lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <830db851-d5cb-4081-8d72-e3f3a0a282df@arm.com>
Date:   Mon, 14 Jan 2019 13:54:49 +0000
From:   James Morse <james.morse@....com>
To:     Peter Zijlstra <peterz@...radead.org>
Cc:     Waiman Long <longman@...hat.com>,
        Zhenzhong Duan <zhenzhong.duan@...cle.com>,
        LKML <linux-kernel@...r.kernel.org>,
        SRINIVAS <srinivas.eeda@...cle.com>
Subject: Re: Question about qspinlock nest

Hi Peter,

On 14/01/2019 13:16, Peter Zijlstra wrote:
> On Fri, Jan 11, 2019 at 06:32:58PM +0000, James Morse wrote:
>> On 10/01/2019 20:12, Peter Zijlstra wrote:
>>> On Thu, Jan 10, 2019 at 06:25:57PM +0000, James Morse wrote:
>>> The thing is, everything non-maskable (NMI like) really should not be
>>> using spinlocks at all.
>>>
>>> I otherwise have no clue about wth APEI is, but it sounds like horrible
>>> crap ;-)
>>
>> I think you've called it that before!: its that GHES thing in drivers/acpi/apei.
>>
>> What is the alternative? bit_spin_lock()?

>> These things can happen independently on multiple CPUs. On arm64 these NMIlike
>> things don't affect all CPUs like they seem to on x86.
> 
> It has nothing to do with how many CPUs are affected. It has everything
> to do with not being maskable.

(sorry, I didn't include any of the context, let me back-up a bit here:)

> What avoids the trivial self-recursion:
> 
>   spin_lock(&)
>   <NMI>
>     spin_lock(&x)
>      ... wait forever more ...
>   </NMI>
>   spin_unlock(&x)
> 
> ?

If its trying to take the same lock, I agree its deadlocked.
If the sequence above started with <NMI>, I agree its deadlocked.

APEI/GHES is doing neither of these things. It take a lock that is only ever
taken in_nmi(). nmi_enter()s BUG_ON(in_nmi()) means these never become re-entrant.

What is the lock doing? Protecting the 'NMI' fixmap slot in the unlikely case
that two CPUs end up in here at the same time.

(I though x86's NMI masked NMI until the next iret?)


This is murkier on arm64 as we have multiple things that behave like this, but
there is an order to them, and none of them can interrupt themselves.
e.g. We can't take an SError during the SError handler.

But we can take this SError/NMI on another CPU while the first one is still
running the handler.

These multiple NMIlike notifications mean having multiple locks/fixmap-slots,
one per notification. This is where the qspinlock node limit comes in, as we
could have more than 4 contexts.


Thanks,

James

> Normally for actual maskable interrupts, we use:
> 
>   spin_lock_irq(&x)
>   // our IRQ cannot happen here because: masked
>   spin_unlock_irq(&x)
> 
> But non-maskable, has, per definition, a wee issue there.

> Non-maskable MUST NOT _EVAH_ use any form of spinlocks, they're
> fundamentally incompatible. Non-maskable interrupts must employ
> wait-free atomic constructs.





Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ