[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <20190109174341.19818-14-keith.busch@intel.com>
Date: Wed, 9 Jan 2019 10:43:41 -0700
From: Keith Busch <keith.busch@...el.com>
To: linux-kernel@...r.kernel.org, linux-acpi@...r.kernel.org,
linux-mm@...ck.org
Cc: Greg Kroah-Hartman <gregkh@...uxfoundation.org>,
Rafael Wysocki <rafael@...nel.org>,
Dave Hansen <dave.hansen@...el.com>,
Dan Williams <dan.j.williams@...el.com>,
Keith Busch <keith.busch@...el.com>
Subject: [PATCHv3 13/13] doc/mm: New documentation for memory performance
Platforms may provide system memory where some physical address ranges
perform differently than others, or is side cached by the system.
Add documentation describing a high level overview of such systems and the
perforamnce and caching attributes the kernel provides for applications
wishing to query this information.
Signed-off-by: Keith Busch <keith.busch@...el.com>
---
Documentation/admin-guide/mm/numaperf.rst | 184 ++++++++++++++++++++++++++++++
1 file changed, 184 insertions(+)
create mode 100644 Documentation/admin-guide/mm/numaperf.rst
diff --git a/Documentation/admin-guide/mm/numaperf.rst b/Documentation/admin-guide/mm/numaperf.rst
new file mode 100644
index 000000000000..b6d99d7e0f57
--- /dev/null
+++ b/Documentation/admin-guide/mm/numaperf.rst
@@ -0,0 +1,184 @@
+.. _numaperf:
+
+=============
+NUMA Locality
+=============
+
+Some platforms may have multiple types of memory attached to a single
+CPU. These disparate memory ranges share some characteristics, such as
+CPU cache coherence, but may have different performance. For example,
+different media types and buses affect bandwidth and latency.
+
+A system supporting such heterogeneous memory by grouping each memory
+type under different "nodes" based on similar CPU locality and performance
+characteristics. Some memory may share the same node as a CPU, and others
+are provided as memory only nodes. While memory only nodes do not provide
+CPUs, they may still be directly accessible, or local, to one or more
+compute nodes. The following diagram shows one such example of two compute
+noes with local memory and a memory only node for each of compute node:
+
+ +------------------+ +------------------+
+ | Compute Node 0 +-----+ Compute Node 1 |
+ | Local Node0 Mem | | Local Node1 Mem |
+ +--------+---------+ +--------+---------+
+ | |
+ +--------+---------+ +--------+---------+
+ | Slower Node2 Mem | | Slower Node3 Mem |
+ +------------------+ +--------+---------+
+
+A "memory initiator" is a node containing one or more devices such as
+CPUs or separate memory I/O devices that can initiate memory requests. A
+"memory target" is a node containing one or more accessible physical
+address ranges from one or more memory initiators.
+
+When multiple memory initiators exist, they may not all have the same
+performance when accessing a given memory target. Each initiator-target
+pair may be organized into different ranked access classes to represent
+this relationship. The highest performing initiator to a given target
+is considered to be one of that target's local initiators, and given
+the highest access class, 0. Any given target may have one or more
+local initiators, and any given initiator may have multiple local
+memory targets.
+
+To aid applications matching memory targets with their initiators, the
+kernel provide symlinks to each other. The following example lists the
+relationship for the class "0" memory intiators and targets, which is
+are the class of nodes with the highest performing access relationship::
+
+ # symlinks -v /sys/devices/system/node/nodeX/class0/
+ relative: /sys/devices/system/node/nodeX/class0/targetY -> ../../nodeY
+
+ # symlinks -v /sys/devices/system/node/nodeY/class0/
+ relative: /sys/devices/system/node/nodeY/class0/initiatorX -> ../../nodeX
+
+The linked nodes will also have their node numbers set in the class's
+mem_target and mem_initiator nodelist and nodemap entries. Following
+the same example as above may look like the following::
+
+ # cat /sys/devices/system/node/nodeX/class0/target_nodelist
+ Y
+
+ # cat /sys/devices/system/node/nodeY/class0/initiator_nodelist
+ X
+
+An example showing how this may be used to run a particular task on CPUs
+and memory using best class nodes for a particular PCI device can be done
+using existing 'numactl' as follows::
+
+ # NODE=$(cat /sys/devices/pci:0000:00/.../numa_node)
+ # numactl --membind=$(cat /sys/devices/node/node${NODE}/class0/target_nodelist) \
+ --cpunodebind=$(cat /sys/devices/node/node${NODE}/class0/initiator_nodelist) \
+ -- <some-program-to-execute>
+
+================
+NUMA Performance
+================
+
+Applications may wish to consider which node they want their memory to
+be allocated from based on the node's performance characteristics. If
+the system provides these attributes, the kernel exports them under the
+node sysfs hierarchy by appending the attributes directory under the
+memory node's class 0 initiators as follows::
+
+ /sys/devices/system/node/nodeY/class0/
+
+These attributes apply only to the memory initiator nodes that have the
+same class access and are symlink under the class, and are set in the
+initiators' nodelist.
+
+The performance characteristics the kernel provides for the local initiators
+are exported are as follows::
+
+ # tree -P "read*|write*" /sys/devices/system/node/nodeY/class0/
+ /sys/devices/system/node/nodeY/class0/
+ |-- read_bandwidth
+ |-- read_latency
+ |-- write_bandwidth
+ `-- write_latency
+
+The bandwidth attributes are provided in MiB/second.
+
+The latency attributes are provided in nanoseconds.
+
+==========
+NUMA Cache
+==========
+
+System memory may be constructed in a hierarchy of elements with various
+performance characteristics in order to provide large address space of
+slower performing memory side-cached by a smaller higher performing
+memory. The system physical addresses that initiators are aware of
+is provided by the last memory level in the hierarchy. The system
+meanwhile uses higher performing memory to transparently cache access
+to progressively slower levels.
+
+The term "far memory" is used to denote the last level memory in the
+hierarchy. Each increasing cache level provides higher performing
+initiator access, and the term "near memory" represents the fastest
+cache provided by the system.
+
+This numbering is different than CPU caches where the cache level (ex:
+L1, L2, L3) uses a CPU centric view with each increased level is lower
+performing. In contrast, the memory cache level is centric to the last
+level memory, so the higher numbered cache level denotes memory nearer
+to the CPU, and further from far memory.
+
+The memory side caches are not directly addressable by software. When
+software accesses a system address, the system will return it from the
+near memory cache if it is present. If it is not present, the system
+accesses the next level of memory until there is either a hit in that
+cache level, or it reaches far memory.
+
+An application does not need to know about caching attributes in order
+to use the system. Software may optionally query the memory cache
+attributes in order to maximize the performance out of such a setup.
+If the system provides a way for the kernel to discover this information,
+for example with ACPI HMAT (Heterogeneous Memory Attribute Table),
+the kernel will append these attributes to the NUMA node memory target.
+
+When the kernel first registers a memory cache with a node, the kernel
+will create the following directory::
+
+ /sys/devices/system/node/nodeX/side_cache/
+
+If that directory is not present, the system either does not not provide
+a memory side cache, or that information is not accessible to the kernel.
+
+The attributes for each level of cache is provided under its cache
+level index::
+
+ /sys/devices/system/node/nodeX/side_cache/indexA/
+ /sys/devices/system/node/nodeX/side_cache/indexB/
+ /sys/devices/system/node/nodeX/side_cache/indexC/
+
+Each cache level's directory provides its attributes. For example, the
+following shows a single cache level and the attributes available for
+software to query::
+
+ # tree sys/devices/system/node/node0/side_cache/
+ /sys/devices/system/node/node0/side_cache/
+ |-- index1
+ | |-- associativity
+ | |-- level
+ | |-- line_size
+ | |-- size
+ | `-- write_policy
+
+The "associativity" will be 0 if it is a direct-mapped cache, and non-zero
+for any other indexed based, multi-way associativity.
+
+The "level" is the distance from the far memory, and matches the number
+appended to its "index" directory.
+
+The "line_size" is the number of bytes accessed on a cache miss.
+
+The "size" is the number of bytes provided by this cache level.
+
+The "write_policy" will be 0 for write-back, and non-zero for
+write-through caching.
+
+========
+See Also
+========
+.. [1] https://www.uefi.org/sites/default/files/resources/ACPI_6_2.pdf
+ Section 5.2.27
--
2.14.4
Powered by blists - more mailing lists