lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date:   Sun, 13 Jan 2019 08:56:32 +0100
From:   Stephan Müller <smueller@...onox.de>
To:     Herbert Xu <herbert@...dor.apana.org.au>
Cc:     Eric Biggers <ebiggers@...nel.org>,
        James Bottomley <James.Bottomley@...senpartnership.com>,
        Andy Lutomirski <luto@...capital.net>,
        "Lee, Chun-Yi" <joeyli.kernel@...il.com>,
        "Rafael J . Wysocki" <rjw@...ysocki.net>,
        Pavel Machek <pavel@....cz>, linux-kernel@...r.kernel.org,
        linux-pm@...r.kernel.org, keyrings@...r.kernel.org,
        "Rafael J. Wysocki" <rafael.j.wysocki@...el.com>,
        Chen Yu <yu.c.chen@...el.com>,
        Oliver Neukum <oneukum@...e.com>,
        Ryan Chen <yu.chen.surf@...il.com>,
        David Howells <dhowells@...hat.com>,
        Giovanni Gherdovich <ggherdovich@...e.cz>,
        Randy Dunlap <rdunlap@...radead.org>,
        Jann Horn <jannh@...gle.com>,
        Andy Lutomirski <luto@...nel.org>, linux-crypto@...r.kernel.org
Subject: Re: [PATCH 4/6] crypto: hkdf - RFC5869 Key Derivation Function

Am Samstag, 12. Januar 2019, 10:55:35 CET schrieb Herbert Xu:

Hi Herbert,

> On Fri, Jan 11, 2019 at 09:12:54PM -0800, Eric Biggers wrote:
> > Hi Stephan,
> > 
> > On Fri, Jan 11, 2019 at 08:10:39PM +0100, Stephan Müller wrote:
> > > The RFC5869 compliant Key Derivation Function is implemented as a
> > > random number generator considering that it behaves like a deterministic
> > > RNG.
> > 
> > Thanks for the proof of concept!  I guess it ended up okay.  But can you
> > explain more the benefits of using the crypto_rng interface, as opposed
> > to just some crypto_hkdf_*() helper functions that are exported for
> > modules to use?
> I agree.  I see no benefit in adding this through the RNG API as
> opposed to just providing it as a helper.  If some form of hardware
> acceleration were to eventuate in the future we could always revisit
> this.

The advantages for using the kernel crypto API to add KDFs as opposed to 
adding helper wrappers are the following in my view:

- employment of the kernel crypto API testmgr - invocation of the testmgr is 
transparent and thus already provided without any additional code to link to 
it

- FIPS 140-2 compliance: To mark a KDF as FIPS 140-2 approved cipher, it must 
be subject to a known-answer self test (implemented by the testmgr) as well as 
to an enforcement of the integrity check verification. In FIPS 140-2 mode, the 
kernel crypto API panic()s when a kernel crypto API module is loaded and its 
signature does not check out. As this is only relevant for crypto modules (and 
not arbitrary other kernel modules), this is implemented with the invocations 
the crypto_register_alg as well as crypto_register_template functions. Thus, 
when using a wrapper code to implement the KDF, they can per definition not be 
FIPS 140-2 approved.

- The invoker of a KDF has one consistent API. This implies that the KDF 
selection now becomes more of a "configuration" choice. For example, when you 
look at the KDF use case for the keys subsystem (security/keys/dh.c), 
selecting the type of KDF would only necessitate a change of a string 
referencing the KDF. A lot of people somehow favor the extract-and-expand KDFs 
over the traditional KDFs. Now, that the RFC5869 HKDF is also approved as per 
SP800-56A rev3, I could see that folks may want to switch to HKDF for the key 
management. When we have a common API, this choice could even be left to the 
caller.

The question may arise why to plug the KDFs into RNGs. The answer is quite 
simple: KDFs are a form of random number generator. In that they take some 
input for initialization (aka seed, salt, key, personalization string). Then 
they produce pseudo-random bit sequences of arbitrary length. Possibly the 
generation operation can be modified by providing some additional input to be 
used by the generation process (aka label, context, info string, additional 
information string). Thus, the RNG interface is a natural fit for the KDFs.

Ciao
Stephan


Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ