[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <ae479e60-d235-acf3-55cc-afd875644a19@linux.ibm.com>
Date: Mon, 7 Jan 2019 20:19:26 +0100
From: Michael Mueller <mimu@...ux.ibm.com>
To: pmorel@...ux.ibm.com, KVM Mailing List <kvm@...r.kernel.org>
Cc: Linux-S390 Mailing List <linux-s390@...r.kernel.org>,
linux-kernel@...r.kernel.org,
kvm390-list@...maker.boeblingen.de.ibm.com,
Martin Schwidefsky <schwidefsky@...ibm.com>,
Heiko Carstens <heiko.carstens@...ibm.com>,
Christian Borntraeger <borntraeger@...ibm.com>,
Janosch Frank <frankja@...ux.ibm.com>,
David Hildenbrand <david@...hat.com>,
Cornelia Huck <cohuck@...hat.com>,
Halil Pasic <pasic@...ux.ibm.com>
Subject: Re: [PATCH v5 13/15] KVM: s390: add function process_gib_alert_list()
On 03.01.19 15:43, Pierre Morel wrote:
> On 19/12/2018 20:17, Michael Mueller wrote:
>> This function processes the Gib Alert List (GAL). It is required
>> to run when either a gib alert interruption has been received or
>> a gisa that is in the alert list is cleared or dropped.
>>
>> The GAL is build up by millicode, when the respective ISC bit is
>> set in the Interruption Alert Mask (IAM) and an interruption of
>> that class is observed.
>>
>> Signed-off-by: Michael Mueller <mimu@...ux.ibm.com>
>> ---
>> arch/s390/kvm/interrupt.c | 140
>> ++++++++++++++++++++++++++++++++++++++++++++++
>> 1 file changed, 140 insertions(+)
>>
>> diff --git a/arch/s390/kvm/interrupt.c b/arch/s390/kvm/interrupt.c
>> index 48a93f5e5333..03e7ba4f215a 100644
>> --- a/arch/s390/kvm/interrupt.c
>> +++ b/arch/s390/kvm/interrupt.c
>> @@ -2941,6 +2941,146 @@ int kvm_s390_get_irq_state(struct kvm_vcpu
>> *vcpu, __u8 __user *buf, int len)
>> return n;
>> }
>> +static int __try_airqs_kick(struct kvm *kvm, u8 ipm)
>
> static inline ?
will add
>
>> +{
>> + struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
>> + struct kvm_vcpu *vcpu = NULL, *kick_vcpu[MAX_ISC + 1];
>> + int online_vcpus = atomic_read(&kvm->online_vcpus);
>> + u8 ioint_mask, isc_mask, kick_mask = 0x00;
>> + int vcpu_id, kicked = 0;
>> +
>> + /* Loop over vcpus in WAIT state. */
>> + for (vcpu_id = find_first_bit(fi->idle_mask, online_vcpus);
>> + /* Until all pending ISCs have a vcpu open for airqs. */
>> + (~kick_mask & ipm) && vcpu_id < online_vcpus;
>> + vcpu_id = find_next_bit(fi->idle_mask, online_vcpus,
>> vcpu_id)) {
>> + vcpu = kvm_get_vcpu(kvm, vcpu_id);
>> + if (psw_ioint_disabled(vcpu))
>> + continue;
>> + ioint_mask = (u8)(vcpu->arch.sie_block->gcr[6] >> 24);
>> + for (isc_mask = 0x80; isc_mask; isc_mask >>= 1) {
>> + /* ISC pending in IPM ? */
>> + if (!(ipm & isc_mask))
>> + continue;
>> + /* vcpu for this ISC already found ? */
>> + if (kick_mask & isc_mask)
>> + continue;
>> + /* vcpu open for airq of this ISC ? */
>> + if (!(ioint_mask & isc_mask))
>> + continue;
>> + /* use this vcpu (for all ISCs in ioint_mask) */
>> + kick_mask |= ioint_mask; > + kick_vcpu[kicked++] = vcpu;
>> + }
>> + }
>> +
>> + if (vcpu && ~kick_mask & ipm)
>> + VM_EVENT(kvm, 4, "gib alert undeliverable isc mask 0x%02x",
>> + ~kick_mask & ipm);
>> +
>> + for (vcpu_id = 0; vcpu_id < kicked; vcpu_id++)
>> + kvm_s390_vcpu_wakeup(kick_vcpu[vcpu_id]);
>> +
>> + return (online_vcpus != 0) ? kicked : -ENODEV;
>> +}
>> +
>> +static void __floating_airqs_kick(struct kvm *kvm)
> static inline ?
and here as well
>
>> +{
>> + struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
>> + int online_vcpus, kicked;
>> + u8 ipm_t0, ipm;
>> +
>> + /* Get IPM and return if clean, IAM has been restored. */
>> + ipm = get_ipm(kvm->arch.gisa, IRQ_FLAG_IAM);
>
> If we do not get an IPM here, it must have been stolen by the firmware
> for delivery to the guest.
> Then why restoring the IAM?
>
> Or do I miss something?
>
>> + if (!ipm)
>> + return;
>> +retry:
>> + ipm_t0 = ipm;
>> +
>> + /* Try to kick some vcpus in WAIT state. */
>> + kicked = __try_airqs_kick(kvm, ipm);
>> + if (kicked < 0)
>> + return;
>> +
>> + /* Get IPM and return if clean, IAM has been restored. */
>> + ipm = get_ipm(kvm->arch.gisa, IRQ_FLAG_IAM);
>> + if (!ipm)
>> + return;
>> +
>> + /* Start over, if new ISC bits are pending in IPM. */
>> + if ((ipm_t0 ^ ipm) & ~ipm_t0)
>> + goto retry;
>> +
>> + /*
>> + * Return as we just kicked at least one vcpu in WAIT state
>> + * open for airqs. The IAM will be restored latest when one
>> + * of them goes into WAIT or STOP state.
>> + */
>> + if (kicked > 0)
>> + return;
>> +
>> + /*
>> + * No vcpu was kicked either because no vcpu was in WAIT state
>> + * or none of the vcpus in WAIT state are open for airqs.
>> + * Return immediately if no vcpus are in WAIT state.
>> + * There are vcpus in RUN state. They will process the airqs
>> + * if not closed for airqs as well. In that case the system will
>> + * delay airqs until a vcpu decides to take airqs again.
>> + */
>> + online_vcpus = atomic_read(&kvm->online_vcpus);
>> + if (!bitmap_weight(fi->idle_mask, online_vcpus))
>> + return;
>> +
>> + /*
>> + * None of the vcpus in WAIT state take airqs and we might
>> + * have no running vcpus as at least one vcpu is in WAIT state
>> + * and IPM is dirty.
>> + */
>> + set_iam(kvm->arch.gisa, kvm->arch.iam);
>
> I do not understand why we need to set IAM here.
> The interrupt will be delivered by the firmware as soon as the PSW or
> CR6 is changed by any vCPU.
> ...and if this does not happen we can not deliver the interrupt anyway.
>
>> +}
>> +
>> +#define NULL_GISA_ADDR 0x00000000UL
>> +#define NONE_GISA_ADDR 0x00000001UL
>> +#define GISA_ADDR_MASK 0xfffff000UL
>> +
>> +static void __maybe_unused process_gib_alert_list(void)
>> +{
>> + u32 final, next_alert, origin = 0UL;
>> + struct kvm_s390_gisa *gisa;
>> + struct kvm *kvm;
>> +
>> + do {
>> + /*
>> + * If the NONE_GISA_ADDR is still stored in the alert list
>> + * origin, we will leave the outer loop. No further GISA has
>> + * been added to the alert list by millicode while processing
>> + * the current alert list.
>> + */
>> + final = (origin & NONE_GISA_ADDR);
>> + /*
>> + * Cut off the alert list and store the NONE_GISA_ADDR in the
>> + * alert list origin to avoid further GAL interruptions.
>> + * A new alert list can be build up by millicode in parallel
>> + * for guests not in the yet cut-off alert list. When in the
>> + * final loop, store the NULL_GISA_ADDR instead. This will re-
>> + * enable GAL interruptions on the host again.
>> + */
>> + origin = xchg(&gib->alert_list_origin,
>> + (!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR);
>> + /* Loop through the just cut-off alert list. */
>> + while (origin & GISA_ADDR_MASK) {
>> + gisa = (struct kvm_s390_gisa *)(u64)origin;
>> + next_alert = gisa->next_alert;
>> + /* Unlink the GISA from the alert list. */
>> + gisa->next_alert = origin;
>
> AFAIU this enable GISA interrupt for the guest...
>
>> + kvm = container_of(gisa, struct sie_page2, gisa)->kvm;
>> + /* Kick suitable vcpus */
>> + __floating_airqs_kick(kvm);
>
> ...and here we kick a VCPU for the guest.
>
> Logically I would do it in the otherway, first kicking the vCPU then
> enabling the GISA interruption again.
>
> If the IPM bit is cleared by the firmware during delivering the
> interrupt to the guest before we enter get_ipm() called by
> __floating_airqs_kick() we will set the IAM despite we have a running
> CPU handling the IRQ.
> In the worst case we can also set the IAM with the GISA in the alert
> list.
> Or we must accept that the firmware can deliver the IPM as soon as we
> reset the GISA next field.
>
>> + origin = next_alert;
>> + }
>> + } while (!final);
>> +}
>> +
>> static void nullify_gisa(struct kvm_s390_gisa *gisa)
>> {
>> memset(gisa, 0, sizeof(struct kvm_s390_gisa));
>>
>
> I think that avoiding to restore the IAM during the call to get_ipm
> inside __floating_airqs_kick() would good.
>
> If you agree, with that:
>
> Reviewed-by: Pierre Morel<pmorel@...ux.ibm.com>
>
>
--
Mit freundlichen Grüßen / Kind regards
Michael Müller
IBM Deutschland Research & Development GmbH
Vorsitzender des Aufsichtsrats: Matthias Hartmann
Geschäftsführung: Dirk Wittkopp
Sitz der Gesellschaft: Böblingen
Registergericht: Amtsgericht Stuttgart, HRB 243294
Powered by blists - more mailing lists