[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <VI1PR04MB57267D9F69719B4BEF38BF8699A50@VI1PR04MB5726.eurprd04.prod.outlook.com>
Date: Mon, 10 Dec 2018 09:41:51 +0000
From: Yogesh Narayan Gaur <yogeshnarayan.gaur@....com>
To: Schrempf Frieder <frieder.schrempf@...tron.de>,
"linux-mtd@...ts.infradead.org" <linux-mtd@...ts.infradead.org>,
"boris.brezillon@...tlin.com" <boris.brezillon@...tlin.com>,
"marek.vasut@...il.com" <marek.vasut@...il.com>,
"broonie@...nel.org" <broonie@...nel.org>,
"linux-spi@...r.kernel.org" <linux-spi@...r.kernel.org>,
"devicetree@...r.kernel.org" <devicetree@...r.kernel.org>
CC: "robh@...nel.org" <robh@...nel.org>,
"mark.rutland@....com" <mark.rutland@....com>,
"shawnguo@...nel.org" <shawnguo@...nel.org>,
"linux-arm-kernel@...ts.infradead.org"
<linux-arm-kernel@...ts.infradead.org>,
"computersforpeace@...il.com" <computersforpeace@...il.com>,
"linux-kernel@...r.kernel.org" <linux-kernel@...r.kernel.org>
Subject: RE: [PATCH v5 1/5] spi: spi-mem: Add driver for NXP FlexSPI
controller
Hi Frieder,
Thanks for the review. Please find my comments inline.
> -----Original Message-----
> From: Schrempf Frieder [mailto:frieder.schrempf@...tron.de]
> Sent: Thursday, December 6, 2018 2:53 PM
> To: Yogesh Narayan Gaur <yogeshnarayan.gaur@....com>; linux-
> mtd@...ts.infradead.org; boris.brezillon@...tlin.com; marek.vasut@...il.com;
> broonie@...nel.org; linux-spi@...r.kernel.org; devicetree@...r.kernel.org
> Cc: robh@...nel.org; mark.rutland@....com; shawnguo@...nel.org; linux-
> arm-kernel@...ts.infradead.org; computersforpeace@...il.com; linux-
> kernel@...r.kernel.org
> Subject: Re: [PATCH v5 1/5] spi: spi-mem: Add driver for NXP FlexSPI controller
>
> Hi Yogesh,
>
> I've had a closer look at your v5. See my comments below.
>
> On 16.11.18 12:13, Yogesh Narayan Gaur wrote:
> > - Add driver for NXP FlexSPI host controller
> >
> > (0) What is the FlexSPI controller?
> > FlexSPI is a flexsible SPI host controller which supports two SPI
> > channels and up to 4 external devices. Each channel supports
> > Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
> > data lines) i.e. FlexSPI acts as an interface to external devices,
> > maximum 4, each with up to 8 bidirectional data lines.
> >
> > It uses new SPI memory interface of the SPI framework to issue
> > flash memory operations to up to four connected flash
> > devices (2 buses with 2 CS each).
> >
> > (1) Tested this driver with the mtd_debug and JFFS2 filesystem utility
> > on NXP LX2160ARDB and LX2160AQDS targets.
> > LX2160ARDB is having two NOR slave device connected on single bus A
> > i.e. A0 and A1 (CS0 and CS1).
> > LX2160AQDS is having two NOR slave device connected on separate buses
> > one flash on A0 and second on B1 i.e. (CS0 and CS3).
> > Verified this driver on following SPI NOR flashes:
> > Micron, mt35xu512ab, [Read - 1 bit mode]
> > Cypress, s25fl512s, [Read - 1/2/4 bit mode]
> >
> > Signed-off-by: Yogesh Gaur <yogeshnarayan.gaur@....com>
> > ---
> > Changes for v5:
> > - Rebase on top of v4.20-rc2
> > - Modified fspi_readl_poll_tout() as per review comments
> > - Arrange header file in alphabetical order
> > - Removed usage of read()/write() function callback pointer
> > - Add support for 1 and 2 byte address length
> > - Change Frieder e-mail to new e-mail address Changes for v4:
> > - Incorporate Boris review comments
> > * Use readl_poll_timeout() instead of busy looping.
> > * Re-define register masking as per comment.
> > * Drop fspi_devtype enum.
> > Changes for v3:
> > - Added endianness flag in platform specific structure instead of DTS.
> > - Modified nxp_fspi_read_ahb(), removed remapping code.
> > - Added Boris and Frieder as Author and provided reference of
> > spi-fsl-qspi.c Changes for v2:
> > - Incorporated Boris review comments.
> > - Remove dependency of driver over connected flash device size.
> > - Modified the logic to select requested CS.
> > - Remove SPI-Octal Macros.
> >
> > drivers/spi/Kconfig | 10 +
> > drivers/spi/Makefile | 1 +
> > drivers/spi/spi-nxp-fspi.c | 1145
> ++++++++++++++++++++++++++++++++++++++++++++
> > 3 files changed, 1156 insertions(+)
> > create mode 100644 drivers/spi/spi-nxp-fspi.c
> >
> > diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig index
> > 7d3a5c9..36630a1 100644
> > --- a/drivers/spi/Kconfig
> > +++ b/drivers/spi/Kconfig
> > @@ -259,6 +259,16 @@ config SPI_FSL_LPSPI
> > help
> > This enables Freescale i.MX LPSPI controllers in master mode.
> >
> > +config SPI_NXP_FLEXSPI
> > + tristate "NXP Flex SPI controller"
> > + depends on ARCH_LAYERSCAPE || HAS_IOMEM
> > + help
> > + This enables support for the Flex SPI controller in master mode.
> > + Up to four slave devices can be connected on two buses with two
> > + chipselects each.
> > + This controller does not support generic SPI messages and only
> > + supports the high-level SPI memory interface.
> > +
> > config SPI_GPIO
> > tristate "GPIO-based bitbanging SPI Master"
> > depends on GPIOLIB || COMPILE_TEST
> > diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile index
> > 3575205..55fec5c 100644
> > --- a/drivers/spi/Makefile
> > +++ b/drivers/spi/Makefile
> > @@ -60,6 +60,7 @@ obj-$(CONFIG_SPI_MPC52xx) += spi-
> mpc52xx.o
> > obj-$(CONFIG_SPI_MT65XX) += spi-mt65xx.o
> > obj-$(CONFIG_SPI_MXS) += spi-mxs.o
> > obj-$(CONFIG_SPI_NUC900) += spi-nuc900.o
> > +obj-$(CONFIG_SPI_NXP_FLEXSPI) += spi-nxp-fspi.o
> > obj-$(CONFIG_SPI_OC_TINY) += spi-oc-tiny.o
> > spi-octeon-objs := spi-cavium.o spi-cavium-
> octeon.o
> > obj-$(CONFIG_SPI_OCTEON) += spi-octeon.o
> > diff --git a/drivers/spi/spi-nxp-fspi.c b/drivers/spi/spi-nxp-fspi.c
> > new file mode 100644 index 0000000..a35013b
> > --- /dev/null
> > +++ b/drivers/spi/spi-nxp-fspi.c
> > @@ -0,0 +1,1145 @@
> > +// SPDX-License-Identifier: GPL-2.0+
> > +
> > +/*
> > + * NXP FlexSPI(FSPI) controller driver.
> > + *
> > + * Copyright 2018 NXP.
> > + *
> > + * FlexSPI is a flexsible SPI host controller which supports two SPI
> > + * channels and up to 4 external devices. Each channel supports
> > + * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
> > + * data lines).
> > + *
> > + * FlexSPI controller is driven by the LUT(Look-up Table) registers
> > + * LUT registers are a look-up-table for sequences of instructions.
> > + * A valid sequence consists of four LUT registers.
> > + * Maximum 32 LUT sequences can be programmed simultaneously.
> > + *
> > + * LUTs are being created at run-time based on the commands passed
> > + * from the spi-mem framework, thus using single LUT index.
> > + *
> > + * Software triggered Flash read/write access by IP Bus.
> > + *
> > + * Memory mapped read access by AHB Bus.
> > + *
> > + * Based on SPI MEM interface and spi-fsl-qspi.c driver.
> > + *
> > + * Author:
> > + * Yogesh Gaur <yogeshnarayan.gaur@....com>
> > + * Boris Brezillion <boris.brezillon@...tlin.com>
> > + * Frieder Schrempf <frieder.schrempf@...tron.de>
> > + */
> > +
> > +#include <linux/bitops.h>
> > +#include <linux/clk.h>
> > +#include <linux/completion.h>
> > +#include <linux/delay.h>
> > +#include <linux/err.h>
> > +#include <linux/errno.h>
> > +#include <linux/interrupt.h>
> > +#include <linux/io.h>
> > +#include <linux/iopoll.h>
> > +#include <linux/jiffies.h>
> > +#include <linux/kernel.h>
> > +#include <linux/module.h>
> > +#include <linux/mutex.h>
> > +#include <linux/of.h>
> > +#include <linux/of_device.h>
> > +#include <linux/platform_device.h>
> > +#include <linux/pm_qos.h>
> > +#include <linux/sizes.h>
> > +
> > +#include <linux/spi/spi.h>
> > +#include <linux/spi/spi-mem.h>
> > +
> > +/*
> > + * The driver only uses one single LUT entry, that is updated on
> > + * each call of exec_op(). Index 0 is preset at boot with a basic
> > + * read operation, so let's use the last entry (31).
> > + */
> > +#define SEQID_LUT 31
> > +
> > +/* Registers used by the driver */
> > +#define FSPI_MCR0 0x00
> > +#define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24)
> > +#define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16)
> > +#define FSPI_MCR0_LEARN_EN BIT(15)
> > +#define FSPI_MCR0_SCRFRUN_EN BIT(14)
> > +#define FSPI_MCR0_OCTCOMB_EN BIT(13)
> > +#define FSPI_MCR0_DOZE_EN BIT(12)
> > +#define FSPI_MCR0_HSEN BIT(11)
> > +#define FSPI_MCR0_SERCLKDIV BIT(8)
> > +#define FSPI_MCR0_ATDF_EN BIT(7)
> > +#define FSPI_MCR0_ARDF_EN BIT(6)
> > +#define FSPI_MCR0_RXCLKSRC(x) ((x) << 4)
> > +#define FSPI_MCR0_END_CFG(x) ((x) << 2)
> > +#define FSPI_MCR0_MDIS BIT(1)
> > +#define FSPI_MCR0_SWRST BIT(0)
> > +
> > +#define FSPI_MCR1 0x04
> > +#define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16)
> > +#define FSPI_MCR1_AHB_TIMEOUT(x) (x)
> > +
> > +#define FSPI_MCR2 0x08
> > +#define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24)
> > +#define FSPI_MCR2_SAMEDEVICEEN BIT(15)
> > +#define FSPI_MCR2_CLRLRPHS BIT(14)
> > +#define FSPI_MCR2_ABRDATSZ BIT(8)
> > +#define FSPI_MCR2_ABRLEARN BIT(7)
> > +#define FSPI_MCR2_ABR_READ BIT(6)
> > +#define FSPI_MCR2_ABRWRITE BIT(5)
> > +#define FSPI_MCR2_ABRDUMMY BIT(4)
> > +#define FSPI_MCR2_ABR_MODE BIT(3)
> > +#define FSPI_MCR2_ABRCADDR BIT(2)
> > +#define FSPI_MCR2_ABRRADDR BIT(1)
> > +#define FSPI_MCR2_ABR_CMD BIT(0)
> > +
> > +#define FSPI_AHBCR 0x0c
> > +#define FSPI_AHBCR_RDADDROPT BIT(6)
> > +#define FSPI_AHBCR_PREF_EN BIT(5)
> > +#define FSPI_AHBCR_BUFF_EN BIT(4)
> > +#define FSPI_AHBCR_CACH_EN BIT(3)
> > +#define FSPI_AHBCR_CLRTXBUF BIT(2)
> > +#define FSPI_AHBCR_CLRRXBUF BIT(1)
> > +#define FSPI_AHBCR_PAR_EN BIT(0)
> > +
> > +#define FSPI_INTEN 0x10
> > +#define FSPI_INTEN_SCLKSBWR BIT(9)
> > +#define FSPI_INTEN_SCLKSBRD BIT(8)
> > +#define FSPI_INTEN_DATALRNFL BIT(7)
> > +#define FSPI_INTEN_IPTXWE BIT(6)
> > +#define FSPI_INTEN_IPRXWA BIT(5)
> > +#define FSPI_INTEN_AHBCMDERR BIT(4)
> > +#define FSPI_INTEN_IPCMDERR BIT(3)
> > +#define FSPI_INTEN_AHBCMDGE BIT(2)
> > +#define FSPI_INTEN_IPCMDGE BIT(1)
> > +#define FSPI_INTEN_IPCMDDONE BIT(0)
> > +
> > +#define FSPI_INTR 0x14
> > +#define FSPI_INTR_SCLKSBWR BIT(9)
> > +#define FSPI_INTR_SCLKSBRD BIT(8)
> > +#define FSPI_INTR_DATALRNFL BIT(7)
> > +#define FSPI_INTR_IPTXWE BIT(6)
> > +#define FSPI_INTR_IPRXWA BIT(5)
> > +#define FSPI_INTR_AHBCMDERR BIT(4)
> > +#define FSPI_INTR_IPCMDERR BIT(3)
> > +#define FSPI_INTR_AHBCMDGE BIT(2)
> > +#define FSPI_INTR_IPCMDGE BIT(1)
> > +#define FSPI_INTR_IPCMDDONE BIT(0)
> > +
> > +#define FSPI_LUTKEY 0x18
> > +#define FSPI_LUTKEY_VALUE 0x5AF05AF0
> > +
> > +#define FSPI_LCKCR 0x1C
> > +
> > +#define FSPI_LCKER_LOCK 0x1
> > +#define FSPI_LCKER_UNLOCK 0x2
> > +
> > +#define FSPI_BUFXCR_INVALID_MSTRID 0xE
> > +#define FSPI_AHBRX_BUF0CR0 0x20
> > +#define FSPI_AHBRX_BUF1CR0 0x24
> > +#define FSPI_AHBRX_BUF2CR0 0x28
> > +#define FSPI_AHBRX_BUF3CR0 0x2C
> > +#define FSPI_AHBRX_BUF4CR0 0x30
> > +#define FSPI_AHBRX_BUF5CR0 0x34
> > +#define FSPI_AHBRX_BUF6CR0 0x38
> > +#define FSPI_AHBRX_BUF7CR0 0x3C
> > +#define FSPI_AHBRXBUF0CR7_PREF BIT(31)
> > +
> > +#define FSPI_AHBRX_BUF0CR1 0x40
> > +#define FSPI_AHBRX_BUF1CR1 0x44
> > +#define FSPI_AHBRX_BUF2CR1 0x48
> > +#define FSPI_AHBRX_BUF3CR1 0x4C
> > +#define FSPI_AHBRX_BUF4CR1 0x50
> > +#define FSPI_AHBRX_BUF5CR1 0x54
> > +#define FSPI_AHBRX_BUF6CR1 0x58
> > +#define FSPI_AHBRX_BUF7CR1 0x5C
> > +
> > +#define FSPI_FLSHA1CR0 0x60
> > +#define FSPI_FLSHA2CR0 0x64
> > +#define FSPI_FLSHB1CR0 0x68
> > +#define FSPI_FLSHB2CR0 0x6C
> > +#define FSPI_FLSHXCR0_SZ_KB 10
> > +#define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB)
> > +
> > +#define FSPI_FLSHA1CR1 0x70
> > +#define FSPI_FLSHA2CR1 0x74
> > +#define FSPI_FLSHB1CR1 0x78
> > +#define FSPI_FLSHB2CR1 0x7C
> > +#define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16)
> > +#define FSPI_FLSHXCR1_CAS(x) ((x) << 11)
> > +#define FSPI_FLSHXCR1_WA BIT(10)
> > +#define FSPI_FLSHXCR1_TCSH(x) ((x) << 5)
> > +#define FSPI_FLSHXCR1_TCSS(x) (x)
> > +
> > +#define FSPI_FLSHA1CR2 0x80
> > +#define FSPI_FLSHA2CR2 0x84
> > +#define FSPI_FLSHB1CR2 0x88
> > +#define FSPI_FLSHB2CR2 0x8C
> > +#define FSPI_FLSHXCR2_CLRINSP BIT(24)
> > +#define FSPI_FLSHXCR2_AWRWAIT BIT(16)
> > +#define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13
> > +#define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8
> > +#define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5
> > +#define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0
> > +
> > +#define FSPI_IPCR0 0xA0
> > +
> > +#define FSPI_IPCR1 0xA4
> > +#define FSPI_IPCR1_IPAREN BIT(31)
> > +#define FSPI_IPCR1_SEQNUM_SHIFT 24
> > +#define FSPI_IPCR1_SEQID_SHIFT 16
> > +#define FSPI_IPCR1_IDATSZ(x) (x)
> > +
> > +#define FSPI_IPCMD 0xB0
> > +#define FSPI_IPCMD_TRG BIT(0)
> > +
> > +#define FSPI_DLPR 0xB4
> > +
> > +#define FSPI_IPRXFCR 0xB8
> > +#define FSPI_IPRXFCR_CLR BIT(0)
> > +#define FSPI_IPRXFCR_DMA_EN BIT(1)
> > +#define FSPI_IPRXFCR_WMRK(x) ((x) << 2)
> > +
> > +#define FSPI_IPTXFCR 0xBC
> > +#define FSPI_IPTXFCR_CLR BIT(0)
> > +#define FSPI_IPTXFCR_DMA_EN BIT(1)
> > +#define FSPI_IPTXFCR_WMRK(x) ((x) << 2)
> > +
> > +#define FSPI_DLLACR 0xC0
> > +#define FSPI_DLLACR_OVRDEN BIT(8)
> > +
> > +#define FSPI_DLLBCR 0xC4
> > +#define FSPI_DLLBCR_OVRDEN BIT(8)
> > +
> > +#define FSPI_STS0 0xE0
> > +#define FSPI_STS0_DLPHB(x) ((x) << 8)
> > +#define FSPI_STS0_DLPHA(x) ((x) << 4)
> > +#define FSPI_STS0_CMD_SRC(x) ((x) << 2)
> > +#define FSPI_STS0_ARB_IDLE BIT(1)
> > +#define FSPI_STS0_SEQ_IDLE BIT(0)
> > +
> > +#define FSPI_STS1 0xE4
> > +#define FSPI_STS1_IP_ERRCD(x) ((x) << 24)
> > +#define FSPI_STS1_IP_ERRID(x) ((x) << 16)
> > +#define FSPI_STS1_AHB_ERRCD(x) ((x) << 8)
> > +#define FSPI_STS1_AHB_ERRID(x) (x)
> > +
> > +#define FSPI_AHBSPNST 0xEC
> > +#define FSPI_AHBSPNST_DATLFT(x) ((x) << 16)
> > +#define FSPI_AHBSPNST_BUFID(x) ((x) << 1)
> > +#define FSPI_AHBSPNST_ACTIVE BIT(0)
> > +
> > +#define FSPI_IPRXFSTS 0xF0
> > +#define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16)
> > +#define FSPI_IPRXFSTS_FILL(x) (x)
> > +
> > +#define FSPI_IPTXFSTS 0xF4
> > +#define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16)
> > +#define FSPI_IPTXFSTS_FILL(x) (x)
> > +
> > +#define FSPI_RFDR 0x100
> > +#define FSPI_TFDR 0x180
> > +
> > +#define FSPI_LUT_BASE 0x200
> > +#define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
> > +#define FSPI_LUT_REG(idx) \
> > + (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
> > +
> > +/* register map end */
> > +
> > +/* Instruction set for the LUT register. */
> > +#define LUT_STOP 0x00
> > +#define LUT_CMD 0x01
> > +#define LUT_ADDR 0x02
> > +#define LUT_CADDR_SDR 0x03
> > +#define LUT_MODE 0x04
> > +#define LUT_MODE2 0x05
> > +#define LUT_MODE4 0x06
> > +#define LUT_MODE8 0x07
> > +#define LUT_NXP_WRITE 0x08
> > +#define LUT_NXP_READ 0x09
> > +#define LUT_LEARN_SDR 0x0A
> > +#define LUT_DATSZ_SDR 0x0B
> > +#define LUT_DUMMY 0x0C
> > +#define LUT_DUMMY_RWDS_SDR 0x0D
> > +#define LUT_JMP_ON_CS 0x1F
> > +#define LUT_CMD_DDR 0x21
> > +#define LUT_ADDR_DDR 0x22
> > +#define LUT_CADDR_DDR 0x23
> > +#define LUT_MODE_DDR 0x24
> > +#define LUT_MODE2_DDR 0x25
> > +#define LUT_MODE4_DDR 0x26
> > +#define LUT_MODE8_DDR 0x27
> > +#define LUT_WRITE_DDR 0x28
> > +#define LUT_READ_DDR 0x29
> > +#define LUT_LEARN_DDR 0x2A
> > +#define LUT_DATSZ_DDR 0x2B
> > +#define LUT_DUMMY_DDR 0x2C
> > +#define LUT_DUMMY_RWDS_DDR 0x2D
> > +
> > +/*
> > + * Calculate number of required PAD bits for LUT register.
> > + *
> > + * The pad stands for the number of IO lines [0:7].
> > + * For example, the octal read needs eight IO lines,
> > + * so you should use LUT_PAD(8). This macro
> > + * returns 3 i.e. use eight (2^3) IP lines for read.
> > + */
> > +#define LUT_PAD(x) (fls(x) - 1)
> > +
> > +/*
> > + * Macro for constructing the LUT entries with the following
> > + * register layout:
> > + *
> > + * ---------------------------------------------------
> > + * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
> > + * ---------------------------------------------------
> > + */
> > +#define PAD_SHIFT 8
> > +#define INSTR_SHIFT 10
> > +#define OPRND_SHIFT 16
> > +
> > +/* Macros for constructing the LUT register. */
> > +#define LUT_DEF(idx, ins, pad, opr) \
> > + ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
> > + (opr)) << (((idx) % 2) * OPRND_SHIFT))
> > +
> > +/* Operands for the LUT register. */
> > +#define ADDR8BIT 0x08
> > +#define ADDR16BIT 0x10
> > +#define ADDR24BIT 0x18
> > +#define ADDR32BIT 0x20
>
> You can drop these ADDRXBIT definitions, see below...
>
Ok, would drop in next version.
> > +
> > +#define POLL_TOUT 5000
> > +#define NXP_FSPI_MAX_CHIPSELECT 4
> > +
> > +struct nxp_fspi_devtype_data {
> > + unsigned int rxfifo;
> > + unsigned int txfifo;
> > + unsigned int ahb_buf_size;
> > + unsigned int quirks;
> > + bool little_endian;
> > +};
> > +
> > +static const struct nxp_fspi_devtype_data lx2160a_data = {
> > + .rxfifo = SZ_512, /* (64 * 64 bits) */
> > + .txfifo = SZ_1K, /* (128 * 64 bits) */
> > + .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
> > + .quirks = 0,
> > + .little_endian = true, /* little-endian */
> > +};
> > +
> > +struct nxp_fspi {
> > + void __iomem *iobase;
> > + void __iomem *ahb_addr;
> > + u32 memmap_phy;
> > + u32 memmap_phy_size;
> > + struct clk *clk, *clk_en;
> > + struct device *dev;
> > + struct completion c;
> > + const struct nxp_fspi_devtype_data *devtype_data;
> > + struct mutex lock;
> > + struct pm_qos_request pm_qos_req;
> > + int selected;
> > +};
> > +
> > +/*
> > + * R/W functions for big- or little-endian registers:
> > + * The FSPI controller's endianness is independent of
> > + * the CPU core's endianness. So far, although the CPU
> > + * core is little-endian the FSPI controller can use
> > + * big-endian or little-endian.
> > + */
> > +static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem
> > +*addr) {
> > + if (f->devtype_data->little_endian)
> > + iowrite32(val, addr);
> > + else
> > + iowrite32be(val, addr);
> > +}
> > +
> > +static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr) {
> > + if (f->devtype_data->little_endian)
> > + return ioread32(addr);
> > + else
> > + return ioread32be(addr);
> > +}
> > +
> > +static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id) {
> > + struct nxp_fspi *f = dev_id;
> > + u32 reg;
> > +
> > + /* clear interrupt */
> > + reg = fspi_readl(f, f->iobase + FSPI_INTR);
> > + fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
> > +
> > + if (reg & FSPI_INTR_IPCMDDONE)
> > + complete(&f->c);
> > +
> > + return IRQ_HANDLED;
> > +}
> > +
> > +static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width) {
> > + switch (width) {
> > + case 1:
> > + case 2:
> > + case 4:
> > + case 8:
> > + return 0;
> > + }
> > +
> > + return -ENOTSUPP;
> > +}
> > +
> > +static bool nxp_fspi_supports_op(struct spi_mem *mem,
> > + const struct spi_mem_op *op)
> > +{
> > + struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
> > + int ret;
> > +
> > + ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
> > +
> > + if (op->addr.nbytes)
> > + ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
> > +
> > + if (op->dummy.nbytes)
> > + ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
> > +
> > + if (op->data.nbytes)
> > + ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
> > +
> > + if (ret)
> > + return false;
> > +
> > + /*
> > + * The number of instructions needed for the op, needs
> > + * to fit into a single LUT entry.
> > + */
> > + if (op->addr.nbytes +
> > + (op->dummy.nbytes ? 1:0) +
> > + (op->data.nbytes ? 1:0) > 6)
> > + return false;
> > +
> > + /* Max 64 dummy clock cycles supported */
> > + if (op->dummy.buswidth &&
> > + (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
> > + return false;
> > +
> > + /* Max data length, check controller limits and alignment */
> > + if (op->data.dir == SPI_MEM_DATA_IN &&
> > + (op->data.nbytes > f->devtype_data->ahb_buf_size ||
> > + (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
> > + !IS_ALIGNED(op->data.nbytes, 8))))
> > + return false;
> > +
> > + if (op->data.dir == SPI_MEM_DATA_OUT &&
> > + op->data.nbytes > f->devtype_data->txfifo)
> > + return false;
> > +
> > + return true;
> > +}
> > +
> > +/* Instead of busy looping invoke readl_poll_timeout functionality.
> > +*/ static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
> > + u32 mask, u32 delay_us,
> > + u32 timeout_us, bool condition)
> > +{
> > + u32 reg;
> > +
> > + if (!f->devtype_data->little_endian)
> > + mask = (u32)cpu_to_be32(mask);
> > +
> > + if (condition)
> > + return readl_poll_timeout(base, reg, (reg & mask),
> > + delay_us, timeout_us);
> > + else
> > + return readl_poll_timeout(base, reg, !(reg & mask),
> > + delay_us, timeout_us);
>
> I would rather use a local variable to store the condition:
>
> bool c = condition ? (reg & mask):!(reg & mask);
>
With these type of usage getting below warning messages.
drivers/spi/spi-nxp-fspi.c: In function ‘fspi_readl_poll_tout.isra.10.constprop’:
drivers/spi/spi-nxp-fspi.c:446:21: warning: ‘reg’ may be used uninitialized in this function [-Wmaybe-uninitialized]
bool cn = c ? (reg & mask) : !(reg & mask);
If assign value to reg = 0xffffffff then timeout is start getting hit for False case and if assign value 0 then start getting timeout hit for true case.
I would rather not try to modify this function.
> return readl_poll_timeout(base, reg, c, delay_us, timeout_us);
>
> > +}
> > +
> > +/*
> > + * If the slave device content being changed by Write/Erase, need to
> > + * invalidate the AHB buffer. This can be achieved by doing the reset
> > + * of controller after setting MCR0[SWRESET] bit.
> > + */
> > +static inline void nxp_fspi_invalid(struct nxp_fspi *f) {
> > + u32 reg;
> > + int ret;
> > +
> > + reg = fspi_readl(f, f->iobase + FSPI_MCR0);
> > + fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
> > +
> > + /* w1c register, wait unit clear */
> > + ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
> > + FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
> > + WARN_ON(ret);
> > +}
> > +
> > +static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
> > + const struct spi_mem_op *op)
> > +{
> > + void __iomem *base = f->iobase;
> > + u32 lutval[4] = {};
> > + int lutidx = 1, i;
> > +
> > + /* cmd */
> > + lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
> > + op->cmd.opcode);
> > +
> > + /* addr bus width */
> > + if (op->addr.nbytes) {
> > + u32 addrlen = 0;
> > +
> > + switch (op->addr.nbytes) {
> > + case 1:
> > + addrlen = ADDR8BIT;
> > + break;
> > + case 2:
> > + addrlen = ADDR16BIT;
> > + break;
> > + case 3:
> > + addrlen = ADDR24BIT;
> > + break;
> > + case 4:
> > + addrlen = ADDR32BIT;
> > + break;
> > + default:
> > + dev_err(f->dev, "In-correct address length\n");
> > + return;
> > + }
>
> You don't need to validate op->addr.nbytes here, this is already done in
> nxp_fspi_supports_op().
Yes, I need to validate op->addr.nbytes else LUT would going to be programmed for 0 addrlen.
I have checked this on the target.
>
> > +
> > + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
> > + LUT_PAD(op->addr.buswidth),
> > + addrlen);
>
> You can also just remove the whole switch statement above and use this:
>
> lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
> LUT_PAD(op->addr.buswidth),
> op->addr.nbytes * 8);
>
Ok, would include in next version.
> > + lutidx++;
> > + }
> > +
> > + /* dummy bytes, if needed */
> > + if (op->dummy.nbytes) {
> > + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
> > + /*
> > + * Due to FlexSPI controller limitation number of PAD for
> dummy
> > + * buswidth needs to be programmed as equal to data buswidth.
> > + */
> > + LUT_PAD(op->data.buswidth),
> > + op->dummy.nbytes * 8 /
> > + op->dummy.buswidth);
> > + lutidx++;
> > + }
> > +
> > + /* read/write data bytes */
> > + if (op->data.nbytes) {
> > + lutval[lutidx / 2] |= LUT_DEF(lutidx,
> > + op->data.dir ==
> SPI_MEM_DATA_IN ?
> > + LUT_NXP_READ : LUT_NXP_WRITE,
> > + LUT_PAD(op->data.buswidth),
> > + 0);
> > + lutidx++;
> > + }
> > +
> > + /* stop condition. */
> > + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
> > +
> > + /* unlock LUT */
> > + fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
> > + fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
> > +
> > + /* fill LUT */
> > + for (i = 0; i < ARRAY_SIZE(lutval); i++)
> > + fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
> > +
> > + dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n",
> > + op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]);
> > +
> > + /* lock LUT */
> > + fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
> > + fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR); }
> > +
> > +static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f) {
> > + int ret;
> > +
> > + ret = clk_prepare_enable(f->clk_en);
> > + if (ret)
> > + return ret;
> > +
> > + ret = clk_prepare_enable(f->clk);
> > + if (ret) {
> > + clk_disable_unprepare(f->clk_en);
> > + return ret;
> > + }
> > +
> > + return 0;
> > +}
> > +
> > +static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f) {
> > + clk_disable_unprepare(f->clk);
> > + clk_disable_unprepare(f->clk_en);
> > +}
> > +
> > +/*
> > + * In FlexSPI controller, flash access is based on value of
> > +FSPI_FLSHXXCR0
> > + * register and start base address of the slave device.
> > + *
> > + * (Higher address)
> > + * -------- <-- FLSHB2CR0
> > + * | B2 |
> > + * | |
> > + * B2 start address --> -------- <-- FLSHB1CR0
> > + * | B1 |
> > + * | |
> > + * B1 start address --> -------- <-- FLSHA2CR0
> > + * | A2 |
> > + * | |
> > + * A2 start address --> -------- <-- FLSHA1CR0
> > + * | A1 |
> > + * | |
> > + * A1 start address --> -------- (Lower address)
> > + *
> > + *
> > + * Start base address defines the starting address range for given CS
> > +and
> > + * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
> > + *
> > + * But, different targets are having different combinations of number
> > +of CS,
> > + * some targets only have single CS or two CS covering controller's
> > +full
> > + * memory mapped space area.
> > + * Thus, implementation is being done as independent of the size and
> > +number
> > + * of the connected slave device.
> > + * Assign controller memory mapped space size as the size to the
> > +connected
> > + * slave device.
> > + * Mark FLSHxxCR0 as zero initially and then assign value only to the
> > +selected
> > + * chip-select Flash configuration register.
> > + *
> > + * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to
> > +the
> > + * memory mapped size of the controller.
> > + * Value for rest of the CS FLSHxxCR0 register would be zero.
> > + *
> > + */
> > +static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device
> > +*spi) {
> > + unsigned long rate = spi->max_speed_hz;
> > + int ret;
> > + uint64_t size_kb;
> > +
> > + /*
> > + * Return, if previously selected slave device is same as current
> > + * requested slave device.
> > + */
> > + if (f->selected == spi->chip_select)
> > + return;
> > +
> > + /* Reset FLSHxxCR0 registers */
> > + fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
> > + fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
> > + fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
> > + fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
> > +
> > + /* Assign controller memory mapped space as size, KBytes, of flash. */
> > + size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
>
Above description of this function, explains the reason for using memmap_phy_size.
This is not the arbitrary size, but the memory mapped size being assigned to the controller.
> You are still using memory of arbitrary size (memmap_phy_size) for mapping the
> flash. Why not use the same approach as in the QSPI driver and just map
> ahb_buf_size until we implement the dirmap API?
The approach which being used in QSPI driver didn't work here, I have tried with that.
In QSPI driver, while preparing LUT we are assigning read/write address in the LUT preparation and have to for some unknown hack have to provide macro for LUT_MODE instead of LUT_ADDR.
But this thing didn't work for FlexSPI.
I discussed with HW IP owner and they suggested only to use LUT_ADDR for specifying the address length of the command i.e. 3-byte or 4-byte address command (NOR) or 1-2 byte address command for NAND.
Thus, in LUT preparation we have assigned only the base address.
Now if I have assigned ahb_buf_size to FSPI_FLSHXXCR0 register then for read/write data beyond limit of ahb_buf_size offset I get data corruption.
Thus, for generic approach have assigned FSPI_FLSHXXCR0 equal to the memory mapped size to the controller. This would also not going to depend on the number of CS present on the target.
> You are already aligning the AHB reads for this in nxp_fspi_adjust_op_size().
>
Yes, max read data size can be ahb_buf_size. Thus we need to check max read size with ahb_buf_size.
> > +
> > + switch (spi->chip_select) {
> > + case 0:
> > + fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0);
> > + break;
> > + case 1:
> > + fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA2CR0);
> > + break;
> > + case 2:
> > + fspi_writel(f, size_kb, f->iobase + FSPI_FLSHB1CR0);
> > + break;
> > + case 3:
> > + fspi_writel(f, size_kb, f->iobase + FSPI_FLSHB2CR0);
> > + break;
> > + default:
> > + dev_err(f->dev, "In-correct CS provided\n");
> > + return;
>
> You don't need to validate spi->chip_select here. This should never be invalid
> and if it is, something is really wrong and your check won't help.
Ok, would remove in next version.
>
> > + }
> > +
> > + dev_dbg(f->dev, "Slave device [CS:%x] selected\n",
> > +spi->chip_select);
> > +
> > + nxp_fspi_clk_disable_unprep(f);
> > +
> > + ret = clk_set_rate(f->clk, rate);
> > + if (ret)
> > + return;
> > +
> > + ret = nxp_fspi_clk_prep_enable(f);
> > + if (ret)
> > + return;
>
> Missing newline line here.
Ok
>
> > + f->selected = spi->chip_select;
> > +}
> > +
> > +static void nxp_fspi_read_ahb(struct nxp_fspi *f, const struct
> > +spi_mem_op *op) {
> > + u32 len = op->data.nbytes;
> > +
> > + /* Read out the data directly from the AHB buffer. */
> > + memcpy_fromio(op->data.buf.in, (f->ahb_addr + op->addr.val), len); }
> > +
> > +static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
> > + const struct spi_mem_op *op)
> > +{
> > + void __iomem *base = f->iobase;
> > + int i, j, ret;
> > + int size, tmp_size, wm_size;
> > + u32 data = 0;
> > + u32 *txbuf = (u32 *) op->data.buf.out;
> > +
> > + /* clear the TX FIFO. */
> > + fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
> > +
> > + /* Default value of water mark level is 8 bytes. */
> > + wm_size = 8;
> > + size = op->data.nbytes / wm_size;
> > + for (i = 0; i < size; i++) {
> > + /* Wait for TXFIFO empty */
> > + ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
> > + FSPI_INTR_IPTXWE, 0,
> > + POLL_TOUT, true);
> > + WARN_ON(ret);
> > +
> > + j = 0;
> > + tmp_size = wm_size;
> > + while (tmp_size > 0) {
> > + data = 0;
> > + memcpy(&data, txbuf, 4);
> > + fspi_writel(f, data, base + FSPI_TFDR + j * 4);
> > + tmp_size -= 4;
> > + j++;
> > + txbuf += 1;
> > + }
> > + fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
> > + }
> > +
> > + size = op->data.nbytes % wm_size;
> > + if (size) {
> > + /* Wait for TXFIFO empty */
> > + ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
> > + FSPI_INTR_IPTXWE, 0,
> > + POLL_TOUT, true);
> > + WARN_ON(ret);
> > +
> > + j = 0;
> > + tmp_size = 0;
> > + while (size > 0) {
> > + data = 0;
> > + tmp_size = (size < 4) ? size : 4;
> > + memcpy(&data, txbuf, tmp_size);
> > + fspi_writel(f, data, base + FSPI_TFDR + j * 4);
> > + size -= tmp_size;
> > + j++;
> > + txbuf += 1;
> > + }
> > + fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
> > + }
>
> All these nested loops to fill the TX buffer and also the ones below to read the
> RX buffer look much more complicated than they should really be. Can you try to
> make this more readable?
Yes
>
> Maybe something like this would work:
>
> for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
> /* Wait for TXFIFO empty */
> ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
> FSPI_INTR_IPTXWE, 0,
> POLL_TOUT, true);
>
> fspi_writel(f, op->data.buf.out + i, base + FSPI_TFDR);
> fspi_writel(f, op->data.buf.out + i + 4, base + FSPI_TFDR + 4);
> fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); }
With this above 2 lines we are hardcoding it for read/write with watermark size as 8 bytes.
Watermark size can be variable and depends on the value of IPRXFCR/IPTXFCR register with default value as 8 bytes
Thus, I would still prefer to use the internal for loop instead of 2 fspi_writel(...) for FSPI_TFDR and FSPI_TFDR + 4 register write commands.
>
> if (i < op->data.nbytes) {
> u32 data = 0;
> int j;
> /* Wait for TXFIFO empty */
> ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
> FSPI_INTR_IPTXWE, 0,
> POLL_TOUT, true);
>
> for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
> memcpy(&data, op->data.buf.out + i + j, 4);
> fspi_writel(f, data, base + FSPI_TFDR + j);
> }
>
> fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); }
>
> > +}
> > +
> > +static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
> > + const struct spi_mem_op *op)
> > +{
> > + void __iomem *base = f->iobase;
> > + int i, j;
> > + int size, tmp_size, wm_size, ret;
> > + u32 tmp = 0;
> > + u8 *buf = op->data.buf.in;
> > + u32 len = op->data.nbytes;
> > +
> > + /* Default value of water mark level is 8 bytes. */
> > + wm_size = 8;
> > +
> > + while (len > 0) {
> > + size = len / wm_size;
> > +
> > + for (i = 0; i < size; i++) {
> > + /* Wait for RXFIFO available */
> > + ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
> > + FSPI_INTR_IPRXWA, 0,
> > + POLL_TOUT, true);
> > + WARN_ON(ret);
> > +
> > + j = 0;
> > + tmp_size = wm_size;
> > + while (tmp_size > 0) {
> > + tmp = 0;
> > + tmp = fspi_readl(f, base + FSPI_RFDR + j * 4);
> > + memcpy(buf, &tmp, 4);
> > + tmp_size -= 4;
> > + j++;
> > + buf += 4;
> > + }
> > + /* move the FIFO pointer */
> > + fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
> > + len -= wm_size;
> > + }
> > +
> > + size = len % wm_size;
> > +
> > + j = 0;
> > + if (size) {
> > + /* Wait for RXFIFO available */
> > + ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
> > + FSPI_INTR_IPRXWA, 0,
> > + POLL_TOUT, true);
> > + WARN_ON(ret);
> > +
> > + while (len > 0) {
> > + tmp = 0;
> > + size = (len < 4) ? len : 4;
> > + tmp = fspi_readl(f, base + FSPI_RFDR + j * 4);
> > + memcpy(buf, &tmp, size);
> > + len -= size;
> > + j++;
> > + buf += size;
> > + }
> > + }
> > +
> > + /* invalid the RXFIFO */
> > + fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
> > + /* move the FIFO pointer */
> > + fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
> > + }
>
> Same here. I think this is overly complicated.
>
Yes, would do in next version.
> > +}
> > +
> > +static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op
> > +*op) {
> > + void __iomem *base = f->iobase;
> > + int seqnum = 0;
> > + int err = 0;
> > + u32 reg;
> > +
> > + reg = fspi_readl(f, base + FSPI_IPRXFCR);
> > + /* invalid RXFIFO first */
> > + reg &= ~FSPI_IPRXFCR_DMA_EN;
> > + reg = reg | FSPI_IPRXFCR_CLR;
> > + fspi_writel(f, reg, base + FSPI_IPRXFCR);
> > +
> > + init_completion(&f->c);
> > +
> > + fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
> > + /*
> > + * Always start the sequence at the same index since we update
> > + * the LUT at each exec_op() call. And also specify the DATA
> > + * length, since it's has not been specified in the LUT.
> > + */
> > + fspi_writel(f, op->data.nbytes |
> > + (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
> > + (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
> > + base + FSPI_IPCR1);
> > +
> > + /* Trigger the LUT now. */
> > + fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
> > +
> > + /* Wait for the interrupt. */
> > + if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
> > + err = -ETIMEDOUT;
> > +
> > + /* Invoke IP data read, if request is of data read. */
> > + if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
> > + nxp_fspi_read_rxfifo(f, op);
> > +
> > + return err;
> > +}
> > +
> > +static int nxp_fspi_exec_op(struct spi_mem *mem, const struct
> > +spi_mem_op *op) {
> > + struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
> > + int err = 0;
> > +
> > + mutex_lock(&f->lock);
> > +
> > + /* Wait for controller being ready. */
> > + err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
> > + FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
> > + WARN_ON(err);
> > +
> > + nxp_fspi_select_mem(f, mem->spi);
> > +
> > + nxp_fspi_prepare_lut(f, op);
> > + /*
> > + * If we have large chunks of data, we read them through the AHB bus
> > + * by accessing the mapped memory. In all other cases we use
> > + * IP commands to access the flash.
> > + */
> > + if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
> > + op->data.dir == SPI_MEM_DATA_IN) {
> > + nxp_fspi_read_ahb(f, op);
> > + } else {
> > + if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
> > + nxp_fspi_fill_txfifo(f, op);
> > +
> > + err = nxp_fspi_do_op(f, op);
> > +
> > + /* Invalidate the data in the AHB buffer. */
> > + if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
> > + nxp_fspi_invalid(f);
>
> E.g. in case of an erase operation or a NAND load page operation, the
> invalidation is not triggered, but flash/buffer contents have changed.
> So I'm not sure if this is enough...
Ok, would change this and have invalidate for all operations.
>
> > + }
> > +
> > + mutex_unlock(&f->lock);
> > +
> > + return err;
> > +}
> > +
> > +static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct
> > +spi_mem_op *op) {
> > + struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
> > +
> > + if (op->data.dir == SPI_MEM_DATA_OUT) {
> > + if (op->data.nbytes > f->devtype_data->txfifo)
> > + op->data.nbytes = f->devtype_data->txfifo;
> > + } else {
> > + if (op->data.nbytes > f->devtype_data->ahb_buf_size)
> > + op->data.nbytes = f->devtype_data->ahb_buf_size;
> > + else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
> > + op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
>
> You are using the same alignments as in the QSPI driver. So AHB reads will
> happen in portions of ahb_buf_size, but you dont' stick to this when you map the
> memory. See above.
Reason mentioned above.
--
Regards
Yogesh Gaur
>
> Regards,
> Frieder
[...]
Powered by blists - more mailing lists