
+++ b/include/linux/vmalloc.h
@@ -46,11 +46,11 @@ struct vmap_area {
unsigned long va_start;
unsigned long va_end;
unsigned long flags;
+ unsigned long align;
struct rb_node rb_node; /* address sorted rbtree */
struct list_head list; /* address sorted list */
struct llist_node purge_list; /* "lazy purge" list */
struct vm_struct *vm;
- struct rcu_head rcu_head;
};
/*
diff --git a/mm/vmalloc.c b/mm/vmalloc.c
index cfea25be7754..a7f257540a05 100644
--- a/mm/vmalloc.c
+++ b/mm/vmalloc.c
@@ -326,12 +326,57 @@ EXPORT_SYMBOL(vmalloc_to_pfn);
#define VM_LAZY_FREE 0x02
#define VM_VM_AREA 0x04
+/*
+ * Define default padding for alignment purposes.
+ */
+#define VMALLOC_MAX_PADDING THREAD_ALIGN
+
static DEFINE_SPINLOCK(vmap_area_lock);
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
static LLIST_HEAD(vmap_purge_list);
static struct rb_root vmap_area_root = RB_ROOT;
+/*
+ * This linked list is used in pair with free_vmap_area_root.
+ * It makes it possible of fast accessing to next/prev nodes
+ * to perform coalescing.
+ */
+static LIST_HEAD(free_vmap_area_list);
+
+/*
+ * This red-black tree is used for storing address-sorted
+ * vmap areas during free operation. Sorting is done using
+ * va_start address. We make use of it to merge a VA with
+ * its prev/next neighbors.
+ */
+static struct rb_root free_vmap_area_root = RB_ROOT;
+
+/*
+ * This cache list is used for keeping free vmap_area objects.
+ * Basically, when free VA area is split, a remaining space has
+ * to be placed back to free list/tree structures. Instead of
+ * allocating from slab we reuse vmap_area objects from this
+ * cache.
+ */
+static LIST_HEAD(free_va_cache);
+
+/*
+ * This is a cache size counter. A maximum cache size depends on
+ * lazy_max_pages() and is not higher than lazy_max_pages() / 2.
+ * A "purge layer" drains free areas feeding the cache back when
+ * the threshold is crossed.
+ */
+static unsigned long free_va_cache_size;
+
+/*
+ * For vmalloc specific area allocation.
+ */
+static struct vmap_area *last_free_area;
+static unsigned long last_alloc_vstart;
+static unsigned long last_alloc_align;
+static unsigned long free_va_max_size;
+
/* The vmap cache globals are protected by vmap_area_lock */
static struct rb_node *free_vmap_cache;
static unsigned long cached_hole_size;
@@ -340,6 +385,10 @@ static unsigned long cached_align;
static unsigned long vmap_area_pcpu_hole;
+static void purge_vmap_area_lazy(void);
+static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
+static unsigned long lazy_max_pages(void);
+
static struct vmap_area *__find_vmap_area(unsigned long addr)
{
struct rb_node *n = vmap_area_root.rb_node;
@@ -359,41 +408,411 @@ static struct vmap_area *__find_vmap_area(unsigned long addr)
return NULL;
}
-static void __insert_vmap_area(struct vmap_area *va)
+static inline bool
+__put_free_va_to_cache(struct vmap_area *va)
+{
+ if (free_va_cache_size < (lazy_max_pages() >> 1)) {
+ list_add(&va->list, &free_va_cache);
+ free_va_cache_size++;
+ return true;
+ }
+
+ return false;
+}
+
+static inline void *
+__get_free_va_from_cache(void)
{
- struct rb_node **p = &vmap_area_root.rb_node;
- struct rb_node *parent = NULL;
- struct rb_node *tmp;
+ struct vmap_area *va;
+
+ va = list_first_entry_or_null(&free_va_cache,
+ struct vmap_area, list);
+
+ if (va) {
+ list_del(&va->list);
+ free_va_cache_size--;
+ }
- while (*p) {
- struct vmap_area *tmp_va;
+ return va;
+}
+
+static inline void
+__find_va_slot(struct vmap_area *va,
+ struct rb_root *root, struct rb_node *from,
+ struct rb_node **parent, struct rb_node ***link)
+{
+ struct vmap_area *tmp_va;
+
+ if (root) {
+ *link = &root->rb_node;
+ if (unlikely(!**link)) {
+ *parent = NULL;
+ return;
+ }
+ } else {
+ *link = &from;
+ }
- parent = *p;
- tmp_va = rb_entry(parent, struct vmap_area, rb_node);
+ do {
+ tmp_va = rb_entry(**link, struct vmap_area, rb_node);
if (va->va_start < tmp_va->va_end)
- p = &(*p)->rb_left;
+ *link = &(**link)->rb_left;
else if (va->va_end > tmp_va->va_start)
- p = &(*p)->rb_right;
+ *link = &(**link)->rb_right;
else
BUG();
+ } while (**link);
+
+ /*
+ * Return back addresses of parent node of VA and
+ * parent's left/right link for further inserting.
+ */
+ *parent = &tmp_va->rb_node;
+}
+
+static inline void
+__find_va_free_siblings(struct rb_node *parent, struct rb_node **link,
+ struct list_head **prev, struct list_head **next)
+{
+ struct list_head *list;
+
+ if (likely(parent)) {
+ list = &rb_entry(parent, struct vmap_area, rb_node)->list;
+ if (&parent->rb_right == link) {
+ *next = list->next;
+ *prev = list;
+ } else {
+ *prev = list->prev;
+ *next = list;
+ }
+ } else {
+ /*
+ * The red-black tree where we try to find VA neighbors
+ * before merging or inserting is empty, i.e. it means
+ * there is no free vmalloc space. Normally it does not
+ * happen but we handle this case anyway.
+ */
+ *next = *prev = &free_vmap_area_list;
+ }
+}
+
+static inline void
+__link_va(struct vmap_area *va, struct rb_root *root,
+ struct rb_node *parent, struct rb_node **link, struct list_head *head)
+{
+ /*
+ * VA is still not in the list, but we can
+ * identify its future previous list_head node.
+ */
+ if (likely(parent)) {
+ head = &rb_entry(parent, struct vmap_area, rb_node)->list;
+ if (&parent->rb_right != link)
+ head = head->prev;
}
- rb_link_node(&va->rb_node, parent, p);
- rb_insert_color(&va->rb_node, &vmap_area_root);
+ /* Insert to the rb-tree */
+ rb_link_node(&va->rb_node, parent, link);
+ rb_insert_color(&va->rb_node, root);
- /* address-sort this list */
- tmp = rb_prev(&va->rb_node);
- if (tmp) {
- struct vmap_area *prev;
- prev = rb_entry(tmp, struct vmap_area, rb_node);
- list_add_rcu(&va->list, &prev->list);
- } else
- list_add_rcu(&va->list, &vmap_area_list);
+ /* Address-sort this list */
+ list_add(&va->list, head);
}
-static void purge_vmap_area_lazy(void);
+static inline void
+__unlink_va(struct vmap_area *va, struct rb_root *root)
+{
+ /*
+ * During merging a VA node can be empty, therefore
+ * not linked with the tree nor list. Just check it.
+ */
+ if (!RB_EMPTY_NODE(&va->rb_node)) {
+ rb_erase(&va->rb_node, root);
+ list_del(&va->list);
+ }
+}
-static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
+static void
+__insert_vmap_area(struct vmap_area *va,
+ struct rb_root *root, struct list_head *head)
+{
+ struct rb_node **link;
+ struct rb_node *parent;
+
+ __find_va_slot(va, root, NULL, &parent, &link);
+ __link_va(va, root, parent, link, head);
+}
+
+static inline void
+__remove_vmap_area(struct vmap_area *va, struct rb_root *root)
+{
+ __unlink_va(va, root);
+
+ /*
+ * Fill the cache. If it is full, we just free VA.
+ */
+ if (!__put_free_va_to_cache(va))
+ kfree(va);
+}
+
+/*
+ * Merge de-allocated chunk of VA memory with previous
+ * and next free blocks. Either a pointer to the new
+ * merged area is returned if coalesce is done or VA
+ * area if inserting is done.
+ */
+static inline struct vmap_area *
+__merge_add_free_va_area(struct vmap_area *va,
+ struct rb_root *root, struct list_head *head)
+{
+ struct vmap_area *sibling;
+ struct list_head *next, *prev;
+ struct rb_node **link;
+ struct rb_node *parent;
+ bool merged = false;
+
+ /*
+ * To perform merging we have to restore an area which belongs
+ * to this VA if the allocation has been done with specific align
+ * value. In case of PCPU allocations nothing is changed.
+ */
+ if (va->align <= VMALLOC_MAX_PADDING)
+ va->va_end = ALIGN(va->va_end, va->align);
+
+ /*
+ * Find a place in the tree where VA potentially will be
+ * inserted, unless it is merged with its sibling/siblings.
+ */
+ __find_va_slot(va, root, NULL, &parent, &link);
+
+ /*
+ * Get next/prev nodes of VA to check if merging can be done.
+ */
+ __find_va_free_siblings(parent, link, &prev, &next);
+
+ /*
+ * start end
+ * | |
+ * |<------VA------>|<-----Next----->|
+ * | |
+ * start end
+ */
+ if (next != head) {
+ sibling = list_entry(next, struct vmap_area, list);
+ if (sibling->va_start == va->va_end) {
+ sibling->va_start = va->va_start;
+ __remove_vmap_area(va, root);
+
+ /* Point to the new merged area. */
+ va = sibling;
+ merged = true;
+ }
+ }
+
+ /*
+ * start end
+ * | |
+ * |<-----Prev----->|<------VA------>|
+ * | |
+ * start end
+ */
+ if (prev != head) {
+ sibling = list_entry(prev, struct vmap_area, list);
+ if (sibling->va_end == va->va_start) {
+ sibling->va_end = va->va_end;
+ __remove_vmap_area(va, root);
+
+ /* Point to the new merged area. */
+ va = sibling;
+ merged = true;
+ }
+ }
+
+ if (!merged)
+ __link_va(va, root, parent, link, head);
+
+ return va;
+}
+
+enum alloc_fit_type {
+ NOTHING_FIT = 0,
+ FL_FIT_TYPE = 1, /* full fit */
+ LE_FIT_TYPE = 2, /* left edge fit */
+ RE_FIT_TYPE = 3, /* right edge fit */
+ NE_FIT_TYPE = 4 /* no edge fit */
+};
+
+static inline unsigned long
+alloc_vmalloc_area(struct vmap_area **fl_fit_va, unsigned long size,
+ unsigned long align, unsigned long vstart, unsigned long vend)
+{
+ unsigned long nva_start_addr;
+ struct vmap_area *va, *lva;
+ struct rb_node *parent;
+ struct rb_node **link;
+ u8 fit_type;
+
+ va = last_free_area;
+ fit_type = NOTHING_FIT;
+ *fl_fit_va = NULL;
+
+ /*
+ * Use aligned size if the align value is within
+ * allowed padding range. This is done to reduce
+ * external fragmentation.
+ */
+ if (align <= VMALLOC_MAX_PADDING)
+ size = ALIGN(size, align);
+
+ if (!last_free_area || size < free_va_max_size ||
+ vstart < last_alloc_vstart ||
+ align < last_alloc_align) {
+ va = list_first_entry_or_null(&free_vmap_area_list,
+ struct vmap_area, list);
+
+ if (unlikely(!va))
+ return vend;
+
+ free_va_max_size = 0;
+ last_free_area = NULL;
+ }
+
+ nva_start_addr = ALIGN(vstart, align);
+ list_for_each_entry_from(va, &free_vmap_area_list, list) {
+ if (va->va_start > vstart)
+ nva_start_addr = ALIGN(va->va_start, align);
+
+ /*
+ * Sanity test for following scenarios:
+ * - overflow, due to big size;
+ * - vend restriction check;
+ * - vstart check, due to big align.
+ */
+ if (nva_start_addr + size < nva_start_addr ||
+ nva_start_addr + size > vend ||
+ nva_start_addr < vstart)
+ break;
+
+ /*
+ * VA does not fit to requested parameters. In this case we
+ * calculate max available aligned size if nva_start_addr is
+ * within this VA.
+ */
+ if (nva_start_addr + size > va->va_end) {
+ if (nva_start_addr < va->va_end)
+ free_va_max_size = max(free_va_max_size,
+ va->va_end - nva_start_addr);
+ continue;
+ }
+
+ /* Classify what we have found. */
+ if (va->va_start == nva_start_addr) {
+ if (va->va_end == nva_start_addr + size)
+ fit_type = FL_FIT_TYPE;
+ else
+ fit_type = LE_FIT_TYPE;
+ } else if (va->va_end == nva_start_addr + size) {
+ fit_type = RE_FIT_TYPE;
+ } else {
+ fit_type = NE_FIT_TYPE;
+ }
+
+ last_free_area = va;
+ last_alloc_vstart = vstart;
+ last_alloc_align = align;
+ break;
+ }
+
+ if (fit_type == FL_FIT_TYPE) {
+ /*
+ * No need to split VA, it fully fits.
+ *
+ * | |
+ * V NVA V
+ * |---------------|
+ */
+ if (va->list.prev != &free_vmap_area_list)
+ last_free_area = list_prev_entry(va, list);
+ else
+ last_free_area = NULL;
+
+ __unlink_va(va, &free_vmap_area_root);
+ *fl_fit_va = va;
+ } else if (fit_type == LE_FIT_TYPE) {
+ /*
+ * Split left edge fit VA.
+ *
+ * | |
+ * V NVA V R
+ * |-------|-------|
+ */
+ va->va_start += size;
+ } else if (fit_type == RE_FIT_TYPE) {
+ /*
+ * Split right edge fit VA.
+ *
+ * | |
+ * L V NVA V
+ * |-------|-------|
+ */
+ va->va_end = nva_start_addr;
+ } else if (fit_type == NE_FIT_TYPE) {
+ /*
+ * Split no edge fit VA.
+ *
+ * | |
+ * L V NVA V R
+ * |---|-------|---|
+ */
+ lva = __get_free_va_from_cache();
+ if (!lva) {
+ lva = kmalloc(sizeof(*lva), GFP_NOWAIT);
+ if (unlikely(!lva))
+ return vend;
+ }
+
+ /*
+ * Build the remainder.
+ */
+ lva->va_start = va->va_start;
+ lva->va_end = nva_start_addr;
+
+ /*
+ * Shrink this VA to remaining size.
+ */
+ va->va_start = nva_start_addr + size;
+
+ /*
+ * Add the remainder to the address sorted free list/tree.
+ */
+ __find_va_slot(lva, NULL, &va->rb_node, &parent, &link);
+ __link_va(lva, &free_vmap_area_root,
+ parent, link, &free_vmap_area_list);
+ } else {
+ /* Not found. */
+ nva_start_addr = vend;
+ }
+
+ return nva_start_addr;
+}
+
+static inline struct vmap_area *
+kmalloc_va_node_leak_scan(gfp_t mask, int node)
+{
+ struct vmap_area *va;
+
+ mask &= GFP_RECLAIM_MASK;
+
+ va = kmalloc_node(sizeof(*va), mask, node);
+ if (unlikely(!va))
+ return NULL;
+
+ /*
+ * Only scan the relevant parts containing pointers
+ * to other objects to avoid false negatives.
+ */
+ kmemleak_scan_area(&va->rb_node, SIZE_MAX, mask);
+ return va;
+}
/*
* Allocate a region of KVA of the specified size and alignment, within the
@@ -404,11 +823,12 @@ static struct vmap_area *alloc_vmap_area(unsigned long size,
unsigned long vstart, unsigned long vend,
int node, gfp_t gfp_mask)
{
- struct vmap_area *va;
+ struct vmap_area *va = NULL;
struct rb_node *n;
unsigned long addr;
int purged = 0;
struct vmap_area *first;
+ bool is_vmalloc_alloc;
BUG_ON(!size);
BUG_ON(offset_in_page(size));
@@ -416,19 +836,38 @@ static struct vmap_area *alloc_vmap_area(unsigned long size,
might_sleep();
- va = kmalloc_node(sizeof(struct vmap_area),
- gfp_mask & GFP_RECLAIM_MASK, node);
- if (unlikely(!va))
- return ERR_PTR(-ENOMEM);
-
- /*
- * Only scan the relevant parts containing pointers to other objects
- * to avoid false negatives.
- */
- kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
+ is_vmalloc_alloc = is_vmalloc_addr((void *) vstart);
+ if (!is_vmalloc_alloc) {
+ va = kmalloc_va_node_leak_scan(gfp_mask, node);
+ if (unlikely(!va))
+ return ERR_PTR(-ENOMEM);
+ }
retry:
spin_lock(&vmap_area_lock);
+ if (is_vmalloc_alloc) {
+ addr = alloc_vmalloc_area(&va, size, align, vstart, vend);
+
+ /*
+ * If an allocation fails, the "vend" address is
+ * returned. Therefore trigger an overflow path.
+ */
+ if (unlikely(addr == vend))
+ goto overflow;
+
+ if (!va) {
+ spin_unlock(&vmap_area_lock);
+
+ va = kmalloc_va_node_leak_scan(gfp_mask, node);
+ if (unlikely(!va))
+ return ERR_PTR(-ENOMEM);
+
+ spin_lock(&vmap_area_lock);
+ }
+
+ goto insert_vmap_area;
+ }
+
/*
* Invalidate cache if we have more permissive parameters.
* cached_hole_size notes the largest hole noticed _below_
@@ -501,11 +940,15 @@ static struct vmap_area *alloc_vmap_area(unsigned long size,
if (addr + size > vend)
goto overflow;
+ free_vmap_cache = &va->rb_node;
+
+insert_vmap_area:
va->va_start = addr;
va->va_end = addr + size;
+ va->align = align;
va->flags = 0;
- __insert_vmap_area(va);
- free_vmap_cache = &va->rb_node;
+ __insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
+
spin_unlock(&vmap_area_lock);
BUG_ON(!IS_ALIGNED(va->va_start, align));
@@ -552,9 +995,13 @@ EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
static void __free_vmap_area(struct vmap_area *va)
{
+ unsigned long last_free_va_start;
+ bool is_vmalloc_area;
+
BUG_ON(RB_EMPTY_NODE(&va->rb_node));
+ is_vmalloc_area = is_vmalloc_addr((void *) va->va_start);
- if (free_vmap_cache) {
+ if (!is_vmalloc_area && free_vmap_cache) {
if (va->va_end < cached_vstart) {
free_vmap_cache = NULL;
} else {
@@ -571,18 +1018,38 @@ static void __free_vmap_area(struct vmap_area *va)
}
rb_erase(&va->rb_node, &vmap_area_root);
RB_CLEAR_NODE(&va->rb_node);
- list_del_rcu(&va->list);
+ list_del(&va->list);
- /*
- * Track the highest possible candidate for pcpu area
- * allocation. Areas outside of vmalloc area can be returned
- * here too, consider only end addresses which fall inside
- * vmalloc area proper.
- */
- if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
+ if (is_vmalloc_area) {
+ /*
+ * Track the highest possible candidate for pcpu area
+ * allocation. Areas outside of vmalloc area can be returned
+ * here too, consider only end addresses which fall inside
+ * vmalloc area proper.
+ */
vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
- kfree_rcu(va, rcu_head);
+ if (last_free_area)
+ last_free_va_start = last_free_area->va_start;
+ else
+ last_free_va_start = 0;
+
+ /*
+ * Merge VA with its neighbors, otherwise just add it.
+ */
+ va = __merge_add_free_va_area(va,
+ &free_vmap_area_root, &free_vmap_area_list);
+
+ /*
+ * Update a search criteria if merging/inserting is done
+ * before the va_start address of last_free_area marker.
+ */
+ if (last_free_area)
+ if (va->va_start < last_free_va_start)
+ last_free_area = va;
+ } else {
+ kfree(va);
+ }
}
/*
@@ -1238,6 +1705,51 @@ void __init vm_area_register_early(struct vm_struct *vm, size_t align)
vm_area_add_early(vm);
}
+static void vmalloc_init_free_space(void)
+{
+ unsigned long free_hole_start = VMALLOC_START;
+ const unsigned long vmalloc_end = VMALLOC_END;
+ struct vmap_area *busy_area, *free_area;
+
+ /*
+ * B F B B B F
+ * -|-----|.....|-----|-----|-----|.....|-
+ * | vmalloc space |
+ * |<--------------------------------->|
+ */
+ list_for_each_entry(busy_area, &vmap_area_list, list) {
+ if (!is_vmalloc_addr((void *) busy_area->va_start))
+ continue;
+
+ if (busy_area->va_start - free_hole_start > 0) {
+ free_area = kzalloc(sizeof(*free_area), GFP_NOWAIT);
+ free_area->va_start = free_hole_start;
+ free_area->va_end = busy_area->va_start;
+
+ __insert_vmap_area(free_area,
+ &free_vmap_area_root, &free_vmap_area_list);
+ }
+
+ free_hole_start = busy_area->va_end;
+ }
+
+ if (vmalloc_end - free_hole_start > 0) {
+ free_area = kzalloc(sizeof(*free_area), GFP_NOWAIT);
+ free_area->va_start = free_hole_start;
+ free_area->va_end = vmalloc_end;
+
+ __insert_vmap_area(free_area,
+ &free_vmap_area_root, &free_vmap_area_list);
+ }
+
+ /*
+ * Assume if busy VA overlaps two areas it is wrong.
+ * I.e. a start address is vmalloc address whereas an
+ * end address is not. Warn if so.
+ */
+ WARN_ON(free_hole_start > vmalloc_end);
+}
+
void __init vmalloc_init(void)
{
struct vmap_area *va;
@@ -1263,9 +1775,14 @@ void __init vmalloc_init(void)
va->va_start = (unsigned long)tmp->addr;
va->va_end = va->va_start + tmp->size;
va->vm = tmp;
- __insert_vmap_area(va);
+ __insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
}
+ /*
+ * Now we can initialize a free vmalloc space.
+ */
+ vmalloc_init_free_space();
+
vmap_area_pcpu_hole = VMALLOC_END;
vmap_initialized = true;
@@ -2365,82 +2882,23 @@ static struct vmap_area *node_to_va(struct rb_node *n)
return rb_entry_safe(n, struct vmap_area, rb_node);
}
-/**
- * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
- * @end: target address
- * @pnext: out arg for the next vmap_area
- * @pprev: out arg for the previous vmap_area
- *
- * Returns: %true if either or both of next and prev are found,
- * %false if no vmap_area exists
- *
- * Find vmap_areas end addresses of which enclose @end. ie. if not
- * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
- */
-static bool pvm_find_next_prev(unsigned long end,
- struct vmap_area **pnext,
- struct vmap_area **pprev)
+static struct vmap_area *
+addr_to_free_va(unsigned long addr)
{
- struct rb_node *n = vmap_area_root.rb_node;
+ struct rb_node *n = free_vmap_area_root.rb_node;
struct vmap_area *va = NULL;
while (n) {
va = rb_entry(n, struct vmap_area, rb_node);
- if (end < va->va_end)
+ if (addr < va->va_start)
n = n->rb_left;
- else if (end > va->va_end)
+ else if (addr > va->va_end)
n = n->rb_right;
else
- break;
- }
-
- if (!va)
- return false;
-
- if (va->va_end > end) {
- *pnext = va;
- *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
- } else {
- *pprev = va;
- *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
- }
- return true;
-}
-
-/**
- * pvm_determine_end - find the highest aligned address between two vmap_areas
- * @pnext: in/out arg for the next vmap_area
- * @pprev: in/out arg for the previous vmap_area
- * @align: alignment
- *
- * Returns: determined end address
- *
- * Find the highest aligned address between *@...xt and *@...ev below
- * VMALLOC_END. *@...xt and *@...ev are adjusted so that the aligned
- * down address is between the end addresses of the two vmap_areas.
- *
- * Please note that the address returned by this function may fall
- * inside *@...xt vmap_area. The caller is responsible for checking
- * that.
- */
-static unsigned long pvm_determine_end(struct vmap_area **pnext,
- struct vmap_area **pprev,
- unsigned long align)
-{
- const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
- unsigned long addr;
-
- if (*pnext)
- addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
- else
- addr = vmalloc_end;
-
- while (*pprev && (*pprev)->va_end > addr) {
- *pnext = *pprev;
- *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
+ return va;
}
- return addr;
+ return NULL;
}
/**
@@ -2473,11 +2931,14 @@ struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
{
const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
- struct vmap_area **vas, *prev, *next;
+ struct vmap_area **vas, *va;
+ struct vmap_area **off = NULL;
struct vm_struct **vms;
- int area, area2, last_area, term_area;
- unsigned long base, start, end, last_end;
+ int area, area2, last_area;
+ unsigned long start, end, last_end;
+ unsigned long base;
bool purged = false;
+ u8 fit_type = NOTHING_FIT;
/* verify parameters and allocate data structures */
BUG_ON(offset_in_page(align) || !is_power_of_2(align));
@@ -2512,90 +2973,122 @@ struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
if (!vas || !vms)
goto err_free2;
+ if (nr_vms > 1) {
+ off = kcalloc(nr_vms, sizeof(off[0]), GFP_KERNEL);
+ if (!off)
+ goto err_free2;
+ }
+
for (area = 0; area < nr_vms; area++) {
vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
if (!vas[area] || !vms[area])
goto err_free;
+
+ if (nr_vms > 1) {
+ off[area] = kzalloc(sizeof(off[0]), GFP_KERNEL);
+ if (!off[area])
+ goto err_free;
+ }
}
+
retry:
spin_lock(&vmap_area_lock);
- /* start scanning - we scan from the top, begin with the last area */
- area = term_area = last_area;
- start = offsets[area];
- end = start + sizes[area];
+ /*
+ * Initialize va here, since we can retry the search.
+ */
+ va = NULL;
- if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
- base = vmalloc_end - last_end;
- goto found;
+ if (unlikely(list_empty(&free_vmap_area_list))) {
+ spin_unlock(&vmap_area_lock);
+ goto err_free;
}
- base = pvm_determine_end(&next, &prev, align) - end;
- while (true) {
- BUG_ON(next && next->va_end <= base + end);
- BUG_ON(prev && prev->va_end > base + end);
+ if (off)
+ va = addr_to_free_va(vmap_area_pcpu_hole);
+
+ if (!va)
+ va = list_last_entry(&free_vmap_area_list,
+ struct vmap_area, list);
+
+ list_for_each_entry_from_reverse(va, &free_vmap_area_list, list) {
+ base = (va->va_end & ~(align - 1)) - last_end;
/*
* base might have underflowed, add last_end before
* comparing.
*/
- if (base + last_end < vmalloc_start + last_end) {
- spin_unlock(&vmap_area_lock);
- if (!purged) {
- purge_vmap_area_lazy();
- purged = true;
- goto retry;
- }
- goto err_free;
- }
+ if (base + last_end < vmalloc_start + last_end)
+ break;
- /*
- * If next overlaps, move base downwards so that it's
- * right below next and then recheck.
- */
- if (next && next->va_start < base + end) {
- base = pvm_determine_end(&next, &prev, align) - end;
- term_area = area;
+ if (base < va->va_start)
continue;
- }
+ if (base > va->va_start)
+ fit_type = RE_FIT_TYPE;
+ else
+ /* base == va->va_start */
+ fit_type = FL_FIT_TYPE;
+
+ break;
+ }
+
+ if (fit_type == RE_FIT_TYPE) {
+ va->va_end = base;
+ } else if (fit_type == FL_FIT_TYPE) {
/*
- * If prev overlaps, shift down next and prev and move
- * base so that it's right below new next and then
- * recheck.
+ * Check if there is an interaction with regular
+ * vmalloc allocations when a free block fully fits.
+ * If so just shift back last_free_area marker.
*/
- if (prev && prev->va_end > base + start) {
- next = prev;
- prev = node_to_va(rb_prev(&next->rb_node));
- base = pvm_determine_end(&next, &prev, align) - end;
- term_area = area;
- continue;
+ if (last_free_area == va)
+ last_free_area = node_to_va(rb_prev(&va->rb_node));
+
+ __remove_vmap_area(va, &free_vmap_area_root);
+ } else {
+ spin_unlock(&vmap_area_lock);
+ if (!purged) {
+ purge_vmap_area_lazy();
+ purged = true;
+ goto retry;
}
- /*
- * This area fits, move on to the previous one. If
- * the previous one is the terminal one, we're done.
- */
- area = (area + nr_vms - 1) % nr_vms;
- if (area == term_area)
- break;
- start = offsets[area];
- end = start + sizes[area];
- pvm_find_next_prev(base + end, &next, &prev);
+ goto err_free;
}
-found:
- /* we've found a fitting base, insert all va's */
- for (area = 0; area < nr_vms; area++) {
- struct vmap_area *va = vas[area];
+ /* we've found a fitting base, insert all va's */
+ for (area = 0, start = base; area < nr_vms; area++) {
+ va = vas[area];
va->va_start = base + offsets[area];
va->va_end = va->va_start + sizes[area];
- __insert_vmap_area(va);
- }
- vmap_area_pcpu_hole = base + offsets[last_area];
+ /*
+ * If there are several areas to allocate, we should insert
+ * back a free space that is organized by area size and offset.
+ */
+ if (off) {
+ off[area]->va_start = start;
+ off[area]->va_end = start + offsets[area];
+ /* Shift to next free start. */
+ start = va->va_end;
+
+ /*
+ * Some initialization before adding/merging.
+ */
+ RB_CLEAR_NODE(&off[area]->rb_node);
+ off[area]->align = 1;
+
+ (void) __merge_add_free_va_area(off[area],
+ &free_vmap_area_root, &free_vmap_area_list);
+ }
+
+ __insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
+ va->align = 1;
+ }
+
+ vmap_area_pcpu_hole = base;
spin_unlock(&vmap_area_lock);
/* insert all vm's */
@@ -2604,16 +3097,21 @@ struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
pcpu_get_vm_areas);
kfree(vas);
+ kfree(off);
return vms;
err_free:
for (area = 0; area < nr_vms; area++) {
+ if (nr_vms > 1)
+ kfree(off[area]);
+
kfree(vas[area]);
kfree(vms[area]);
}
err_free2:
kfree(vas);
kfree(vms);
+ kfree(off);
return NULL;
}
--
2.11.0
Powered by blists - more mailing lists