[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20190129160743.9103-1-piotrs@cadence.com>
Date: Tue, 29 Jan 2019 16:07:43 +0000
From: Piotr Sroka <piotrs@...ence.com>
To: <linux-kernel@...r.kernel.org>
CC: Boris Brezillon <bbrezillon@...nel.org>,
Miquel Raynal <miquel.raynal@...tlin.com>,
Richard Weinberger <richard@....at>,
"David Woodhouse" <dwmw2@...radead.org>,
Brian Norris <computersforpeace@...il.com>,
Marek Vasut <marek.vasut@...il.com>,
Paul Burton <paul.burton@...s.com>,
Geert Uytterhoeven <geert@...ux-m68k.org>,
Arnd Bergmann <arnd@...db.de>,
Marcel Ziswiler <marcel.ziswiler@...adex.com>,
Dmitry Osipenko <digetx@...il.com>,
Stefan Agner <stefan@...er.ch>,
<linux-mtd@...ts.infradead.org>, Piotr Sroka <piotrs@...ence.com>
Subject: [PATCH 1/2] mtd: nand: Add Cadence NAND controller driver
This patch adds driver for Cadence HPNFC NAND controller.
Signed-off-by: Piotr Sroka <piotrs@...ence.com>
---
drivers/mtd/nand/raw/Kconfig | 8 +
drivers/mtd/nand/raw/Makefile | 1 +
drivers/mtd/nand/raw/cadence_nand.c | 2655 +++++++++++++++++++++++++++++++++++
drivers/mtd/nand/raw/cadence_nand.h | 631 +++++++++
4 files changed, 3295 insertions(+)
create mode 100644 drivers/mtd/nand/raw/cadence_nand.c
create mode 100644 drivers/mtd/nand/raw/cadence_nand.h
diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
index 1a55d3e3d4c5..742dcc947203 100644
--- a/drivers/mtd/nand/raw/Kconfig
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -541,4 +541,12 @@ config MTD_NAND_TEGRA
is supported. Extra OOB bytes when using HW ECC are currently
not supported.
+config MTD_NAND_CADENCE
+ tristate "Support Cadence NAND (HPNFC) controller"
+ depends on OF
+ help
+ Enable the driver for NAND flash on platforms using a Cadence NAND
+ controller.
+
+
endif # MTD_NAND
diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
index 57159b349054..9c1301164996 100644
--- a/drivers/mtd/nand/raw/Makefile
+++ b/drivers/mtd/nand/raw/Makefile
@@ -56,6 +56,7 @@ obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/
obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o
obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o
obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o
+obj-$(CONFIG_MTD_NAND_CADENCE) += cadence_nand.o
nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o
nand-objs += nand_onfi.o
diff --git a/drivers/mtd/nand/raw/cadence_nand.c b/drivers/mtd/nand/raw/cadence_nand.c
new file mode 100644
index 000000000000..c941e702d325
--- /dev/null
+++ b/drivers/mtd/nand/raw/cadence_nand.c
@@ -0,0 +1,2655 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Cadence NAND flash controller driver
+ *
+ * Copyright (C) 2019 Cadence
+ */
+
+#include <linux/bitfield.h>
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/interrupt.h>
+#include <linux/module.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mutex.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/wait.h>
+
+#include "cadence_nand.h"
+
+MODULE_LICENSE("GPL v2");
+#define CADENCE_NAND_NAME "cadence_nand"
+
+#define MAX_OOB_SIZE_PER_SECTOR 32
+#define MAX_ADDRESS_CYC 6
+#define MAX_DATA_SIZE 0xFFFC
+
+static int cadence_nand_wait_for_thread(struct cdns_nand_info *cdns_nand,
+ int8_t thread);
+static int cadence_nand_wait_for_idle(struct cdns_nand_info *cdns_nand);
+static int cadence_nand_cmd(struct nand_chip *chip,
+ const struct nand_subop *subop);
+static int cadence_nand_waitrdy(struct nand_chip *chip,
+ const struct nand_subop *subop);
+
+static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER(
+ NAND_OP_PARSER_PATTERN(
+ cadence_nand_cmd,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false)),
+ NAND_OP_PARSER_PATTERN(
+ cadence_nand_cmd,
+ NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)),
+ NAND_OP_PARSER_PATTERN(
+ cadence_nand_cmd,
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)),
+ NAND_OP_PARSER_PATTERN(
+ cadence_nand_cmd,
+ NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)),
+ NAND_OP_PARSER_PATTERN(
+ cadence_nand_waitrdy,
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(false))
+ );
+
+static inline struct cdns_nand_info *mtd_cdns_nand_info(struct mtd_info *mtd)
+{
+ return container_of(mtd_to_nand(mtd), struct cdns_nand_info, chip);
+}
+
+static inline struct
+cdns_nand_info *chip_to_cdns_nand_info(struct nand_chip *chip)
+{
+ return container_of(chip, struct cdns_nand_info, chip);
+}
+
+static inline bool
+cadence_nand_dma_buf_ok(struct cdns_nand_info *cdns_nand, const void *buf,
+ u32 buf_len)
+{
+ u8 data_dma_width = cdns_nand->caps.data_dma_width;
+
+ return buf && virt_addr_valid(buf) &&
+ likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) &&
+ likely(IS_ALIGNED(buf_len, data_dma_width));
+}
+
+static int cadence_nand_set_ecc_enable(struct cdns_nand_info *cdns_nand,
+ bool enable)
+{
+ u32 reg;
+
+ if (cadence_nand_wait_for_idle(cdns_nand)) {
+ dev_err(cdns_nand->dev, "Error. Controller is busy");
+ return -ETIMEDOUT;
+ }
+
+ reg = readl(cdns_nand->reg + ECC_CONFIG_0);
+
+ if (enable)
+ reg |= ECC_CONFIG_0_ECC_EN;
+ else
+ reg &= ~ECC_CONFIG_0_ECC_EN;
+
+ writel(reg, cdns_nand->reg + ECC_CONFIG_0);
+
+ return 0;
+}
+
+static int cadence_nand_set_ecc_strength(struct cdns_nand_info *cdns_nand,
+ u8 strength)
+{
+ u32 reg;
+ u8 i, corr_str_idx = 0;
+
+ if (cadence_nand_wait_for_idle(cdns_nand)) {
+ dev_err(cdns_nand->dev, "Error. Controller is busy");
+ return -ETIMEDOUT;
+ }
+
+ for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
+ if (cdns_nand->ecc_strengths[i] == strength) {
+ corr_str_idx = i;
+ break;
+ }
+ }
+
+ reg = readl(cdns_nand->reg + ECC_CONFIG_0);
+ reg &= ~ECC_CONFIG_0_CORR_STR;
+ reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx);
+ writel(reg, cdns_nand->reg + ECC_CONFIG_0);
+
+ return 0;
+}
+
+static int cadence_nand_set_skip_marker_val(struct cdns_nand_info *cdns_nand,
+ u16 marker_value)
+{
+ u32 reg = 0;
+
+ if (cadence_nand_wait_for_idle(cdns_nand)) {
+ dev_err(cdns_nand->dev, "Error. Controller is busy");
+ return -ETIMEDOUT;
+ }
+
+ reg = readl(cdns_nand->reg + SKIP_BYTES_CONF);
+ reg &= ~SKIP_BYTES_MARKER_VALUE;
+ reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE,
+ marker_value);
+
+ writel(reg, cdns_nand->reg + SKIP_BYTES_CONF);
+
+ return 0;
+}
+
+static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_info *cdns_nand,
+ u8 num_of_bytes,
+ u32 offset_value,
+ int enable)
+{
+ u32 reg = 0;
+ u32 skip_bytes_offset = 0;
+
+ if (cadence_nand_wait_for_idle(cdns_nand)) {
+ dev_err(cdns_nand->dev, "Error. Controller is busy");
+ return -ETIMEDOUT;
+ }
+
+ if (!enable) {
+ num_of_bytes = 0;
+ offset_value = 0;
+ }
+
+ reg = readl(cdns_nand->reg + SKIP_BYTES_CONF);
+ reg &= ~SKIP_BYTES_NUM_OF_BYTES;
+ reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES,
+ num_of_bytes);
+ skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE,
+ offset_value);
+
+ writel(reg, cdns_nand->reg + SKIP_BYTES_CONF);
+ writel(skip_bytes_offset, cdns_nand->reg + SKIP_BYTES_OFFSET);
+
+ return 0;
+}
+
+static int cadence_nand_set_erase_detection(struct cdns_nand_info *cdns_nand,
+ bool enable,
+ u8 bitflips_threshold)
+{
+ u32 reg;
+
+ if (cadence_nand_wait_for_idle(cdns_nand)) {
+ dev_err(cdns_nand->dev, "Error. Controller is busy");
+ return -ETIMEDOUT;
+ }
+
+ reg = readl(cdns_nand->reg + ECC_CONFIG_0);
+
+ if (enable)
+ reg |= ECC_CONFIG_0_ERASE_DET_EN;
+ else
+ reg &= ~ECC_CONFIG_0_ERASE_DET_EN;
+
+ writel(reg, cdns_nand->reg + ECC_CONFIG_0);
+
+ writel(bitflips_threshold, cdns_nand->reg + ECC_CONFIG_1);
+
+ return 0;
+}
+
+static int cadence_nand_set_access_width(struct cdns_nand_info *cdns_nand,
+ u8 access_width)
+{
+ u32 reg;
+ int status;
+
+ status = cadence_nand_wait_for_idle(cdns_nand);
+ if (status) {
+ dev_err(cdns_nand->dev, "Error. Controller is busy");
+ return status;
+ }
+
+ reg = readl(cdns_nand->reg + COMMON_SET);
+
+ if (access_width == 8)
+ reg &= ~COMMON_SET_DEVICE_16BIT;
+ else
+ reg |= COMMON_SET_DEVICE_16BIT;
+ writel(reg, cdns_nand->reg + COMMON_SET);
+
+ return 0;
+}
+
+static void
+cadence_nand_clear_interrupt(struct cdns_nand_info *cdns_nand,
+ struct cadence_nand_irq_status *irq_status)
+{
+ writel(irq_status->status, cdns_nand->reg + INTR_STATUS);
+ writel(irq_status->trd_status, cdns_nand->reg + TRD_COMP_INT_STATUS);
+ writel(irq_status->trd_error, cdns_nand->reg + TRD_ERR_INT_STATUS);
+}
+
+static void
+cadence_nand_read_int_status(struct cdns_nand_info *cdns_nand,
+ struct cadence_nand_irq_status *irq_status)
+{
+ irq_status->status = readl(cdns_nand->reg + INTR_STATUS);
+ irq_status->trd_status = readl(cdns_nand->reg
+ + TRD_COMP_INT_STATUS);
+ irq_status->trd_error = readl(cdns_nand->reg + TRD_ERR_INT_STATUS);
+}
+
+static inline u32 irq_detected(struct cdns_nand_info *cdns_nand,
+ struct cadence_nand_irq_status *irq_status)
+{
+ cadence_nand_read_int_status(cdns_nand, irq_status);
+
+ return irq_status->status || irq_status->trd_status ||
+ irq_status->trd_error;
+}
+
+static void cadence_nand_reset_irq(struct cdns_nand_info *cdns_nand)
+{
+ spin_lock(&cdns_nand->irq_lock);
+ memset(&cdns_nand->irq_status, 0, sizeof(cdns_nand->irq_status));
+ memset(&cdns_nand->irq_mask, 0, sizeof(cdns_nand->irq_mask));
+ spin_unlock(&cdns_nand->irq_lock);
+}
+
+/*
+ * This is the interrupt service routine. It handles all interrupts
+ * sent to this device.
+ */
+static irqreturn_t cadence_nand_isr(int irq, void *dev_id)
+{
+ struct cdns_nand_info *cdns_nand = dev_id;
+ struct cadence_nand_irq_status irq_status;
+ irqreturn_t result = IRQ_NONE;
+
+ spin_lock(&cdns_nand->irq_lock);
+
+ if (irq_detected(cdns_nand, &irq_status)) {
+ /* handle interrupt */
+ /* first acknowledge it */
+ cadence_nand_clear_interrupt(cdns_nand, &irq_status);
+ /* store the status in the device context for someone to read */
+ cdns_nand->irq_status.status |= irq_status.status;
+ cdns_nand->irq_status.trd_status |= irq_status.trd_status;
+ cdns_nand->irq_status.trd_error |= irq_status.trd_error;
+ /* notify anyone who cares that it happened */
+ complete(&cdns_nand->complete);
+ /* tell the OS that we've handled this */
+ result = IRQ_HANDLED;
+ }
+ spin_unlock(&cdns_nand->irq_lock);
+ return result;
+}
+
+static void
+cadence_nand_wait_for_irq(struct cdns_nand_info *cdns_nand,
+ struct cadence_nand_irq_status *irq_mask,
+ struct cadence_nand_irq_status *irq_status)
+{
+ unsigned long timeout = msecs_to_jiffies(10000);
+ unsigned long comp_res;
+
+ do {
+ comp_res = wait_for_completion_timeout(&cdns_nand->complete,
+ timeout);
+ spin_lock_irq(&cdns_nand->irq_lock);
+ *irq_status = cdns_nand->irq_status;
+
+ if ((irq_status->status & irq_mask->status) ||
+ (irq_status->trd_status & irq_mask->trd_status) ||
+ (irq_status->trd_error & irq_mask->trd_error)) {
+ cdns_nand->irq_status.status &= ~irq_mask->status;
+ cdns_nand->irq_status.trd_status &=
+ ~irq_mask->trd_status;
+ cdns_nand->irq_status.trd_error &= ~irq_mask->trd_error;
+ spin_unlock_irq(&cdns_nand->irq_lock);
+ /* our interrupt was detected */
+ break;
+ }
+
+ /*
+ * these are not the interrupts you are looking for;
+ * need to wait again
+ */
+ spin_unlock_irq(&cdns_nand->irq_lock);
+ } while (comp_res != 0);
+
+ if (comp_res == 0) {
+ /* timeout */
+ dev_err(cdns_nand->dev, "timeout occurred:\n");
+ dev_err(cdns_nand->dev, "\tstatus = 0x%x, mask = 0x%x\n",
+ irq_status->status, irq_mask->status);
+ dev_err(cdns_nand->dev,
+ "\ttrd_status = 0x%x, trd_status mask = 0x%x\n",
+ irq_status->trd_status, irq_mask->trd_status);
+ dev_err(cdns_nand->dev,
+ "\t trd_error = 0x%x, trd_error mask = 0x%x\n",
+ irq_status->trd_error, irq_mask->trd_error);
+
+ memset(irq_status, 0, sizeof(struct cadence_nand_irq_status));
+ }
+}
+
+static void
+cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_info *cdns_nand)
+{
+ /* disable interrupts */
+ writel(INTR_ENABLE_INTR_EN, cdns_nand->reg + INTR_ENABLE);
+ free_irq(irqnum, cdns_nand);
+}
+
+/* wait until NAND flash device is ready */
+static int wait_for_rb_ready(struct cdns_nand_info *cdns_nand,
+ unsigned int timeout_ms)
+{
+ unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
+ u32 reg;
+
+ do {
+ reg = readl(cdns_nand->reg + RBN_SETINGS);
+ reg = (reg >> cdns_nand->chip.cur_cs) & 0x01;
+ cpu_relax();
+ } while ((reg == 0) && time_before(jiffies, timeout));
+
+ if (time_after_eq(jiffies, timeout)) {
+ dev_err(cdns_nand->dev,
+ "Timeout while waiting for flash device %d ready\n",
+ cdns_nand->chip.cur_cs);
+ return -ETIMEDOUT;
+ }
+ return 0;
+}
+
+static int
+cadence_nand_wait_for_thread(struct cdns_nand_info *cdns_nand, int8_t thread)
+{
+ unsigned long timeout = jiffies + msecs_to_jiffies(1000);
+ u32 reg;
+
+ do {
+ /* get busy status of all threads */
+ reg = readl(cdns_nand->reg + TRD_STATUS);
+ /* mask all threads but selected */
+ reg &= (1 << thread);
+ } while (reg && time_before(jiffies, timeout));
+
+ if (time_after_eq(jiffies, timeout)) {
+ dev_err(cdns_nand->dev,
+ "Timeout while waiting for thread %d\n",
+ thread);
+ return -ETIMEDOUT;
+ }
+
+ return 0;
+}
+
+static int cadence_nand_wait_for_idle(struct cdns_nand_info *cdns_nand)
+{
+ unsigned long timeout = jiffies + msecs_to_jiffies(1000);
+ u32 reg;
+
+ do {
+ reg = readl(cdns_nand->reg + CTRL_STATUS);
+ } while ((reg & CTRL_STATUS_CTRL_BUSY) &&
+ time_before(jiffies, timeout));
+
+ if (time_after_eq(jiffies, timeout)) {
+ dev_err(cdns_nand->dev, "Timeout while waiting for controller idle\n");
+ return -ETIMEDOUT;
+ }
+
+ return 0;
+}
+
+/* This function waits for device initialization */
+static int wait_for_init_complete(struct cdns_nand_info *cdns_nand)
+{
+ unsigned long timeout = jiffies + msecs_to_jiffies(10000);
+ u32 reg;
+
+ do {/* get ctrl status register */
+ reg = readl(cdns_nand->reg + CTRL_STATUS);
+ } while (((reg & CTRL_STATUS_INIT_COMP) == 0) &&
+ time_before(jiffies, timeout));
+
+ if (time_after_eq(jiffies, timeout)) {
+ dev_err(cdns_nand->dev,
+ "Timeout while waiting for controller init complete\n");
+ return -ETIMEDOUT;
+ }
+
+ return 0;
+}
+
+/* execute generic command on NAND controller */
+static int cadence_nand_generic_cmd_send(struct cdns_nand_info *cdns_nand,
+ u8 thread_nr,
+ u64 mini_ctrl_cmd,
+ u8 use_intr)
+{
+ u32 mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF;
+ u32 mini_ctrl_cmd_h = mini_ctrl_cmd >> 32;
+ u32 reg = 0;
+ u8 status;
+
+ status = cadence_nand_wait_for_thread(cdns_nand, thread_nr);
+ if (status) {
+ dev_err(cdns_nand->dev,
+ "controller thread is busy cannot execute command\n");
+ return status;
+ }
+
+ cadence_nand_reset_irq(cdns_nand);
+
+ writel(mini_ctrl_cmd_l, cdns_nand->reg + CMD_REG2);
+ writel(mini_ctrl_cmd_h, cdns_nand->reg + CMD_REG3);
+
+ /* select generic command */
+ reg |= FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN);
+ /* thread number */
+ reg |= FIELD_PREP(CMD_REG0_TN, thread_nr);
+ if (use_intr)
+ reg |= CMD_REG0_INT;
+
+ /* issue command */
+ writel(reg, cdns_nand->reg + CMD_REG0);
+
+ return 0;
+}
+
+/* wait for data on slave dma interface */
+static int cadence_nand_wait_on_sdma(struct cdns_nand_info *cdns_nand,
+ u8 *out_sdma_trd,
+ u32 *out_sdma_size)
+{
+ struct cadence_nand_irq_status irq_mask, irq_status;
+
+ irq_mask.trd_status = 0;
+ irq_mask.trd_error = 0;
+ irq_mask.status = INTR_STATUS_SDMA_TRIGG
+ | INTR_STATUS_SDMA_ERR
+ | INTR_STATUS_UNSUPP_CMD;
+
+ cadence_nand_wait_for_irq(cdns_nand, &irq_mask, &irq_status);
+ if (irq_status.status == 0) {
+ dev_err(cdns_nand->dev, "Timeout while waiting for SDMA\n");
+ return -ETIMEDOUT;
+ }
+
+ if (irq_status.status & INTR_STATUS_SDMA_TRIGG) {
+ *out_sdma_size = readl(cdns_nand->reg + SDMA_SIZE);
+ *out_sdma_trd = readl(cdns_nand->reg + SDMA_TRD_NUM);
+ *out_sdma_trd =
+ FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd);
+ } else {
+ dev_err(cdns_nand->dev, "SDMA error - irq_status %x\n",
+ irq_status.status);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+static void cadence_nand_get_caps(struct cdns_nand_info *cdns_nand)
+{
+ u32 reg;
+
+ reg = readl(cdns_nand->reg + CTRL_FEATURES);
+
+ cdns_nand->caps.max_banks = FIELD_GET(CTRL_FEATURES_N_BANKS, reg);
+
+ if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg))
+ cdns_nand->caps.data_dma_width = 8;
+ else
+ cdns_nand->caps.data_dma_width = 4;
+
+ if (reg & CTRL_FEATURES_CONTROL_DATA)
+ cdns_nand->caps.data_control_supp = 1;
+}
+
+/* prepare CDMA descriptor */
+static void
+cadence_nand_cdma_desc_prepare(struct cadence_nand_cdma_desc *cdma_desc,
+ char nf_mem, u32 flash_ptr, char *mem_ptr,
+ char *ctrl_data_ptr, u16 ctype)
+{
+ memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc));
+
+ /* set fields for one descriptor */
+ cdma_desc->flash_pointer = (nf_mem << CDMA_CFPTR_MEM_SHIFT)
+ + flash_ptr;
+ cdma_desc->command_flags |= CDMA_CF_DMA_MASTER;
+ cdma_desc->command_flags |= CDMA_CF_INT;
+
+ cdma_desc->memory_pointer = (uintptr_t)mem_ptr;
+ cdma_desc->status = 0;
+ cdma_desc->sync_flag_pointer = 0;
+ cdma_desc->sync_arguments = 0;
+
+ cdma_desc->command_type = ctype;
+ cdma_desc->ctrl_data_ptr = (uintptr_t)ctrl_data_ptr;
+}
+
+static u8 cadence_nand_check_desc_error(u32 desc_status)
+{
+ if (desc_status & CDMA_CS_ERP)
+ return STAT_ERASED;
+
+ if (desc_status & CDMA_CS_UNCE)
+ return STAT_ECC_UNCORR;
+
+ if (desc_status & CDMA_CS_ERR) {
+ pr_err(CADENCE_NAND_NAME ":CDMA desc error flag detected.\n");
+ return STAT_FAIL;
+ }
+
+ if (FIELD_GET(CDMA_CS_MAXERR, desc_status))
+ return STAT_ECC_CORR;
+
+ return STAT_FAIL;
+}
+
+static int cadence_nand_cdma_finish(struct cdns_nand_info *cdns_nand,
+ struct cadence_nand_cdma_desc *cdma_desc)
+{
+ struct cadence_nand_cdma_desc *desc_ptr;
+ u8 status = STAT_BUSY;
+
+ desc_ptr = cdma_desc;
+
+ if (desc_ptr->status & CDMA_CS_FAIL) {
+ status = cadence_nand_check_desc_error(desc_ptr->status);
+ dev_err(cdns_nand->dev, ":CDMA error %x\n", desc_ptr->status);
+ } else if (desc_ptr->status & CDMA_CS_COMP) {
+ /* descriptor finished with no errors */
+ if (desc_ptr->command_flags & CDMA_CF_CONT) {
+ dev_info(cdns_nand->dev, "DMA unsupported flag is set");
+ status = STAT_UNKNOWN;
+ } else {
+ /* last descriptor */
+ status = STAT_OK;
+ }
+ }
+
+ return status;
+}
+
+static int cadence_nand_cdma_send(struct cdns_nand_info *cdns_nand,
+ u8 thread)
+{
+ u32 reg = 0;
+ int status;
+
+ /* wait for thread ready*/
+ status = cadence_nand_wait_for_thread(cdns_nand, thread);
+ if (status)
+ return status;
+
+ cadence_nand_reset_irq(cdns_nand);
+
+ writel((u32)cdns_nand->dma_cdma_desc,
+ cdns_nand->reg + CMD_REG2);
+ writel(0, cdns_nand->reg + CMD_REG3);
+
+ /* select CDMA mode */
+ reg |= FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA);
+ /* thread number */
+ reg |= FIELD_PREP(CMD_REG0_TN, thread);
+ /* issue command */
+ writel(reg, cdns_nand->reg + CMD_REG0);
+
+ return 0;
+}
+
+/* send SDMA command and wait for finish */
+static u32
+cadence_nand_cdma_send_and_wait(struct cdns_nand_info *cdns_nand,
+ u8 thread)
+{
+ struct cadence_nand_irq_status irq_mask, irq_status = {0};
+ int status;
+
+ status = cadence_nand_cdma_send(cdns_nand, thread);
+ if (status)
+ return status;
+
+ irq_mask.trd_status = 1 << thread;
+ irq_mask.trd_error = 1 << thread;
+ irq_mask.status = INTR_STATUS_CDMA_TERR;
+ cadence_nand_wait_for_irq(cdns_nand, &irq_mask, &irq_status);
+
+ if (irq_status.status == 0 && irq_status.trd_status == 0 &&
+ irq_status.trd_error == 0) {
+ dev_err(cdns_nand->dev, "CDMA command timeout\n");
+ return -ETIMEDOUT;
+ }
+ if (irq_status.status & irq_mask.status) {
+ dev_err(cdns_nand->dev, "CDMA command failed\n");
+ return -EIO;
+ }
+
+ return 0;
+}
+
+/* ECC size depends on configured ECC strength and on maximum supported
+ * ECC step size
+ */
+static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength)
+{
+ u32 result;
+ u8 mult;
+
+ switch (max_step_size) {
+ case 256:
+ mult = 12;
+ break;
+ case 512:
+ mult = 13;
+ break;
+ case 1024:
+ mult = 14;
+ break;
+ case 2048:
+ mult = 15;
+ break;
+ case 4096:
+ mult = 16;
+ break;
+ default:
+ pr_err("%s: max_step_size %d\n", __func__, max_step_size);
+ return -EINVAL;
+ }
+
+ result = (mult * strength) / 16;
+ /* round up */
+ if ((result * 16) < (mult * strength))
+ result++;
+
+ /* check bit size per one sector */
+ result = 2 * result;
+
+ return result;
+}
+
+static int cadence_nand_calc_ecc_bytes_256(int step_size, int strength)
+{
+ return cadence_nand_calc_ecc_bytes(256, strength);
+}
+
+static int cadence_nand_calc_ecc_bytes_512(int step_size, int strength)
+{
+ return cadence_nand_calc_ecc_bytes(512, strength);
+}
+
+static int cadence_nand_calc_ecc_bytes_1024(int step_size, int strength)
+{
+ return cadence_nand_calc_ecc_bytes(1024, strength);
+}
+
+static int cadence_nand_calc_ecc_bytes_2048(int step_size, int strength)
+{
+ return cadence_nand_calc_ecc_bytes(2048, strength);
+}
+
+static int cadence_nand_calc_ecc_bytes_4096(int step_size, int strength)
+{
+ return cadence_nand_calc_ecc_bytes(4096, strength);
+}
+
+/* function reads BCH configuration */
+static int cadence_nand_read_bch_cfg(struct cdns_nand_info *cdns_nand)
+{
+ struct nand_ecc_caps *ecc_caps = &cdns_nand->ecc_caps;
+ int max_step_size = 0;
+ int nstrengths;
+ u32 reg;
+ int i;
+
+ reg = readl(cdns_nand->reg + BCH_CFG_0);
+ cdns_nand->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg);
+ cdns_nand->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg);
+ cdns_nand->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg);
+ cdns_nand->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg);
+
+ reg = readl(cdns_nand->reg + BCH_CFG_1);
+ cdns_nand->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg);
+ cdns_nand->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg);
+ cdns_nand->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg);
+ cdns_nand->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg);
+
+ reg = readl(cdns_nand->reg + BCH_CFG_2);
+ cdns_nand->ecc_stepinfos[0].stepsize =
+ FIELD_GET(BCH_CFG_2_SECT_0, reg);
+
+ cdns_nand->ecc_stepinfos[1].stepsize =
+ FIELD_GET(BCH_CFG_2_SECT_1, reg);
+
+ nstrengths = 0;
+ for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
+ if (cdns_nand->ecc_strengths[i] != 0)
+ nstrengths++;
+ }
+
+ ecc_caps->nstepinfos = 0;
+ for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) {
+ /* ECC strengths are common for all step infos */
+ cdns_nand->ecc_stepinfos[i].nstrengths = nstrengths;
+ cdns_nand->ecc_stepinfos[i].strengths =
+ cdns_nand->ecc_strengths;
+
+ if (cdns_nand->ecc_stepinfos[i].stepsize != 0)
+ ecc_caps->nstepinfos++;
+
+ if (cdns_nand->ecc_stepinfos[i].stepsize > max_step_size)
+ max_step_size = cdns_nand->ecc_stepinfos[i].stepsize;
+ }
+
+ ecc_caps->stepinfos = &cdns_nand->ecc_stepinfos[0];
+
+ switch (max_step_size) {
+ case 256:
+ ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256;
+ break;
+ case 512:
+ ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512;
+ break;
+ case 1024:
+ ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024;
+ break;
+ case 2048:
+ ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048;
+ break;
+ case 4096:
+ ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096;
+ break;
+ default:
+ dev_err(cdns_nand->dev,
+ "Unsupported sector size(ecc step size) %d\n",
+ max_step_size);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+/* hardware initialization */
+static int cadence_nand_hw_init(struct cdns_nand_info *cdns_nand)
+{
+ int status = 0;
+ u32 reg;
+
+ status = wait_for_init_complete(cdns_nand);
+ if (status)
+ return status;
+
+ reg = readl(cdns_nand->reg + CTRL_VERSION);
+
+ dev_info(cdns_nand->dev,
+ "%s: cadence nand controller version reg %x\n",
+ __func__, reg);
+
+ /* disable cache and multiplane */
+ writel(0, cdns_nand->reg + MULTIPLANE_CFG);
+ writel(0, cdns_nand->reg + CACHE_CFG);
+
+ /* enable interrupts */
+ reg = INTR_ENABLE_INTR_EN
+ | INTR_ENABLE_CDMA_TERR_EN
+ | INTR_ENABLE_DDMA_TERR_EN
+ | INTR_ENABLE_UNSUPP_CMD_EN
+ | INTR_ENABLE_SDMA_TRIGG_EN
+ | INTR_ENABLE_SDMA_ERR_EN;
+ writel(reg, cdns_nand->reg + INTR_ENABLE);
+ /* clear all interrupts */
+ writel(0xFFFFFFFF, cdns_nand->reg + INTR_STATUS);
+ /* enable signaling thread error interrupts for all threads */
+ writel(0xFF, cdns_nand->reg + TRD_ERR_INT_STATUS_EN);
+
+ cadence_nand_get_caps(cdns_nand);
+ cadence_nand_read_bch_cfg(cdns_nand);
+
+ /* set io width access to 8
+ * it is because during SW device dicovering width access
+ * is expected to be 8
+ */
+ status = cadence_nand_set_access_width(cdns_nand, 8);
+
+ return status;
+}
+
+#define TT_OOB_AREA 1
+#define TT_MAIN_OOB_AREAS 2
+#define TT_RAW_PAGE 3
+#define TT_BBM 4
+#define TT_MAIN_OOB_AREA_EXT 5
+
+/* prepare size of data to transfer */
+static int
+cadence_nand_prepare_data_size(struct cdns_nand_info *cdns_nand,
+ int transfer_type)
+{
+ u32 sec_size = 0, last_sec_size, offset, sec_cnt;
+ u32 ecc_size = cdns_nand->chip.ecc.bytes;
+ u32 data_ctrl_size = 0;
+ u32 reg = 0;
+
+ if (cdns_nand->curr_trans_type == transfer_type)
+ return 0;
+
+ switch (transfer_type) {
+ case TT_OOB_AREA:
+ offset = cdns_nand->main_size - cdns_nand->sector_size;
+ ecc_size = ecc_size * (offset / cdns_nand->sector_size);
+ offset = offset + ecc_size;
+ sec_cnt = 1;
+ last_sec_size = cdns_nand->sector_size
+ + cdns_nand->avail_oob_size;
+ break;
+ case TT_MAIN_OOB_AREA_EXT:
+ offset = 0;
+ sec_cnt = cdns_nand->sector_count;
+ last_sec_size = cdns_nand->sector_size;
+ sec_size = cdns_nand->sector_size;
+ data_ctrl_size = cdns_nand->avail_oob_size;
+ break;
+ case TT_MAIN_OOB_AREAS:
+ offset = 0;
+ sec_cnt = cdns_nand->sector_count;
+ last_sec_size = cdns_nand->sector_size
+ + cdns_nand->avail_oob_size;
+ sec_size = cdns_nand->sector_size;
+ break;
+ case TT_RAW_PAGE:
+ offset = 0;
+ sec_cnt = 1;
+ last_sec_size = cdns_nand->main_size + cdns_nand->oob_size;
+ break;
+ case TT_BBM:
+ offset = cdns_nand->main_size + cdns_nand->bbm_offs;
+ sec_cnt = 1;
+ last_sec_size = 8;
+ break;
+ default:
+ dev_err(cdns_nand->dev, "Data size preparation failed\n");
+ return -EINVAL;
+ }
+
+ reg = 0;
+ reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset);
+ reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt);
+ writel(reg, cdns_nand->reg + TRAN_CFG_0);
+
+ reg = 0;
+ reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size);
+ reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size);
+ writel(reg, cdns_nand->reg + TRAN_CFG_1);
+
+ reg = readl(cdns_nand->reg + CONTROL_DATA_CTRL);
+ reg &= ~CONTROL_DATA_CTRL_SIZE;
+ reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size);
+ writel(reg, cdns_nand->reg + CONTROL_DATA_CTRL);
+
+ cdns_nand->curr_trans_type = transfer_type;
+
+ return 0;
+}
+
+static int
+cadence_nand_cdma_transfer(struct mtd_info *mtd, int page, void *buf,
+ void *ctrl_dat, u32 buf_size,
+ u32 ctrl_dat_size, enum dma_data_direction dir,
+ bool with_ecc)
+{
+ struct cdns_nand_info *cdns_nand = mtd_cdns_nand_info(mtd);
+ struct cadence_nand_cdma_desc *cdma_desc = cdns_nand->cdma_desc;
+ dma_addr_t dma_buf = 0, dma_ctrl_dat = 0;
+ u8 thread_nr = cdns_nand->chip.cur_cs;
+ int status = 0;
+ u16 ctype;
+
+ if (dir == DMA_FROM_DEVICE)
+ ctype = CDMA_CT_RD;
+ else
+ ctype = CDMA_CT_WR;
+
+ cadence_nand_set_ecc_enable(cdns_nand, with_ecc);
+
+ dma_buf = dma_map_single(cdns_nand->dev, buf, buf_size, dir);
+ if (dma_mapping_error(cdns_nand->dev, dma_buf)) {
+ dev_err(cdns_nand->dev, "Failed to map DMA buffer\n");
+ return -EIO;
+ }
+
+ if (ctrl_dat && ctrl_dat_size) {
+ dma_ctrl_dat = dma_map_single(cdns_nand->dev, ctrl_dat,
+ ctrl_dat_size, dir);
+ if (dma_mapping_error(cdns_nand->dev, dma_ctrl_dat)) {
+ dma_unmap_single(cdns_nand->dev, dma_buf,
+ buf_size, dir);
+ dev_err(cdns_nand->dev, "Failed to map DMA buffer\n");
+ return -EIO;
+ }
+ }
+
+ cadence_nand_cdma_desc_prepare(cdma_desc, cdns_nand->chip.cur_cs, page,
+ (void *)dma_buf, (void *)dma_ctrl_dat,
+ ctype);
+
+ status = cadence_nand_cdma_send_and_wait(cdns_nand, thread_nr);
+
+ dma_unmap_single(cdns_nand->dev, dma_buf,
+ buf_size, dir);
+
+ if (ctrl_dat && ctrl_dat_size)
+ dma_unmap_single(cdns_nand->dev, dma_ctrl_dat,
+ ctrl_dat_size, dir);
+ if (status)
+ return status;
+
+ return cadence_nand_cdma_finish(cdns_nand, cdns_nand->cdma_desc);
+}
+
+/* get corrected ECC errors of last read operation */
+static u32 get_ecc_count(struct cdns_nand_info *cdns_nand)
+{
+ return FIELD_GET(CDMA_CS_MAXERR, cdns_nand->cdma_desc->status);
+}
+
+static int cadence_nand_block_markbad(struct nand_chip *chip, loff_t ofs)
+{
+ struct cdns_nand_info *cdns_nand = chip_to_cdns_nand_info(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int ret = 0, res = 0, i = 0;
+
+ memset(cdns_nand->buf, 0xFF, mtd->oobsize);
+
+ cadence_nand_set_skip_bytes_conf(cdns_nand, 0, 0, 0);
+
+ memset(cdns_nand->buf, 0, cdns_nand->bbm_len);
+
+ /* Write to first/last page(s) if necessary */
+ if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
+ ofs += mtd->erasesize - mtd->writesize;
+ do {
+ int chipnr = (int)(ofs >> chip->chip_shift);
+ int page = (int)(ofs >> chip->page_shift);
+
+ nand_select_target(chip, chipnr);
+
+ /* configure controller to program only a spare area */
+ res = cadence_nand_prepare_data_size(cdns_nand, TT_BBM);
+ if (res) {
+ ret = -EIO;
+ break;
+ }
+
+ res = cadence_nand_cdma_transfer(mtd, page,
+ cdns_nand->buf, NULL,
+ mtd->oobsize,
+ 0, DMA_TO_DEVICE, false);
+ if (res) {
+ ret = -EIO;
+ break;
+ }
+
+ i++;
+ ofs += mtd->writesize;
+
+ nand_select_target(chip, -1);
+ } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
+
+ return ret;
+}
+
+static int cadence_nand_write_oob(struct nand_chip *chip, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct cdns_nand_info *cdns_nand = mtd_cdns_nand_info(mtd);
+ u8 *buf = chip->oob_poi;
+ u32 bbm_offset;
+ int status = 0;
+
+ bbm_offset = (cdns_nand->sector_count - 1) * (cdns_nand->sector_size
+ + cdns_nand->chip.ecc.bytes);
+ bbm_offset = mtd->writesize - bbm_offset + cdns_nand->bbm_offs;
+
+ /* to preseve page layout with ECC enabled
+ * we send also one data sector filled with 0xFF
+ * <0xFF 0xFF ....><oob data><HW calculated ECC>
+ */
+ memset(cdns_nand->buf, 0xFF, cdns_nand->sector_size);
+ memcpy(cdns_nand->buf + cdns_nand->sector_size, buf,
+ cdns_nand->avail_oob_size);
+
+ cadence_nand_set_skip_bytes_conf(cdns_nand, cdns_nand->bbm_len,
+ bbm_offset, 1);
+ cadence_nand_set_skip_marker_val(cdns_nand,
+ *(u16 *)(buf +
+ cdns_nand->bbm_offs));
+
+ status = cadence_nand_prepare_data_size(cdns_nand, TT_OOB_AREA);
+ if (status) {
+ dev_err(cdns_nand->dev, "write oob failed\n");
+ return status;
+ }
+
+ return cadence_nand_cdma_transfer(mtd, page, cdns_nand->buf, NULL,
+ cdns_nand->sector_size
+ + cdns_nand->avail_oob_size,
+ 0, DMA_TO_DEVICE, true);
+}
+
+/* reads OOB data from the device */
+static int cadence_nand_read_oob(struct nand_chip *chip,
+ int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct cdns_nand_info *cdns_nand = mtd_cdns_nand_info(mtd);
+ int status = 0;
+ u8 *buf = chip->oob_poi;
+ u32 bbm_offset;
+
+ status = cadence_nand_prepare_data_size(cdns_nand, TT_OOB_AREA);
+ if (status)
+ return -EIO;
+
+ bbm_offset = (cdns_nand->sector_count - 1) * (cdns_nand->sector_size
+ + cdns_nand->chip.ecc.bytes);
+ bbm_offset = mtd->writesize - bbm_offset + cdns_nand->bbm_offs;
+ cadence_nand_set_skip_bytes_conf(cdns_nand, cdns_nand->bbm_len,
+ bbm_offset, 1);
+
+ /* read last sector and spare data
+ * to be able to calculate ECC properly by controller
+ */
+ status = cadence_nand_cdma_transfer(mtd, page, cdns_nand->buf, NULL,
+ cdns_nand->sector_size
+ + cdns_nand->avail_oob_size,
+ 0, DMA_FROM_DEVICE, true);
+
+ switch (status) {
+ case STAT_ECC_UNCORR:
+ dev_warn(cdns_nand->dev, "ECC errors occur in read oob function\n");
+ break;
+ case STAT_OK:
+ break;
+ case STAT_ERASED:
+ dev_warn(cdns_nand->dev,
+ "Block is erased occur in read oob function\n");
+ break;
+ case STAT_ECC_CORR:
+ break;
+ default:
+ dev_err(cdns_nand->dev, "read oob failed err %d\n", status);
+ return -EIO;
+ }
+
+ /* ignore sector data, copy only oob data*/
+ memcpy(buf, cdns_nand->buf + cdns_nand->sector_size,
+ cdns_nand->avail_oob_size);
+ status = cadence_nand_prepare_data_size(cdns_nand, TT_BBM);
+ if (status)
+ return -EIO;
+
+ cadence_nand_set_skip_bytes_conf(cdns_nand, 0, 0, 0);
+
+ /* read only bad block marker from offset
+ * defined by a memory manufacturer
+ */
+ status = cadence_nand_cdma_transfer(mtd, page, cdns_nand->buf, NULL,
+ mtd->oobsize,
+ 0, DMA_FROM_DEVICE, false);
+ if (status) {
+ dev_err(cdns_nand->dev, "read BBM failed\n");
+ return -EIO;
+ }
+
+ memcpy(buf + cdns_nand->bbm_offs, cdns_nand->buf, cdns_nand->bbm_len);
+
+ return 0;
+}
+
+static int cadence_nand_write_page(struct nand_chip *chip,
+ const u8 *buf, int oob_required,
+ int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct cdns_nand_info *cdns_nand = mtd_cdns_nand_info(mtd);
+ int status = 0;
+ u16 marker_val = 0xFFFF;
+
+ cadence_nand_set_skip_bytes_conf(cdns_nand, cdns_nand->bbm_len,
+ mtd->writesize + cdns_nand->bbm_offs,
+ 1);
+
+ if (oob_required) {
+ marker_val = *(u16 *)(chip->oob_poi
+ + cdns_nand->bbm_offs);
+ } else {
+ /* just set oob data to 0xFF */
+ memset(cdns_nand->buf + mtd->writesize, 0xFF,
+ cdns_nand->avail_oob_size);
+ }
+
+ cadence_nand_set_skip_marker_val(cdns_nand, marker_val);
+
+ status = cadence_nand_prepare_data_size(cdns_nand,
+ TT_MAIN_OOB_AREA_EXT);
+ if (status) {
+ dev_err(cdns_nand->dev, "write page failed\n");
+ return -EIO;
+ }
+
+ if (cadence_nand_dma_buf_ok(cdns_nand, buf, mtd->writesize) &&
+ cdns_nand->caps.data_control_supp) {
+ u8 *oob;
+
+ if (oob_required)
+ oob = chip->oob_poi;
+ else
+ oob = cdns_nand->buf + mtd->writesize;
+
+ status = cadence_nand_cdma_transfer(mtd, page, (void *)buf, oob,
+ mtd->writesize,
+ cdns_nand->avail_oob_size,
+ DMA_TO_DEVICE, true);
+ if (status) {
+ dev_err(cdns_nand->dev, "write page failed\n");
+ return -EIO;
+ }
+
+ return 0;
+ }
+
+ if (oob_required) {
+ /* transfer the data to the oob area */
+ memcpy(cdns_nand->buf + mtd->writesize, chip->oob_poi,
+ cdns_nand->avail_oob_size);
+ }
+
+ memcpy(cdns_nand->buf, buf, mtd->writesize);
+
+ cadence_nand_prepare_data_size(cdns_nand, TT_MAIN_OOB_AREAS);
+
+ return cadence_nand_cdma_transfer(mtd, page, cdns_nand->buf, NULL,
+ mtd->writesize
+ + cdns_nand->avail_oob_size,
+ 0, DMA_TO_DEVICE, true);
+}
+
+static int cadence_nand_write_page_raw(struct nand_chip *chip,
+ const u8 *buf, int oob_required,
+ int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct cdns_nand_info *cdns_nand = mtd_cdns_nand_info(mtd);
+ int writesize = mtd->writesize;
+ int oobsize = mtd->oobsize;
+ int ecc_steps = chip->ecc.steps;
+ int ecc_size = chip->ecc.size;
+ int ecc_bytes = chip->ecc.bytes;
+ void *tmp_buf = cdns_nand->buf;
+ int oob_skip = cdns_nand->bbm_len;
+ size_t size = writesize + oobsize;
+ int i, pos, len;
+ int status = 0;
+
+ /*
+ * Fill the buffer with 0xff first except the full page transfer.
+ * This simplifies the logic.
+ */
+ if (!buf || !oob_required)
+ memset(tmp_buf, 0xff, size);
+
+ cadence_nand_set_skip_bytes_conf(cdns_nand, 0, 0, 0);
+
+ /* Arrange the buffer for syndrome payload/ecc layout */
+ if (buf) {
+ for (i = 0; i < ecc_steps; i++) {
+ pos = i * (ecc_size + ecc_bytes);
+ len = ecc_size;
+
+ if (pos >= writesize)
+ pos += oob_skip;
+ else if (pos + len > writesize)
+ len = writesize - pos;
+
+ memcpy(tmp_buf + pos, buf, len);
+ buf += len;
+ if (len < ecc_size) {
+ len = ecc_size - len;
+ memcpy(tmp_buf + writesize + oob_skip, buf,
+ len);
+ buf += len;
+ }
+ }
+ }
+
+ if (oob_required) {
+ const u8 *oob = chip->oob_poi;
+ u32 oob_data_offset = (cdns_nand->sector_count - 1) *
+ (cdns_nand->sector_size + cdns_nand->chip.ecc.bytes)
+ + cdns_nand->sector_size + oob_skip;
+
+ /* BBM at the beginning of the OOB area */
+ memcpy(tmp_buf + writesize, oob, oob_skip);
+
+ /* OOB free */
+ memcpy(tmp_buf + oob_data_offset, oob,
+ cdns_nand->avail_oob_size);
+ oob += cdns_nand->avail_oob_size;
+
+ /* OOB ECC */
+ for (i = 0; i < ecc_steps; i++) {
+ pos = ecc_size + i * (ecc_size + ecc_bytes);
+ if (i == (ecc_steps - 1))
+ pos += cdns_nand->avail_oob_size;
+
+ len = ecc_bytes;
+
+ if (pos >= writesize)
+ pos += oob_skip;
+ else if (pos + len > writesize)
+ len = writesize - pos;
+
+ memcpy(tmp_buf + pos, oob, len);
+ oob += len;
+ if (len < ecc_bytes) {
+ len = ecc_bytes - len;
+ memcpy(tmp_buf + writesize + oob_skip, oob,
+ len);
+ oob += len;
+ }
+ }
+ }
+
+ status = cadence_nand_prepare_data_size(cdns_nand, TT_RAW_PAGE);
+ if (status) {
+ dev_err(cdns_nand->dev, "write page failed\n");
+ return -EIO;
+ }
+
+ return cadence_nand_cdma_transfer(mtd, page, cdns_nand->buf, NULL,
+ mtd->writesize + mtd->oobsize,
+ 0, DMA_TO_DEVICE, false);
+}
+
+static int cadence_nand_write_oob_raw(struct nand_chip *chip,
+ int page)
+{
+ return cadence_nand_write_page_raw(chip, NULL, true, page);
+}
+
+static int cadence_nand_read_page(struct nand_chip *chip,
+ u8 *buf, int oob_required, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct cdns_nand_info *cdns_nand = mtd_cdns_nand_info(mtd);
+ int status = 0;
+ int ecc_err_count = 0;
+
+ cadence_nand_set_skip_bytes_conf(cdns_nand, cdns_nand->bbm_len,
+ cdns_nand->main_size
+ + cdns_nand->bbm_offs, 1);
+
+ /* if data buffer is can be accessed by DMA and data_control feature
+ * is supported then transfer data and oob directly
+ */
+ if (cadence_nand_dma_buf_ok(cdns_nand, buf, mtd->writesize) &&
+ cdns_nand->caps.data_control_supp) {
+ u8 *oob;
+
+ if (oob_required)
+ oob = chip->oob_poi;
+ else
+ oob = cdns_nand->buf + mtd->writesize;
+
+ cadence_nand_prepare_data_size(cdns_nand, TT_MAIN_OOB_AREA_EXT);
+ status = cadence_nand_cdma_transfer(mtd, page, buf, oob,
+ mtd->writesize,
+ cdns_nand->avail_oob_size,
+ DMA_FROM_DEVICE, true);
+ /* otherwise use bounce buffer */
+ } else {
+ cadence_nand_prepare_data_size(cdns_nand, TT_MAIN_OOB_AREAS);
+ status = cadence_nand_cdma_transfer(mtd, page, cdns_nand->buf,
+ NULL, mtd->writesize
+ + cdns_nand->avail_oob_size,
+ 0, DMA_FROM_DEVICE, true);
+
+ memcpy(buf, cdns_nand->buf, mtd->writesize);
+ if (oob_required)
+ memcpy(chip->oob_poi, cdns_nand->buf + mtd->writesize,
+ mtd->oobsize);
+ }
+
+ switch (status) {
+ case STAT_ECC_UNCORR:
+ mtd->ecc_stats.failed++;
+ ecc_err_count++;
+ break;
+ case STAT_ECC_CORR:
+ ecc_err_count = get_ecc_count(cdns_nand);
+ mtd->ecc_stats.corrected += ecc_err_count;
+ break;
+ case STAT_ERASED:
+ case STAT_OK:
+ break;
+ default:
+ dev_err(cdns_nand->dev, "read page failed\n");
+ return -EIO;
+ }
+
+ if (oob_required) {
+ cadence_nand_set_skip_bytes_conf(cdns_nand, 0, 0, 0);
+
+ status = cadence_nand_prepare_data_size(cdns_nand, TT_BBM);
+ if (status)
+ return -EIO;
+
+ /* read only bad block marker */
+ status = cadence_nand_cdma_transfer(mtd, page, cdns_nand->buf,
+ NULL, mtd->oobsize,
+ 0, DMA_FROM_DEVICE, false);
+ if (status) {
+ dev_err(cdns_nand->dev, "read BBM failed\n");
+ return -EIO;
+ }
+
+ memcpy(chip->oob_poi + cdns_nand->bbm_offs, cdns_nand->buf,
+ cdns_nand->bbm_len);
+ }
+
+ return ecc_err_count;
+}
+
+static int cadence_nand_read_page_raw(struct nand_chip *chip,
+ u8 *buf, int oob_required, int page)
+{
+ struct cdns_nand_info *cdns_nand = chip_to_cdns_nand_info(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int oob_skip = cdns_nand->bbm_len;
+ int writesize = mtd->writesize;
+ int ecc_steps = chip->ecc.steps;
+ int ecc_size = chip->ecc.size;
+ int ecc_bytes = chip->ecc.bytes;
+ void *tmp_buf = cdns_nand->buf;
+ int i, pos, len;
+ int status = 0;
+
+ cadence_nand_set_skip_bytes_conf(cdns_nand, 0, 0, 0);
+
+ cadence_nand_prepare_data_size(cdns_nand, TT_RAW_PAGE);
+ status = cadence_nand_cdma_transfer(mtd, page, cdns_nand->buf, NULL,
+ mtd->writesize + mtd->oobsize,
+ 0, DMA_FROM_DEVICE, false);
+
+ switch (status) {
+ case STAT_ERASED:
+ case STAT_OK:
+ break;
+ default:
+ dev_err(cdns_nand->dev, "read raw page failed\n");
+ return -EIO;
+ }
+
+ /* Arrange the buffer for syndrome payload/ecc layout */
+ if (buf) {
+ for (i = 0; i < ecc_steps; i++) {
+ pos = i * (ecc_size + ecc_bytes);
+ len = ecc_size;
+
+ if (pos >= writesize)
+ pos += oob_skip;
+ else if (pos + len > writesize)
+ len = writesize - pos;
+
+ memcpy(buf, tmp_buf + pos, len);
+ buf += len;
+ if (len < ecc_size) {
+ len = ecc_size - len;
+ memcpy(buf, tmp_buf + writesize + oob_skip,
+ len);
+ buf += len;
+ }
+ }
+ }
+
+ if (oob_required) {
+ u8 *oob = chip->oob_poi;
+ u32 oob_data_offset = (cdns_nand->sector_count - 1) *
+ (cdns_nand->sector_size + cdns_nand->chip.ecc.bytes)
+ + cdns_nand->sector_size + oob_skip;
+
+ /* OOB free */
+ memcpy(oob, tmp_buf + oob_data_offset,
+ cdns_nand->avail_oob_size);
+
+ /* BBM at the beginning of the OOB area */
+ memcpy(oob, tmp_buf + writesize, oob_skip);
+
+ oob += cdns_nand->avail_oob_size;
+
+ /* OOB ECC */
+ for (i = 0; i < ecc_steps; i++) {
+ pos = ecc_size + i * (ecc_size + ecc_bytes);
+ len = ecc_bytes;
+
+ if (i == (ecc_steps - 1))
+ pos += cdns_nand->avail_oob_size;
+
+ if (pos >= writesize)
+ pos += oob_skip;
+ else if (pos + len > writesize)
+ len = writesize - pos;
+
+ memcpy(oob, tmp_buf + pos, len);
+ oob += len;
+ if (len < ecc_bytes) {
+ len = ecc_bytes - len;
+ memcpy(oob, tmp_buf + writesize + oob_skip,
+ len);
+ oob += len;
+ }
+ }
+ }
+
+ return 0;
+}
+
+static int cadence_nand_read_oob_raw(struct nand_chip *chip,
+ int page)
+{
+ return cadence_nand_read_page_raw(chip, NULL, true, page);
+}
+
+static void cadence_nand_slave_dma_transfer_finished(void *data)
+{
+ struct completion *finished = data;
+
+ complete(finished);
+}
+
+static int cadence_nand_slave_dma_transfer(struct cdns_nand_info *cdns_nand,
+ void *buf,
+ dma_addr_t dev_dma, size_t len,
+ enum dma_data_direction dir)
+{
+ DECLARE_COMPLETION_ONSTACK(finished);
+ struct dma_chan *chan;
+ struct dma_device *dma_dev;
+ dma_addr_t src_dma, dst_dma, buf_dma;
+ struct dma_async_tx_descriptor *tx;
+ dma_cookie_t cookie;
+
+ chan = cdns_nand->dmac;
+ dma_dev = chan->device;
+
+ buf_dma = dma_map_single(dma_dev->dev, buf, len, dir);
+ if (dma_mapping_error(dma_dev->dev, buf_dma)) {
+ dev_err(cdns_nand->dev, "Failed to map DMA buffer\n");
+ goto err;
+ }
+
+ if (dir == DMA_FROM_DEVICE) {
+ src_dma = cdns_nand->io.dma;
+ dst_dma = buf_dma;
+ } else {
+ src_dma = buf_dma;
+ dst_dma = cdns_nand->io.dma;
+ }
+
+ tx = dmaengine_prep_dma_memcpy(cdns_nand->dmac, dst_dma, src_dma, len,
+ DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
+ if (!tx) {
+ dev_err(cdns_nand->dev, "Failed to prepare DMA memcpy\n");
+ goto err_unmap;
+ }
+
+ tx->callback = cadence_nand_slave_dma_transfer_finished;
+ tx->callback_param = &finished;
+
+ cookie = dmaengine_submit(tx);
+ if (dma_submit_error(cookie)) {
+ dev_err(cdns_nand->dev, "Failed to do DMA tx_submit\n");
+ goto err_unmap;
+ }
+
+ dma_async_issue_pending(cdns_nand->dmac);
+ wait_for_completion(&finished);
+
+ dma_unmap_single(cdns_nand->dev, buf_dma, len, dir);
+
+ return 0;
+
+err_unmap:
+ dma_unmap_single(cdns_nand->dev, buf_dma, len, dir);
+
+err:
+ dev_dbg(cdns_nand->dev, "Fall back to CPU I/O\n");
+
+ return -EIO;
+}
+
+static int cadence_nand_read_buf(struct cdns_nand_info *cdns_nand,
+ u8 *buf, int len)
+{
+ int len_aligned = ALIGN(len, cdns_nand->caps.data_dma_width);
+ u8 thread_nr = 0;
+ u32 sdma_size;
+ int ret, status = 0;
+
+ if (!cdns_nand->caps.has_dma) {
+ if (len & 3) {
+ dev_err(cdns_nand->dev, "unaligned data\n");
+ return -EIO;
+ }
+ readsl(cdns_nand->io.virt, buf, len / 4);
+ return 0;
+ }
+
+ /* wait until slave DMA interface is ready to data transfer */
+ ret = cadence_nand_wait_on_sdma(cdns_nand, &thread_nr, &sdma_size);
+ if (ret)
+ return ret;
+
+ if (sdma_size != len_aligned) {
+ dev_err(cdns_nand->dev, "unexpected scenario\n");
+ return -EIO;
+ }
+
+ if (cdns_nand->dmac && cadence_nand_dma_buf_ok(cdns_nand, buf, len)) {
+ status = cadence_nand_slave_dma_transfer(cdns_nand, buf,
+ cdns_nand->io.dma,
+ len, DMA_FROM_DEVICE);
+ if (status == 0)
+ return 0;
+
+ dev_warn(cdns_nand->dev,
+ "Slave DMA transfer failed. Try again using bounce buffer.");
+ }
+
+ /* if DMA transfer is not possible or failed then use bounce buffer */
+ status = cadence_nand_slave_dma_transfer(cdns_nand, cdns_nand->buf,
+ cdns_nand->io.dma,
+ len_aligned, DMA_FROM_DEVICE);
+
+ if (status) {
+ dev_err(cdns_nand->dev, "Slave DMA transfer failed");
+ return status;
+ }
+
+ memcpy(buf, cdns_nand->buf, len);
+
+ return 0;
+}
+
+static int cadence_nand_write_buf(struct cdns_nand_info *cdns_nand,
+ const u8 *buf, int len)
+{
+ u8 thread_nr = 0;
+ u32 sdma_size;
+ int ret, status = 0;
+ int len_aligned = ALIGN(len, cdns_nand->caps.data_dma_width);
+
+ if (!cdns_nand->caps.has_dma) {
+ if (len & 3) {
+ dev_err(cdns_nand->dev, "unaligned data\n");
+ return -EIO;
+ }
+ writesl(cdns_nand->io.virt, buf, len / 4);
+ return 0;
+ }
+
+ /* wait until slave DMA interface is ready to data transfer */
+ ret = cadence_nand_wait_on_sdma(cdns_nand, &thread_nr, &sdma_size);
+ if (ret)
+ return ret;
+
+ if (sdma_size != len_aligned) {
+ dev_err(cdns_nand->dev, "Error unexpected scenario\n");
+ return -EIO;
+ }
+
+ if (cdns_nand->dmac && cadence_nand_dma_buf_ok(cdns_nand, buf, len)) {
+ status = cadence_nand_slave_dma_transfer(cdns_nand, (void *)buf,
+ cdns_nand->io.dma,
+ len, DMA_TO_DEVICE);
+ if (status == 0)
+ return 0;
+
+ dev_warn(cdns_nand->dev,
+ "Slave DMA transfer failed. Try again using bounce buffer.");
+ }
+
+ /* if DMA transfer is not possible or failed then use bounce buffer */
+ memcpy(cdns_nand->buf, buf, len);
+
+ status = cadence_nand_slave_dma_transfer(cdns_nand, cdns_nand->buf,
+ cdns_nand->io.dma,
+ len_aligned, DMA_TO_DEVICE);
+
+ if (status)
+ dev_err(cdns_nand->dev, "Slave DMA transfer failed");
+
+ return status;
+}
+
+static int cadence_nand_exec_op(struct nand_chip *chip,
+ const struct nand_operation *op,
+ bool check_only)
+{
+ return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op,
+ check_only);
+}
+
+static int cadence_nand_force_byte_access(struct nand_chip *chip,
+ bool force_8bit)
+{
+ struct cdns_nand_info *cdns_nand = chip_to_cdns_nand_info(chip);
+ int status;
+
+ /*
+ * Callers of this function do not verify if the NAND is using a 16-bit
+ * an 8-bit bus for normal operations, so we need to take care of that
+ * here by leaving the configuration unchanged if the NAND does not have
+ * the NAND_BUSWIDTH_16 flag set.
+ */
+ if (!(chip->options & NAND_BUSWIDTH_16))
+ return 0;
+
+ if (force_8bit)
+ status = cadence_nand_set_access_width(cdns_nand, 8);
+ else
+ status = cadence_nand_set_access_width(cdns_nand, 16);
+
+ return status;
+}
+
+static int cadence_nand_cmd(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ struct cdns_nand_info *cdns_nand = chip_to_cdns_nand_info(chip);
+ const struct nand_op_instr *instr;
+ unsigned int offset, naddrs;
+ u64 mini_ctrl_cmd = 0;
+ bool is_data_instr = false;
+ unsigned int op_id = 0;
+ u8 thread_nr = 0;
+ u64 address = 0;
+ const u8 *addrs;
+ unsigned int i;
+ int len = 0;
+ int ret;
+
+ instr = &subop->instrs[op_id];
+
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip->cur_cs);
+ if (instr->delay_ns > 0)
+ mini_ctrl_cmd |= GCMD_LAY_TWB;
+
+ switch (instr->type) {
+ case NAND_OP_CMD_INSTR:
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
+ GCMD_LAY_INSTR_CMD);
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD,
+ instr->ctx.cmd.opcode);
+ break;
+
+ case NAND_OP_ADDR_INSTR:
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
+ GCMD_LAY_INSTR_ADDR);
+
+ offset = nand_subop_get_addr_start_off(subop, op_id);
+ naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
+ addrs = &instr->ctx.addr.addrs[offset];
+
+ for (i = 0; i < naddrs; i++)
+ address |= (u64)addrs[i] << (8 * i);
+
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR,
+ address);
+ /*0 - 1 byte of address, 1 - 2 bytes of address ...*/
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE,
+ naddrs - 1);
+ break;
+
+ case NAND_OP_DATA_OUT_INSTR:
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR,
+ GCMD_DIR_WRITE);
+
+ case NAND_OP_DATA_IN_INSTR:
+ is_data_instr = true;
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
+ GCMD_LAY_INSTR_DATA);
+
+ len = nand_subop_get_data_len(subop, op_id);
+ offset = nand_subop_get_data_start_off(subop, op_id);
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1);
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len);
+ if (instr->ctx.data.force_8bit) {
+ ret = cadence_nand_force_byte_access(chip, true);
+ if (ret)
+ return ret;
+ }
+
+ break;
+
+ default:
+ /* This should never happen */
+ break;
+ }
+
+ ret = cadence_nand_generic_cmd_send(cdns_nand, thread_nr,
+ mini_ctrl_cmd, 0);
+ if (ret) {
+ dev_err(cdns_nand->dev, "send cmd failed\n");
+ return ret;
+ }
+
+ if (!is_data_instr)
+ return 0;
+
+ /* transfer data using slave DMA interface */
+ if (instr->type == NAND_OP_DATA_IN_INSTR) {
+ void *buf = instr->ctx.data.buf.in + offset;
+
+ ret = cadence_nand_read_buf(cdns_nand, buf, len);
+ } else {
+ const void *buf = instr->ctx.data.buf.out + offset;
+
+ ret = cadence_nand_write_buf(cdns_nand, buf, len);
+ }
+
+ if (ret)
+ return ret;
+
+ if (instr->ctx.data.force_8bit) {
+ ret = cadence_nand_force_byte_access(chip, false);
+ if (ret) {
+ dev_err(cdns_nand->dev, "s\n");
+ return ret;
+ }
+ }
+
+ return 0;
+}
+
+static int cadence_nand_waitrdy(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ int status;
+ unsigned int op_id = 0;
+ struct cdns_nand_info *cdns_nand = chip_to_cdns_nand_info(chip);
+ const struct nand_op_instr *instr = &subop->instrs[op_id];
+
+ status = wait_for_rb_ready(cdns_nand, instr->ctx.waitrdy.timeout_ms);
+
+ return status;
+}
+
+static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct cdns_nand_info *cdns_nand = mtd_cdns_nand_info(mtd);
+
+ if (section)
+ return -ERANGE;
+
+ oobregion->offset = cdns_nand->bbm_len;
+ oobregion->length = cdns_nand->avail_oob_size
+ - cdns_nand->bbm_len;
+
+ return 0;
+}
+
+static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct cdns_nand_info *cdns_nand = mtd_cdns_nand_info(mtd);
+ struct nand_chip *chip = mtd_to_nand(mtd);
+
+ if (section)
+ return -ERANGE;
+
+ oobregion->offset = cdns_nand->avail_oob_size;
+ oobregion->length = chip->ecc.total;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = {
+ .free = cadence_nand_ooblayout_free,
+ .ecc = cadence_nand_ooblayout_ecc,
+};
+
+static int calc_cycl(u32 timing, u32 clock)
+{
+ if (timing == 0 || clock == 0)
+ return 0;
+
+ if ((timing % clock) > 0)
+ return timing / clock;
+ else
+ return timing / clock - 1;
+}
+
+static int
+cadence_nand_setup_data_interface(struct nand_chip *chip, int chipnr,
+ const struct nand_data_interface *conf)
+{
+ const struct nand_sdr_timings *sdr;
+ struct cdns_nand_info *cdns_nand = chip_to_cdns_nand_info(chip);
+
+ u32 reg;
+ u32 board_delay = cdns_nand->board_delay;
+ u32 sdr_clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL,
+ cdns_nand->nf_clk_rate);
+ u32 nand2_delay = cdns_nand->nand2_delay;
+ u32 tceh_cnt;
+ u32 tcs_cnt;
+ u32 tadl_cnt;
+ u32 tcad = 0;
+ u32 tccs_cnt;
+ u32 tcdqsh = 0;
+ u32 tcdqss = 0;
+ u32 tckwr = 0;
+ u32 tcr_cnt, tcr = 0;
+ u32 tcres = 0;
+ u32 tfeat_cnt;
+ u32 tpre = 0;
+ u32 tpsth = 0;
+ u32 trhw_cnt;
+ u32 trhz_cnt;
+ u32 trpst = 0;
+ u32 tvdly = 0;
+ u32 twb_cnt;
+ u32 twh_cnt = 0;
+ u32 twhr_cnt;
+ u32 twpst = 0;
+ u32 twrck = 0;
+ u32 tcals = 0;
+ u32 tcwaw = 0;
+ u32 twp_cnt = 0;
+
+ u32 if_skew = cdns_nand->if_skew;
+
+ u8 cadence_nand_phy_dll_aging = cdns_nand->caps.phy_dll_aging;
+ u8 cadence_nand_phy_per_bit_deskew =
+ cdns_nand->caps.phy_per_bit_deskew;
+
+ u32 board_delay_with_skew_min = board_delay - if_skew;
+ u32 board_delay_with_skew_max = board_delay + if_skew;
+ u32 dqs_sampl_res;
+ u32 phony_dqs_mod;
+ u32 phony_dqs_comb_delay;
+ u32 trp_cnt = 0, trh_cnt = 0;
+ u32 tdvw, tdvw_min, tdvw_max;
+ u32 extended_read_mode;
+ u32 extended_wr_mode;
+ u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0;
+ u32 tcwaw_cnt;
+ u32 tvdly_cnt;
+
+ u32 cadence_nand_is_phy_type_dll = 0;
+
+ reg = readl(cdns_nand->reg + CTRL_FEATURES);
+ if (reg & (CTRL_FEATURES_NVDDR_2_3
+ | CTRL_FEATURES_NVDDR))
+ cadence_nand_is_phy_type_dll = 1;
+
+ sdr = nand_get_sdr_timings(conf);
+ if (IS_ERR(sdr))
+ return PTR_ERR(sdr);
+
+ //------------------------------------------------------------------
+ // sampling point calculation
+ //------------------------------------------------------------------
+ if (cadence_nand_is_phy_type_dll) {
+ dqs_sampl_res = sdr_clk_period / 2;
+ phony_dqs_mod = 2;//for DLL phy
+ if (cadence_nand_phy_dll_aging) {
+ if (cadence_nand_phy_per_bit_deskew)
+ phony_dqs_comb_delay = 6 * nand2_delay;
+ else
+ phony_dqs_comb_delay = 5 * nand2_delay;
+ } else {
+ if (cadence_nand_phy_per_bit_deskew)
+ phony_dqs_comb_delay = 5 * nand2_delay;
+ else
+ phony_dqs_comb_delay = 4 * nand2_delay;
+ }
+
+ } else {
+ dqs_sampl_res = sdr_clk_period;//for async phy
+ phony_dqs_mod = 1;//for async phy
+ phony_dqs_comb_delay = 0;
+ }
+
+ tdvw_min = sdr->tREA_max + board_delay_with_skew_max
+ + phony_dqs_comb_delay;
+ /*
+ * the idea of those calculation is to get the optimum value
+ * for tRP and tRH timings if it is NOT possible to sample data
+ * with optimal tRP/tRH settings the parameters will be extended
+ */
+ if (sdr->tRC_min <= sdr_clk_period &&
+ sdr->tRP_min <= (sdr_clk_period / 2) &&
+ sdr->tREH_min <= (sdr_clk_period / 2)) {
+ //performance mode
+ tdvw = sdr->tRHOH_min + sdr_clk_period / 2 - sdr->tREA_max;
+ tdvw_max = sdr_clk_period / 2 + sdr->tRHOH_min
+ + board_delay_with_skew_min - phony_dqs_comb_delay;
+ /* check if data valid window and sampling point can be found
+ * and is not on the edge (ie. we have hold margin)
+ * if not extend the tRP timings
+ */
+ if (tdvw > 0) {
+ if (tdvw_max > tdvw_min &&
+ (tdvw_max % dqs_sampl_res) > 0) {
+ /* there is valid sampling point so
+ * extended mode is allowed
+ */
+ extended_read_mode = 0;
+ } else {
+ /* no valid sampling point so the RE pulse
+ * need to be widen widening by half clock
+ * cycle should be sufficient
+ * to find sampling point
+ */
+ extended_read_mode = 1;
+ tdvw_max = sdr_clk_period + sdr->tRHOH_min
+ + board_delay_with_skew_min
+ - phony_dqs_comb_delay;
+ }
+ } else {
+ //there is no valid window
+ //to be able to sample data the tRP need to be widen
+ //very safe calculations are performed here
+ trp_cnt = (sdr->tREA_max + board_delay_with_skew_max
+ + dqs_sampl_res) / sdr_clk_period;
+ extended_read_mode = 1;
+ tdvw_max = (trp_cnt + 1) * sdr_clk_period
+ + sdr->tRHOH_min
+ + board_delay_with_skew_min
+ - phony_dqs_comb_delay;
+ }
+
+ } else {
+ //extended read mode
+ extended_read_mode = 1;
+ trp_cnt = calc_cycl(sdr->tRP_min, sdr_clk_period);
+ if (sdr->tREH_min >= (sdr->tRC_min - ((trp_cnt + 1)
+ * sdr_clk_period))) {
+ trh_cnt = calc_cycl(sdr->tREH_min, sdr_clk_period);
+ } else {
+ trh_cnt = calc_cycl((sdr->tRC_min
+ - ((trp_cnt + 1)
+ * sdr_clk_period)),
+ sdr_clk_period);
+ }
+
+ tdvw = sdr->tRHOH_min + ((trp_cnt + 1) * sdr_clk_period)
+ - sdr->tREA_max;
+ /* check if data valid window and sampling point can be found
+ * or if it is at the edge check if previous is valid
+ * - if not extend the tRP timings
+ */
+ if (tdvw > 0) {
+ tdvw_max = (trp_cnt + 1) * sdr_clk_period
+ + sdr->tRHOH_min
+ + board_delay_with_skew_min
+ - phony_dqs_comb_delay;
+ if ((((tdvw_max / dqs_sampl_res)
+ * dqs_sampl_res) <= tdvw_min) ||
+ (((tdvw_max % dqs_sampl_res) == 0) &&
+ (((tdvw_max / dqs_sampl_res - 1)
+ * dqs_sampl_res) <= tdvw_min))) {
+ /* data valid window width is lower than
+ * sampling resolution and do not hit any
+ * sampling point to be sure the sampling point
+ * will be found the RE low pulse width will be
+ * extended by one clock cycle
+ */
+ trp_cnt = trp_cnt + 1;
+ tdvw_max = (trp_cnt + 1) * sdr_clk_period
+ + sdr->tRHOH_min
+ + board_delay_with_skew_min
+ - phony_dqs_comb_delay;
+ }
+ } else {
+ /* there is no valid window
+ * to be able to sample data the tRP need to be widen
+ * very safe calculations are performed here
+ */
+ trp_cnt = (sdr->tREA_max + board_delay_with_skew_max
+ + dqs_sampl_res) / sdr_clk_period;
+ tdvw_max = (trp_cnt + 1) * sdr_clk_period
+ + sdr->tRHOH_min + board_delay_with_skew_min
+ - phony_dqs_comb_delay;
+ }
+ }
+
+ if (cadence_nand_is_phy_type_dll) {
+ u32 tpre_cnt = calc_cycl(tpre, sdr_clk_period);
+ u32 tcdqss_cnt = calc_cycl(tcdqss + if_skew,
+ sdr_clk_period);
+ u32 tpsth_cnt = calc_cycl(tpsth + if_skew, sdr_clk_period);
+
+ u32 trpst_cnt = calc_cycl(trpst + if_skew, sdr_clk_period)
+ + 1;
+ u32 twpst_cnt = calc_cycl(twpst + if_skew, sdr_clk_period)
+ + 1;
+ u32 tcres_cnt = calc_cycl(tcres + if_skew, sdr_clk_period)
+ + 1;
+ u32 tcdqsh_cnt = calc_cycl(tcdqsh + if_skew,
+ sdr_clk_period) + 5;
+
+ //toggle_timings_0 - tCR,tPRE,tCDQSS,tPSTH
+ tcr_cnt = calc_cycl(tcr + if_skew, sdr_clk_period);
+ /* skew not included because this timing defines duration of
+ * RE or DQS before data transfer
+ */
+ tpsth_cnt = tpsth_cnt + 1;
+ reg = 0;
+ reg |= FIELD_PREP(TOGGLE_TIMINGS0_TPSTH, tpsth_cnt);
+ reg |= FIELD_PREP(TOGGLE_TIMINGS0_TCDQSS, tcdqss_cnt);
+ reg |= FIELD_PREP(TOGGLE_TIMINGS0_TPRE, tpre_cnt);
+ reg |= FIELD_PREP(TOGGLE_TIMINGS0_TCR, tcr_cnt);
+ writel(reg, cdns_nand->reg + TOGGLE_TIMINGS0);
+ dev_dbg(cdns_nand->dev, "TOGGLE_TIMINGS_0_SDR\t%x\n", reg);
+
+ //toggle_timings_1 - tRPST,tWPST
+ reg = 0;
+ reg |= FIELD_PREP(TOGGLE_TIMINGS1_TCDQSH, tcdqsh_cnt);
+ reg |= FIELD_PREP(TOGGLE_TIMINGS1_TCRES, tcres_cnt);
+ reg |= FIELD_PREP(TOGGLE_TIMINGS1_TRPST, trpst_cnt);
+ reg |= FIELD_PREP(TOGGLE_TIMINGS1_TWPST, twpst_cnt);
+ writel(reg, cdns_nand->reg + TOGGLE_TIMINGS1);
+ dev_dbg(cdns_nand->dev, "TOGGLE_TIMINGS_1_SDR\t%x\n", reg);
+ }
+
+ //async_toggle_timings - tRH,tRP,tWH,tWP
+ if (sdr->tWC_min <= sdr_clk_period &&
+ (sdr->tWP_min + if_skew) <= (sdr_clk_period / 2) &&
+ (sdr->tWH_min + if_skew) <= (sdr_clk_period / 2)) {
+ extended_wr_mode = 0;
+ } else {
+ extended_wr_mode = 1;
+ twp_cnt = calc_cycl(sdr->tWP_min + if_skew, sdr_clk_period);
+ if ((twp_cnt + 1) * sdr_clk_period < (tcals + if_skew))
+ twp_cnt = calc_cycl(tcals + if_skew, sdr_clk_period);
+
+ if (sdr->tWH_min >= (sdr->tWC_min - ((twp_cnt + 1)
+ * sdr_clk_period))) {
+ twh_cnt = calc_cycl(sdr->tWH_min + if_skew,
+ sdr_clk_period);
+ } else {
+ twh_cnt = calc_cycl((sdr->tWC_min
+ - (twp_cnt + 1) * sdr_clk_period)
+ + if_skew, sdr_clk_period);
+ }
+ }
+
+ reg = 0;
+ reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt);
+ reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt);
+ reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt);
+ reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt);
+ writel(reg, cdns_nand->reg + ASYNC_TOGGLE_TIMINGS);
+ dev_dbg(cdns_nand->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg);
+
+ if (cadence_nand_is_phy_type_dll) {
+ /* sync_timings - tCKWR,tWRCK,tCAD
+ * sync timing are related to the clock so the skew
+ * is minor and do not need to be included into calculations
+ */
+ u32 tckwr_cnt = calc_cycl(tckwr, sdr_clk_period);
+ u32 twrck_cnt = calc_cycl(twrck, sdr_clk_period);
+ u32 tcad_cnt = calc_cycl(tcad, sdr_clk_period);
+
+ reg = 0;
+ reg |= FIELD_PREP(SYNC_TIMINGS_TCKWR, tckwr_cnt);
+ reg |= FIELD_PREP(SYNC_TIMINGS_TWRCK, twrck_cnt);
+ reg |= FIELD_PREP(SYNC_TIMINGS_TCAD, tcad_cnt);
+ writel(reg, cdns_nand->reg + SYNC_TIMINGS);
+ dev_dbg(cdns_nand->dev, "SYNC_TIMINGS_SDR\t%x\n", reg);
+ }
+
+ //timings0 - tadl,tccs,twhr,trhw
+ tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), sdr_clk_period);
+ tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), sdr_clk_period);
+ twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), sdr_clk_period);
+ trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), sdr_clk_period);
+ reg = 0;
+ reg |= FIELD_PREP(TIMINGS0_TADL, tadl_cnt);
+
+ /* if timing exceeds delay field in timing register
+ * then use maximum value
+ */
+ if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt))
+ reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt);
+ else
+ reg |= TIMINGS0_TCCS;
+
+ reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt);
+ reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt);
+ writel(reg, cdns_nand->reg + TIMINGS0);
+ dev_dbg(cdns_nand->dev, "TIMINGS0_SDR\t%x\n", reg);
+
+ //timings1 - trhz,twb,tcwaw,tvdly
+ //the following is related to single signal so skew is not needed
+ trhz_cnt = calc_cycl(sdr->tRHZ_max, sdr_clk_period);
+ trhz_cnt = trhz_cnt + 1;
+ twb_cnt = calc_cycl((sdr->tWB_max + board_delay), sdr_clk_period);
+ /* because of the two stage syncflop the value must be increased by 3
+ * first value is related with sync, second value is related
+ * with output if delay
+ */
+ twb_cnt = twb_cnt + 3 + 5;
+ /* the following is related to the we edge of the random data input
+ * sequence so skew is not needed
+ */
+ tcwaw_cnt = calc_cycl(tcwaw, sdr_clk_period);
+ tvdly_cnt = calc_cycl((tvdly + if_skew), sdr_clk_period);
+ reg = 0;
+ reg |= FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt);
+ reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt);
+ reg |= FIELD_PREP(TIMINGS1_TCWAW, tcwaw_cnt);
+ reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt);
+ writel(reg, cdns_nand->reg + TIMINGS1);
+ dev_dbg(cdns_nand->dev, "TIMINGS1_SDR\t%x\n", reg);
+
+ //timings2 - cs_hold_time,cs_setup_time
+ tfeat_cnt = calc_cycl(sdr->tFEAT_max, sdr_clk_period);
+ if (tfeat_cnt < twb_cnt)
+ tfeat_cnt = twb_cnt;
+
+ tceh_cnt = calc_cycl(sdr->tCEH_min, sdr_clk_period);
+ tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), sdr_clk_period);
+
+ reg = 0;
+ reg |= FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt);
+ reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt);
+ reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt);
+ writel(reg, cdns_nand->reg + TIMINGS2);
+ dev_dbg(cdns_nand->dev, "TIMINGS2_SDR\t%x\n", reg);
+
+ if (cadence_nand_is_phy_type_dll) {
+ reg = DLL_PHY_CTRL_DLL_RST_N;
+ if (extended_wr_mode)
+ reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE;
+ if (extended_read_mode)
+ reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE;
+
+ reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7);
+ reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7);
+ writel(reg, cdns_nand->reg + DLL_PHY_CTRL);
+ dev_dbg(cdns_nand->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg);
+ }
+
+ /* ------------------------------------------------------------------
+ * sampling point calculation
+ * ------------------------------------------------------------------
+ */
+ if ((tdvw_max % dqs_sampl_res) > 0) {
+ // sampling point has margin to the edge of data
+ if (((tdvw_max / dqs_sampl_res) * dqs_sampl_res) > tdvw_min) {
+ /* if "number" of sampling point is:
+ * - even then phony_dqs_sel 0
+ * - odd then phony_dqs_sel 1
+ */
+ if (((tdvw_max / dqs_sampl_res) % 2) > 0) {
+ //odd
+ dll_phy_dqs_timing = 0x00110004;
+ phony_dqs_timing = tdvw_max
+ / (dqs_sampl_res * phony_dqs_mod);
+ if (!cadence_nand_is_phy_type_dll)
+ phony_dqs_timing--;
+
+ rd_del_sel = phony_dqs_timing + 3;
+ } else {
+ //even
+ dll_phy_dqs_timing = 0x00100004;
+ phony_dqs_timing = tdvw_max
+ / (dqs_sampl_res * phony_dqs_mod);
+ phony_dqs_timing--;
+ rd_del_sel = phony_dqs_timing + 3;
+ }
+ } else {
+ dev_warn(cdns_nand->dev,
+ "ERROR0 : cannot find valid sampling point\n");
+ }
+ } else {
+ /* sampling point is at the edge of data
+ * check if earlier sampling point is valid for min data valid
+ * window
+ */
+ if ((tdvw_max / dqs_sampl_res - 1) * dqs_sampl_res > tdvw_min) {
+ /* if "number" of sampling point is:
+ * - even then phony_dqs_sel 0
+ * - odd then phony_dqs_sel 1
+ */
+ if (((tdvw_max / dqs_sampl_res - 1) % 2) > 0) {
+ //odd
+ dll_phy_dqs_timing = 0x00110004;
+ phony_dqs_timing = tdvw_max
+ / (dqs_sampl_res * phony_dqs_mod) - 1;
+ if (!cadence_nand_is_phy_type_dll)
+ phony_dqs_timing--;
+
+ rd_del_sel = phony_dqs_timing + 3;
+ } else {
+ //even
+ dll_phy_dqs_timing = 0x00100004;
+ phony_dqs_timing = (tdvw_max
+ / dqs_sampl_res - 1)
+ / phony_dqs_mod;
+ phony_dqs_timing--;
+ rd_del_sel = phony_dqs_timing + 3;
+ }
+ } else {
+ dev_warn(cdns_nand->dev,
+ "ERROR1 : cannot find valid sampling point\n");
+ }
+ }
+
+ reg = 0;
+ reg |= FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing);
+ if (cadence_nand_is_phy_type_dll)
+ reg |= PHY_CTRL_SDR_DQS;
+ writel(reg, cdns_nand->reg + PHY_CTRL);
+ dev_dbg(cdns_nand->dev, "PHY_CTRL_REG_SDR\t%x\n", reg);
+
+ if (cadence_nand_is_phy_type_dll) {
+ dev_dbg(cdns_nand->dev, "PHY_TSEL_REG_SDR\t%x\n", 0);
+ writel(0, cdns_nand->reg + PHY_TSEL);
+
+ dev_dbg(cdns_nand->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2);
+ writel(2, cdns_nand->reg + PHY_DQ_TIMING);
+
+ dev_dbg(cdns_nand->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n",
+ dll_phy_dqs_timing);
+ writel(dll_phy_dqs_timing, cdns_nand->reg + PHY_DQS_TIMING);
+
+ reg = 0;
+ reg |= FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel);
+ dev_dbg(cdns_nand->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n",
+ reg);
+ writel(reg, cdns_nand->reg + PHY_GATE_LPBK_CTRL);
+
+ dev_dbg(cdns_nand->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n",
+ PHY_DLL_MASTER_CTRL_BYPASS_MODE);
+ writel(PHY_DLL_MASTER_CTRL_BYPASS_MODE,
+ cdns_nand->reg + PHY_DLL_MASTER_CTRL);
+ dev_dbg(cdns_nand->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0);
+ writel(0, cdns_nand->reg + PHY_DLL_SLAVE_CTRL);
+ }
+
+ return 0;
+}
+
+int cadence_nand_attach_chip(struct nand_chip *chip)
+{
+ int ret = 0;
+ u32 max_oob_data_size;
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct cdns_nand_info *cdns_nand = mtd_cdns_nand_info(mtd);
+
+ if (chip->options & NAND_BUSWIDTH_16) {
+ ret = cadence_nand_set_access_width(cdns_nand, 16);
+ if (ret)
+ goto free_buf;
+ }
+
+ cdns_nand->chip.bbt_options |= NAND_BBT_USE_FLASH;
+ cdns_nand->chip.bbt_options |= NAND_BBT_NO_OOB;
+ cdns_nand->chip.ecc.mode = NAND_ECC_HW;
+
+ cdns_nand->chip.options |= NAND_NO_SUBPAGE_WRITE;
+
+ cdns_nand->bbm_offs = cdns_nand->chip.badblockpos;
+ if (cdns_nand->chip.options & NAND_BUSWIDTH_16) {
+ cdns_nand->bbm_offs &= ~0x01;
+ cdns_nand->bbm_len = 2;
+ } else {
+ cdns_nand->bbm_len = 1;
+ }
+
+ ret = nand_ecc_choose_conf(&cdns_nand->chip,
+ &cdns_nand->ecc_caps,
+ mtd->oobsize - cdns_nand->bbm_len);
+ if (ret) {
+ dev_err(cdns_nand->dev, "ECC configuration failed\n");
+ goto free_buf;
+ }
+
+ dev_dbg(cdns_nand->dev,
+ "chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
+ chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
+
+ /* Error correction */
+ cdns_nand->main_size = mtd->writesize;
+ cdns_nand->sector_size = cdns_nand->chip.ecc.size;
+ cdns_nand->sector_count = cdns_nand->main_size / cdns_nand->sector_size;
+ cdns_nand->oob_size = mtd->oobsize;
+ cdns_nand->avail_oob_size = cdns_nand->oob_size
+ - cdns_nand->sector_count * cdns_nand->chip.ecc.bytes;
+
+ max_oob_data_size = MAX_OOB_SIZE_PER_SECTOR;
+
+ if (cdns_nand->avail_oob_size > max_oob_data_size)
+ cdns_nand->avail_oob_size = max_oob_data_size;
+
+ if ((cdns_nand->avail_oob_size + cdns_nand->bbm_len
+ + cdns_nand->sector_count
+ * cdns_nand->chip.ecc.bytes) > mtd->oobsize)
+ cdns_nand->avail_oob_size -= 4;
+
+ cadence_nand_set_ecc_strength(cdns_nand, chip->ecc.strength);
+ cadence_nand_set_ecc_enable(cdns_nand, true);
+ cadence_nand_set_erase_detection(cdns_nand, true, chip->ecc.strength);
+
+ /* override the default read operations */
+ cdns_nand->chip.ecc.read_page = cadence_nand_read_page;
+ cdns_nand->chip.ecc.read_page_raw = cadence_nand_read_page_raw;
+ cdns_nand->chip.ecc.write_page = cadence_nand_write_page;
+ cdns_nand->chip.ecc.write_page_raw = cadence_nand_write_page_raw;
+ cdns_nand->chip.ecc.read_oob = cadence_nand_read_oob;
+ cdns_nand->chip.ecc.write_oob = cadence_nand_write_oob;
+ cdns_nand->chip.ecc.read_oob_raw = cadence_nand_read_oob_raw;
+ cdns_nand->chip.ecc.write_oob_raw = cadence_nand_write_oob_raw;
+
+ kfree(cdns_nand->buf);
+ cdns_nand->buf = kzalloc(mtd->writesize + mtd->oobsize,
+ GFP_KERNEL);
+ if (!cdns_nand->buf) {
+ ret = -ENOMEM;
+ goto free_buf;
+ }
+
+ /* Is 32-bit DMA supported? */
+ ret = dma_set_mask(cdns_nand->dev, DMA_BIT_MASK(32));
+ if (ret) {
+ dev_err(cdns_nand->dev, "no usable DMA configuration\n");
+ goto free_buf;
+ }
+
+ mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops);
+
+ return 0;
+
+free_buf:
+ kfree(cdns_nand->buf);
+
+ return ret;
+}
+
+static const struct nand_controller_ops cadence_nand_controller_ops = {
+ .attach_chip = cadence_nand_attach_chip,
+ .exec_op = cadence_nand_exec_op,
+ .setup_data_interface = cadence_nand_setup_data_interface,
+};
+
+int cadence_nand_init(struct cdns_nand_info *cdns_nand)
+{
+ dma_cap_mask_t mask;
+ struct mtd_info *mtd;
+ struct nand_chip *chip;
+ int ret = 0;
+
+ chip = &cdns_nand->chip;
+ mtd = nand_to_mtd(chip);
+
+ mtd->owner = THIS_MODULE;
+ mtd->dev.parent = cdns_nand->dev;
+ nand_set_flash_node(chip, cdns_nand->dev->of_node);
+ if (!mtd->name)
+ mtd->name = CADENCE_NAND_NAME;
+
+ cdns_nand->cdma_desc = dma_alloc_coherent(cdns_nand->dev,
+ sizeof(*cdns_nand->cdma_desc),
+ &cdns_nand->dma_cdma_desc,
+ GFP_KERNEL);
+ if (!cdns_nand->dma_cdma_desc)
+ return -ENOMEM;
+
+ cdns_nand->buf = kmalloc(16 * 1024, GFP_KERNEL);
+ if (!cdns_nand->buf) {
+ goto free_buf_desc;
+ ret = -ENOMEM;
+ }
+
+ if (request_irq(cdns_nand->irq, cadence_nand_isr, IRQF_SHARED,
+ CADENCE_NAND_NAME, cdns_nand)) {
+ dev_err(cdns_nand->dev, "Unable to allocate IRQ\n");
+ ret = -ENODEV;
+ goto free_buf;
+ }
+
+ /* register the driver with the NAND core subsystem */
+ cdns_nand->chip.legacy.block_markbad = cadence_nand_block_markbad;
+
+ spin_lock_init(&cdns_nand->irq_lock);
+ init_completion(&cdns_nand->complete);
+
+ ret = cadence_nand_hw_init(cdns_nand);
+ if (ret)
+ goto disable_irq;
+
+ dma_cap_zero(mask);
+ dma_cap_set(DMA_MEMCPY, mask);
+
+ if (cdns_nand->caps.has_dma) {
+ cdns_nand->dmac = dma_request_channel(mask, NULL, NULL);
+ if (!cdns_nand->dmac) {
+ dev_err(cdns_nand->dev,
+ "Unable to get a dma channel\n");
+ ret = -EBUSY;
+ goto disable_irq;
+ }
+ }
+
+ chip->legacy.dummy_controller.ops = &cadence_nand_controller_ops;
+ if (nand_scan(&cdns_nand->chip, cdns_nand->caps.max_banks)) {
+ ret = -ENXIO;
+ goto dma_release_chnl;
+ }
+
+ ret = mtd_device_register(mtd, NULL, 0);
+ if (ret) {
+ dev_err(cdns_nand->dev, "Failed to register MTD: %d\n",
+ ret);
+ goto cleanup_nand;
+ }
+
+ return 0;
+
+cleanup_nand:
+ nand_cleanup(chip);
+
+dma_release_chnl:
+ if (cdns_nand->dmac)
+ dma_release_channel(cdns_nand->dmac);
+
+disable_irq:
+ cadence_nand_irq_cleanup(cdns_nand->irq, cdns_nand);
+
+free_buf:
+ kfree(cdns_nand->buf);
+
+free_buf_desc:
+ dma_free_coherent(cdns_nand->dev, sizeof(struct cadence_nand_cdma_desc),
+ cdns_nand->cdma_desc, cdns_nand->dma_cdma_desc);
+
+ return ret;
+}
+
+/* driver exit point */
+void cadence_nand_remove(struct cdns_nand_info *cdns_nand)
+{
+ nand_release(&cdns_nand->chip);
+ cadence_nand_irq_cleanup(cdns_nand->irq, cdns_nand);
+ kfree(cdns_nand->buf);
+ dma_free_coherent(cdns_nand->dev, sizeof(struct cadence_nand_cdma_desc),
+ cdns_nand->cdma_desc, cdns_nand->dma_cdma_desc);
+
+ if (cdns_nand->dmac)
+ dma_release_channel(cdns_nand->dmac);
+}
+
+struct cadence_nand_dt_devdata {
+ /* is aging feature in the DLL PHY supported */
+ u8 phy_dll_aging;
+ /* is per bit deskew for read and write path in the PHY supported */
+ u8 phy_per_bit_deskew;
+ /* use DMA interface for generic commands */
+ u8 has_dma;
+};
+
+struct cadence_nand_dt {
+ struct cdns_nand_info cdns_nand;
+ struct clk *clk;
+};
+
+static const struct cadence_nand_dt_devdata cadnence_nand_default = {
+ .phy_dll_aging = 1,
+ .phy_per_bit_deskew = 1,
+ .has_dma = 1,
+};
+
+static const struct of_device_id cadence_nand_dt_ids[] = {
+ {
+ .compatible = "cdns,hpnfc-nand",
+ .data = &cadnence_nand_default
+ }, {/* cadence */}
+};
+
+MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids);
+
+static void cadence_nand_dt_read_properties(struct cdns_nand_info *cdns_nand,
+ struct device_node *np)
+{
+ u32 val;
+ int ret;
+
+ ret = of_property_read_u32(np, "cdns,if-skew", &val);
+ if (ret) {
+ dev_warn(cdns_nand->dev, "missing cdns,if-skew property\n");
+ val = 0;
+ }
+ cdns_nand->if_skew = val;
+
+ ret = of_property_read_u32(np, "cdns,nand2-delay", &val);
+ if (ret) {
+ dev_warn(cdns_nand->dev, "missing cdns,nand2-delay property\n");
+ val = 0;
+ }
+ cdns_nand->nand2_delay = val;
+
+ ret = of_property_read_u32(np, "cdns,board-delay", &val);
+ if (ret) {
+ dev_warn(cdns_nand->dev, "missing cdns,board-delay property\n");
+ val = 0;
+ }
+ cdns_nand->board_delay = val;
+}
+
+static int cadence_nand_dt_probe(struct platform_device *ofdev)
+{
+ struct resource *res;
+ struct cadence_nand_dt *dt;
+ struct cdns_nand_info *cdns_nand;
+ int ret;
+ const struct of_device_id *of_id;
+ const struct cadence_nand_dt_devdata *devdata;
+
+ of_id = of_match_device(cadence_nand_dt_ids, &ofdev->dev);
+ if (of_id) {
+ ofdev->id_entry = of_id->data;
+ devdata = of_id->data;
+ } else {
+ pr_err("Failed to find the right device id.\n");
+ return -ENOMEM;
+ }
+
+ dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL);
+ if (!dt)
+ return -ENOMEM;
+
+ cdns_nand = &dt->cdns_nand;
+ cdns_nand->caps.phy_dll_aging = devdata->phy_dll_aging;
+ cdns_nand->caps.phy_per_bit_deskew = devdata->phy_per_bit_deskew;
+ cdns_nand->caps.has_dma = devdata->has_dma;
+
+ cdns_nand->dev = &ofdev->dev;
+ cdns_nand->irq = platform_get_irq(ofdev, 0);
+ if (cdns_nand->irq < 0) {
+ dev_err(&ofdev->dev, "no irq defined\n");
+ return cdns_nand->irq;
+ }
+ dev_info(cdns_nand->dev, "IRQ: nr %d\n", cdns_nand->irq);
+
+ res = platform_get_resource(ofdev, IORESOURCE_MEM, 0);
+ cdns_nand->reg = devm_ioremap_resource(cdns_nand->dev, res);
+ if (IS_ERR(cdns_nand->reg)) {
+ dev_err(&ofdev->dev, "devm_ioremap_resource res 0 failed\n");
+ return PTR_ERR(cdns_nand->reg);
+ }
+
+ res = platform_get_resource(ofdev, IORESOURCE_MEM, 1);
+ cdns_nand->io.dma = res->start;
+ cdns_nand->io.virt = devm_ioremap_resource(&ofdev->dev, res);
+ if (IS_ERR(cdns_nand->io.virt)) {
+ dev_err(cdns_nand->dev, "devm_ioremap_resource res 1 failed\n");
+ return PTR_ERR(cdns_nand->io.virt);
+ }
+
+ dt->clk = devm_clk_get(cdns_nand->dev, "nf_clk");
+ if (IS_ERR(dt->clk))
+ return PTR_ERR(dt->clk);
+
+ cdns_nand->nf_clk_rate = clk_get_rate(dt->clk);
+
+ cadence_nand_dt_read_properties(cdns_nand, ofdev->dev.of_node);
+
+ ret = cadence_nand_init(cdns_nand);
+ if (ret)
+ return ret;
+
+ platform_set_drvdata(ofdev, dt);
+ return 0;
+}
+
+static int cadence_nand_dt_remove(struct platform_device *ofdev)
+{
+ struct cadence_nand_dt *dt = platform_get_drvdata(ofdev);
+
+ cadence_nand_remove(&dt->cdns_nand);
+
+ return 0;
+}
+
+static struct platform_driver cadence_nand_dt_driver = {
+ .probe = cadence_nand_dt_probe,
+ .remove = cadence_nand_dt_remove,
+ .driver = {
+ .name = "cadence-nand",
+ .of_match_table = cadence_nand_dt_ids,
+ },
+};
+
+module_platform_driver(cadence_nand_dt_driver);
+
+MODULE_AUTHOR("Piotr Sroka <piotrs@...ence.com>");
+MODULE_DESCRIPTION("Driver for Cadence NAND flash controller");
+
diff --git a/drivers/mtd/nand/raw/cadence_nand.h b/drivers/mtd/nand/raw/cadence_nand.h
new file mode 100644
index 000000000000..2ba907ad6e46
--- /dev/null
+++ b/drivers/mtd/nand/raw/cadence_nand.h
@@ -0,0 +1,631 @@
+/* SPDX-License-Identifier: GPL-2.0+ */
+/*
+ * Cadence NAND flash controller driver
+ *
+ * Copyright (C) 2019 Cadence
+ */
+
+#ifndef __CADENCE_NAND_H__
+#define __CADENCE_NAND_H__
+
+#include <linux/mtd/nand.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/types.h>
+
+/***************************************************/
+/* Register definition */
+/***************************************************/
+
+/* Command register 0.
+ * Writing data to this register will initiate a new transaction
+ * of the NF controller.
+ */
+#define CMD_REG0 0x0000
+/* command type field mask */
+#define CMD_REG0_CT GENMASK(31, 30)
+/* command type CDMA */
+#define CMD_REG0_CT_CDMA 0uL
+/* command type PIO */
+#define CMD_REG0_CT_PIO 1uL
+/* command type reset */
+#define CMD_REG0_CT_RST 2uL
+/* command type generic */
+#define CMD_REG0_CT_GEN 3uL
+/* command thread number field mask */
+#define CMD_REG0_TN GENMASK(27, 24)
+/* command code field mask */
+#define CMD_REG0_PIO_CC GENMASK(15, 0)
+/* command code - read page */
+#define CMD_REG0_PIO_CC_RD 0x2200uL
+/* command code - write page */
+#define CMD_REG0_PIO_CC_WR 0x2100uL
+/* command code - copy back */
+#define CMD_REG0_PIO_CC_CPB 0x1200uL
+/* command code - reset */
+#define CMD_REG0_PIO_CC_RST 0x1100uL
+/* command code - set feature */
+#define CMD_REG0_PIO_CC_SF 0x0100uL
+/* command interrupt mask */
+#define CMD_REG0_INT BIT(20)
+
+/* PIO command - volume ID */
+#define CMD_REG0_VOL_ID GENMASK(19, 16)
+
+/* Command register 1. */
+#define CMD_REG1 0x0004
+/* PIO command - bank number */
+# define CMD_REG1_BANK GENMASK(25, 24)
+/* PIO command - set feature - feature address */
+# define CMD_REG1_FADDR GENMASK(15, 0)
+
+/* Command register 2 */
+#define CMD_REG2 0x0008
+/* Command register 3 */
+#define CMD_REG3 0x000C
+/* Pointer register to select which thread status will be selected. */
+#define CMD_STATUS_PTR 0x0010
+/* Command status register for selected thread */
+#define CMD_STATUS 0x0014
+
+/* interrupt status register */
+#define INTR_STATUS 0x0110
+#define INTR_STATUS_SDMA_ERR BIT(22)
+#define INTR_STATUS_SDMA_TRIGG BIT(21)
+#define INTR_STATUS_UNSUPP_CMD BIT(19)
+#define INTR_STATUS_DDMA_TERR BIT(18)
+#define INTR_STATUS_CDMA_TERR BIT(17)
+#define INTR_STATUS_CDMA_IDL BIT(16)
+
+/* interrupt enable register */
+#define INTR_ENABLE 0x0114
+#define INTR_ENABLE_INTR_EN BIT(31)
+#define INTR_ENABLE_SDMA_ERR_EN BIT(22)
+#define INTR_ENABLE_SDMA_TRIGG_EN BIT(21)
+#define INTR_ENABLE_UNSUPP_CMD_EN BIT(19)
+#define INTR_ENABLE_DDMA_TERR_EN BIT(18)
+#define INTR_ENABLE_CDMA_TERR_EN BIT(17)
+#define INTR_ENABLE_CDMA_IDLE_EN BIT(16)
+
+/* Controller internal state */
+#define CTRL_STATUS 0x0118
+#define CTRL_STATUS_INIT_COMP BIT(9)
+#define CTRL_STATUS_CTRL_BUSY BIT(8)
+
+/* Command Engine threads state */
+#define TRD_STATUS 0x0120
+
+/* Command Engine interrupt thread error status */
+#define TRD_ERR_INT_STATUS 0x0128
+/* Command Engine interrupt thread error enable */
+#define TRD_ERR_INT_STATUS_EN 0x0130
+/* Command Engine interrupt thread complete status*/
+#define TRD_COMP_INT_STATUS 0x0138
+
+/* Transfer config 0 register.
+ * Configures data transfer parameters.
+ */
+#define TRAN_CFG_0 0x0400
+/* Offset value from the beginning of the page */
+#define TRAN_CFG_0_OFFSET GENMASK(31, 16)
+/* Numbers of sectors to transfer within single NF device's page. */
+#define TRAN_CFG_0_SEC_CNT GENMASK(7, 0)
+
+/* Transfer config 1 register.
+ * Configures data transfer parameters.
+ */
+#define TRAN_CFG_1 0x0404
+/* Size of last data sector. */
+#define TRAN_CFG_1_LAST_SEC_SIZE GENMASK(31, 16)
+/* Size of not-last data sector. - last*/
+#define TRAN_CFG_1_SECTOR_SIZE GENMASK(15, 0)
+
+/* NF device layout. */
+#define NF_DEV_LAYOUT 0x0424
+/* Bit in ROW address used for selecting of the LUN */
+#define NF_DEV_LAYOUT_ROWAC GENMASK(27, 24)
+/* The number of LUN presents in the device. */
+#define NF_DEV_LAYOUT_LN GENMASK(23, 20)
+/* Enables Multi LUN operations */
+#define NF_DEV_LAYOUT_LUN_EN BIT(16)
+/* Pages Per Block - number of pages in a block */
+#define NF_DEV_LAYOUT_PPB GENMASK(15, 0)
+
+/* ECC engine configuration register 0. */
+#define ECC_CONFIG_0 0x0428
+/* Correction strength */
+#define ECC_CONFIG_0_CORR_STR GENMASK(9, 8)
+/* Enables scrambler logic in the controller */
+#define ECC_CONFIG_0_SCRAMBLER_EN BIT(2)
+/* Enable erased pages detection mechanism */
+#define ECC_CONFIG_0_ERASE_DET_EN BIT(1)
+/* Enable controller ECC check bits generation and correction */
+#define ECC_CONFIG_0_ECC_EN BIT(0)
+
+/* ECC engine configuration register 1. */
+#define ECC_CONFIG_1 0x042C
+
+/* Multiplane settings register */
+#define MULTIPLANE_CFG 0x0434
+/* Cache operation settings. */
+#define CACHE_CFG 0x0438
+
+/* DMA settings register */
+#define DMA_SETINGS 0x043C
+/* Enable SDMA error report on access unprepared slave DMA interface. */
+#define DMA_SETINGS_SDMA_ERR_RSP BIT(17)
+/* Outstanding transaction enable */
+#define DMA_SETINGS_OTE BIT(16)
+/* DMA burst selection */
+#define DMA_SETINGS_BURST_SEL GENMASK(7, 0)
+
+/* Transferred data block size for the slave DMA module */
+#define SDMA_SIZE 0x0440
+
+/* Thread number associated with transferred data block
+ * for the slave DMA module
+ */
+#define SDMA_TRD_NUM 0x0444
+/* Thread number mask */
+#define SDMA_TRD_NUM_SDMA_TRD GENMASK(2, 0)
+
+#define CONTROL_DATA_CTRL 0x0494
+/* Thread number mask */
+#define CONTROL_DATA_CTRL_SIZE GENMASK(15, 0)
+
+#define CTRL_VERSION 0x800
+
+/* available hardware features of the controller */
+#define CTRL_FEATURES 0x804
+/* Support for NV-DDR2/3 work mode */
+#define CTRL_FEATURES_NVDDR_2_3 BIT(28)
+/* Support for NV-DDR work mode */
+#define CTRL_FEATURES_NVDDR BIT(27)
+/* Support for asynchronous work mode */
+#define CTRL_FEATURES_ASYNC BIT(26)
+/* Support for asynchronous work mode */
+#define CTRL_FEATURES_N_BANKS GENMASK(25, 24)
+/* Slave and Master DMA data width */
+#define CTRL_FEATURES_DMA_DWITH64 BIT(21)
+/* Availability of Control Data feature.*/
+#define CTRL_FEATURES_CONTROL_DATA BIT(10)
+/* number of threads available in the controller */
+#define CTRL_FEATURES_N_THREADS GENMASK(2, 0)
+
+/* NAND Flash memory device ID information */
+#define MANUFACTURER_ID 0x0808
+/* Device ID */
+#define MANUFACTURER_ID_DID GENMASK(23, 16)
+/* Manufacturer ID */
+#define MANUFACTURER_ID_MID GENMASK(7, 0)
+
+/* Device areas settings. */
+#define NF_DEV_AREAS 0x080c
+/* Spare area size in bytes for the NF device page */
+#define NF_DEV_AREAS_SPARE_SIZE GENMASK(31, 16)
+/* Main area size in bytes for the NF device page */
+#define NF_DEV_AREAS_MAIN_SIZE GENMASK(15, 0)
+
+/* device parameters 1 register contains device signature */
+#define DEV_PARAMS_1 0x0814
+#define DEV_PARAMS_1_READID_6 GENMASK(31, 24)
+#define DEV_PARAMS_1_READID_5 GENMASK(23, 16)
+#define DEV_PARAMS_1_READID_4 GENMASK(15, 8)
+#define DEV_PARAMS_1_READID_3 GENMASK(7, 0)
+
+/* device parameters 0 register */
+#define DEV_PARAMS_0 0x0810
+/* device type mask */
+#define DEV_PARAMS_0_DEV_TYPE GENMASK(31, 30)
+/* device type - ONFI */
+#define DEV_PARAMS_0_DEV_TYPE_ONFI 1
+/* device type - JEDEC */
+#define DEV_PARAMS_0_DEV_TYPE_JEDEC 2
+/* device type - unknown */
+#define DEV_PARAMS_0_DEV_TYPE_UNKNOWN 3
+/* Number of bits used to addressing planes */
+#define DEV_PARAMS_0_PLANE_ADDR GENMASK(15, 8)
+/* Indicates the number of LUNS present */
+#define DEV_PARAMS_0_NO_OF_LUNS GENMASK(7, 0)
+
+/* Features and optional commands supported
+ * by the connected device
+ */
+#define DEV_FEATURES 0x0818
+
+/* Number of blocks per LUN present in the NF device. */
+#define DEV_BLOCKS_PER_LUN 0x081c
+
+/* Device revision version */
+#define DEV_REVISION 0x0820
+
+/* Device Timing modes 0*/
+#define ONFI_TIME_MOD_0 0x0824
+/* SDR timing modes support */
+#define ONFI_TIME_MOD_0_SDR GENMASK(15, 0)
+/* DDR timing modes support */
+#define ONFI_TIME_MOD_0_DDR GENMASK(31, 16)
+
+/* Device Timing modes 1*/
+#define ONFI_TIME_MOD_1 0x0828
+/* DDR2 timing modes support */
+#define ONFI_TIME_MOD_1_DDR2 GENMASK(15, 0)
+/* DDR3 timing modes support */
+#define ONFI_TIME_MOD_1_DDR3 GENMASK(31, 16)
+
+/* BCH Engine identification register 0 - correction strengths. */
+#define BCH_CFG_0 0x838
+#define BCH_CFG_0_CORR_CAP_0 GENMASK(7, 0)
+#define BCH_CFG_0_CORR_CAP_1 GENMASK(15, 8)
+#define BCH_CFG_0_CORR_CAP_2 GENMASK(23, 16)
+#define BCH_CFG_0_CORR_CAP_3 GENMASK(31, 24)
+
+/* BCH Engine identification register 1 - correction strengths. */
+#define BCH_CFG_1 0x83C
+#define BCH_CFG_1_CORR_CAP_4 GENMASK(7, 0)
+#define BCH_CFG_1_CORR_CAP_5 GENMASK(15, 8)
+#define BCH_CFG_1_CORR_CAP_6 GENMASK(23, 16)
+#define BCH_CFG_1_CORR_CAP_7 GENMASK(31, 24)
+
+/* BCH Engine identification register 2 - sector sizes. */
+#define BCH_CFG_2 0x840
+#define BCH_CFG_2_SECT_0 GENMASK(15, 0)
+#define BCH_CFG_2_SECT_1 GENMASK(31, 16)
+
+/* BCH Engine identification register 3 */
+#define BCH_CFG_3 0x844
+
+/* Ready/Busy# line status */
+#define RBN_SETINGS 0x1004
+
+/* Common settings */
+#define COMMON_SET 0x1008
+/* 16 bit device connected to the NAND Flash interface */
+#define COMMON_SET_DEVICE_16BIT BIT(8)
+
+/* skip_bytes registers */
+#define SKIP_BYTES_CONF 0x100C
+#define SKIP_BYTES_MARKER_VALUE GENMASK(31, 16)
+#define SKIP_BYTES_NUM_OF_BYTES GENMASK(7, 0)
+
+#define SKIP_BYTES_OFFSET 0x1010
+#define SKIP_BYTES_OFFSET_VALUE GENMASK(23, 0)
+
+#define TOGGLE_TIMINGS0 0x1014
+#define TOGGLE_TIMINGS0_TCR GENMASK(29, 24)
+#define TOGGLE_TIMINGS0_TPRE GENMASK(21, 16)
+#define TOGGLE_TIMINGS0_TCDQSS GENMASK(13, 8)
+#define TOGGLE_TIMINGS0_TPSTH GENMASK(5, 0)
+
+#define TOGGLE_TIMINGS1 0x1018
+#define TOGGLE_TIMINGS1_TCDQSH GENMASK(29, 24)
+#define TOGGLE_TIMINGS1_TCRES GENMASK(21, 16)
+#define TOGGLE_TIMINGS1_TRPST GENMASK(13, 8)
+#define TOGGLE_TIMINGS1_TWPST GENMASK(5, 0)
+
+/* ToggleMode/NV-DDR2/NV-DDR3 and SDR timings configuration. */
+#define ASYNC_TOGGLE_TIMINGS 0x101c
+#define ASYNC_TOGGLE_TIMINGS_TRH GENMASK(28, 24)
+#define ASYNC_TOGGLE_TIMINGS_TRP GENMASK(20, 16)
+#define ASYNC_TOGGLE_TIMINGS_TWH GENMASK(12, 8)
+#define ASYNC_TOGGLE_TIMINGS_TWP GENMASK(4, 0)
+
+/* SourceSynchronous/NV-DDR timings configuration. */
+#define SYNC_TIMINGS 0x1020
+#define SYNC_TIMINGS_TCKWR GENMASK(21, 16)
+#define SYNC_TIMINGS_TWRCK GENMASK(13, 8)
+#define SYNC_TIMINGS_TCAD GENMASK(5, 0)
+
+#define TIMINGS0 0x1024
+#define TIMINGS0_TADL GENMASK(31, 24)
+#define TIMINGS0_TCCS GENMASK(23, 16)
+#define TIMINGS0_TWHR GENMASK(15, 8)
+#define TIMINGS0_TRHW GENMASK(7, 0)
+
+#define TIMINGS1 0x1028
+#define TIMINGS1_TRHZ GENMASK(31, 24)
+#define TIMINGS1_TWB GENMASK(23, 16)
+#define TIMINGS1_TCWAW GENMASK(15, 8)
+#define TIMINGS1_TVDLY GENMASK(7, 0)
+
+#define TIMINGS2 0x1028
+#define TIMINGS2_TFEAT GENMASK(25, 16)
+#define TIMINGS2_CS_HOLD_TIME GENMASK(13, 8)
+#define TIMINGS2_CS_SETUP_TIME GENMASK(5, 0)
+
+/* Configuration of the resynchronization of slave DLL of PHY */
+#define DLL_PHY_CTRL 0x1034
+#define DLL_PHY_CTRL_DLL_LOCK_DONE BIT(26)
+#define DLL_PHY_CTRL_DFI_CTRLUPD_REQ BIT(25)
+#define DLL_PHY_CTRL_DLL_RST_N BIT(24)
+#define DLL_PHY_CTRL_EXTENDED_WR_MODE BIT(17)
+#define DLL_PHY_CTRL_EXTENDED_RD_MODE BIT(16)
+#define DLL_PHY_CTRL_RS_HIGH_WAIT_CNT GENMASK(11, 8)
+#define DLL_PHY_CTRL_RS_IDLE_CNT GENMASK(7, 0)
+
+/* register controlling DQ related timing */
+#define PHY_DQ_TIMING 0x2000
+/* register controlling DSQ related timing */
+#define PHY_DQS_TIMING 0x2004
+
+/* register controlling the gate and loopback control related timing. */
+#define PHY_GATE_LPBK_CTRL 0x2008
+#define PHY_GATE_LPBK_CTRL_RDS GENMASK(24, 19)
+
+/* register holds the control for the master DLL logic */
+#define PHY_DLL_MASTER_CTRL 0x200C
+#define PHY_DLL_MASTER_CTRL_BYPASS_MODE BIT(23)
+
+/* register holds the control for the slave DLL logic */
+#define PHY_DLL_SLAVE_CTRL 0x2010
+
+/* This register handles the global control settings for the PHY */
+#define PHY_CTRL 0x2080
+#define PHY_CTRL_SDR_DQS BIT(14)
+#define PHY_CTRL_PHONY_DQS GENMASK(9, 4)
+
+/* This register handles the global control settings
+ * for the termination selects for reads
+ */
+#define PHY_TSEL 0x2084
+/***************************************************/
+
+/* generic command layout*/
+#define GCMD_LAY_CS GENMASK_ULL(11, 8)
+/* commands complaint with Jedec spec*/
+#define GCMD_LAY_JEDEC BIT_ULL(7)
+/* This bit informs the minicotroller if it has to wait for tWB
+ * after sending the last CMD/ADDR/DATA in the sequence.
+ */
+#define GCMD_LAY_TWB BIT_ULL(6)
+/* type of instruction */
+#define GCMD_LAY_INSTR GENMASK_ULL(5, 0)
+
+/* type of instruction - CMD sequence */
+#define GCMD_LAY_INSTR_CMD 0
+/* type of instruction - ADDR sequence */
+#define GCMD_LAY_INSTR_ADDR 1
+/* type of instruction - data transfer */
+#define GCMD_LAY_INSTR_DATA 2
+/* type of instruction - read parameter page (0xEF) */
+#define GCMD_LAY_INSTR_RDPP 28
+/* type of instruction - read memory ID (0x90) */
+#define GCMD_LAY_INSTR_RDID 27
+/* type of instruction - reset command (0xFF) */
+#define GCMD_LAY_INSTR_RDST 7
+/* type of instruction - change read column command */
+#define GCMD_LAY_INSTR_CHRC 12
+
+/* input part of generic command type of input is command */
+#define GCMD_LAY_INPUT_CMD GENMASK_ULL(23, 16)
+
+/* generic command address sequence - address fields */
+#define GCMD_LAY_INPUT_ADDR GENMASK_ULL(63, 16)
+/* generic command address sequence - address size */
+#define GCMD_LAY_INPUT_ADDR_SIZE GENMASK_ULL(13, 11)
+
+/* generic command data sequence - transfer direction */
+#define GCMD_DIR BIT_ULL(11)
+/* generic command data sequence - transfer direction - read */
+#define GCMD_DIR_READ 0
+/* generic command data sequence - transfer direction - write */
+#define GCMD_DIR_WRITE 1
+
+/* generic command data sequence - ecc enabled */
+#define GCMD_ECC_EN BIT_ULL(12)
+/* generic command data sequence - scrambler enabled */
+#define GCMD_SCR_EN BIT_ULL(13)
+/* generic command data sequence - erase page detection enabled */
+#define GCMD_ERPG_EN BIT_ULL(14)
+/* generic command data sequence - sector size */
+#define GCMD_SECT_SIZE GENMASK_ULL(31, 16)
+/* generic command data sequence - sector count */
+#define GCMD_SECT_CNT GENMASK_ULL(39, 32)
+/* generic command data sequence - last sector size */
+#define GCMD_LAST_SIZE GENMASK_ULL(55, 40)
+/* generic command data sequence - correction capability */
+#define GCMD_CORR_CAP GENMASK_ULL(58, 56)
+
+/***************************************************/
+/* CDMA descriptor fields */
+/***************************************************/
+
+/** command DMA descriptor type - erase command */
+#define CDMA_CT_ERASE 0x1000
+/** command DMA descriptor type - reset command */
+#define CDMA_CT_RST 0x1100
+/** command DMA descriptor type - copy back command */
+#define CDMA_CT_CPYB 0x1200
+/** command DMA descriptor type - write page command */
+#define CDMA_CT_WR 0x2100
+/** command DMA descriptor type - read page command */
+#define CDMA_CT_RD 0x2200
+/** command DMA descriptor type - nop command */
+#define CDMA_CT_NOP 0xFFFF
+
+/** flash pointer memory - shift */
+#define CDMA_CFPTR_MEM_SHIFT 24
+/** flash pointer memory */
+#define CDMA_CFPTR_MEM GENMASK(26, 24)
+
+/** command DMA descriptor flags - issue interrupt after
+ * the completion of descriptor processing
+ */
+#define CDMA_CF_INT BIT(8)
+/** command DMA descriptor flags - the next descriptor
+ * address field is valid and descriptor processing should continue
+ */
+#define CDMA_CF_CONT BIT(9)
+/* command DMA descriptor flags - selects DMA master */
+#define CDMA_CF_DMA_MASTER BIT(10)
+
+/* command descriptor status - operation complete */
+#define CDMA_CS_COMP BIT(15)
+/* command descriptor status - operation fail */
+#define CDMA_CS_FAIL BIT(14)
+/* command descriptor status - page erased */
+#define CDMA_CS_ERP BIT(11)
+/* command descriptor status - timeout occurred */
+#define CDMA_CS_TOUT BIT(10)
+/* command descriptor status - maximum amount of correction
+ * applied to one ECC sector
+ */
+#define CDMA_CS_MAXERR GENMASK(9, 2)
+/* command descriptor status - uncorrectable ECC error */
+#define CDMA_CS_UNCE BIT(1)
+/* command descriptor status - descriptor error */
+#define CDMA_CS_ERR BIT(0)
+
+/***************************************************/
+
+/***************************************************/
+/* internal used status*/
+/***************************************************/
+/* status of operation - OK */
+#define STAT_OK 0
+/* status of operation - FAIL */
+#define STAT_FAIL 2
+/* status of operation - uncorrectable ECC error */
+#define STAT_ECC_UNCORR 3
+/* status of operation - page erased */
+#define STAT_ERASED 5
+/* status of operation - correctable ECC error */
+#define STAT_ECC_CORR 6
+/* status of operation - unsuspected state*/
+#define STAT_UNKNOWN 7
+/* status of operation - operation is not completed yet */
+#define STAT_BUSY 0xFF
+/***************************************************/
+
+#define BCH_MAX_NUM_CORR_CAPS 8
+#define BCH_MAX_NUM_SECTOR_SIZES 2
+
+/* Command DMA descriptor */
+struct cadence_nand_cdma_desc {
+ /* next descriptor address */
+ u64 next_pointer;
+
+ /* glash address is a 32-bit address comprising of BANK and ROW ADDR. */
+ u32 flash_pointer;
+ u32 rsvd0;
+
+ /* operation the controller needs to perform */
+ u16 command_type;
+ u16 rsvd1;
+ /* flags for operation of this command */
+ u16 command_flags;
+ u16 rsvd2;
+
+ /* system/host memory address required for data DMA commands. */
+ u64 memory_pointer;
+
+ /* status of operation */
+ u32 status;
+ u32 rsvd3;
+
+ /* address pointer to sync buffer location */
+ u64 sync_flag_pointer;
+
+ /* Controls the buffer sync mechanism. */
+ u32 sync_arguments;
+ u32 rsvd4;
+
+ /* Control data pointer */
+ u64 ctrl_data_ptr;
+};
+
+/* interrupt status */
+struct cadence_nand_irq_status {
+ /* Thread operation complete status */
+ u32 trd_status;
+ /* Thread operation error */
+ u32 trd_error;
+ /* Controller status */
+ u32 status;
+};
+
+/* Cadnence NAND flash controller capabilities */
+struct cdns_nand_caps {
+ /* maximum number of banks supported by hardware. */
+ u8 max_banks;
+ /* slave and Master DMA data width in bytes (4 or 8) */
+ u8 data_dma_width;
+ /* is Control Data feature supported */
+ u8 data_control_supp;
+ /* is aging feature in the DLL PHY supported */
+ u8 phy_dll_aging;
+ /* is per bit deskew for read and write path in the PHY supported */
+ u8 phy_per_bit_deskew;
+ /* can slave DMA interface is connected to DMA engine */
+ u8 has_dma;
+};
+
+struct cdns_nand_info {
+ struct device *dev;
+ struct nand_controller controller;
+ struct cadence_nand_cdma_desc *cdma_desc;
+ /* IP capability */
+ struct cdns_nand_caps caps;
+ dma_addr_t dma_cdma_desc;
+ u8 *buf;
+
+ struct nand_chip chip;
+ /* register Interface */
+ void __iomem *reg;
+
+ struct {
+ void __iomem *virt;
+ dma_addr_t dma;
+ } io;
+
+ int irq;
+ /* interrupts that have happened */
+ struct cadence_nand_irq_status irq_status;
+ /* interrupts we are waiting for */
+ struct cadence_nand_irq_status irq_mask;
+ struct completion complete;
+ /* protect irq_mask and irq_status */
+ spinlock_t irq_lock;
+
+ int ecc_strengths[BCH_MAX_NUM_CORR_CAPS];
+ struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES];
+ struct nand_ecc_caps ecc_caps;
+
+ /* part of oob area of NANF flash memory page.
+ * This part is available for user to read or write.
+ */
+ u32 avail_oob_size;
+ /* oob area size of NANF flash memory page */
+ u32 oob_size;
+ /* main area size of NANF flash memory page */
+ u32 main_size;
+
+ /* sector size few sectors are located on main area of NF memory page */
+ u32 sector_size;
+ u32 sector_count;
+ u32 curr_trans_type;
+
+ struct dma_chan *dmac;
+
+ /* offset of BBM*/
+ u8 bbm_offs;
+ /* number of bytes reserved for BBM */
+ u8 bbm_len;
+
+ u32 nf_clk_rate;
+ /* Estimated Board delay. The value includes the total
+ * round trip delay for the signals and is used for deciding on values
+ * associated with data read capture.
+ */
+ u32 board_delay;
+ /* Delay value of one NAND2 gate from which the delay element is build*/
+ u32 nand2_delay;
+ /* skew value of the output signals of the NAND Flash interface */
+ u32 if_skew;
+};
+
+int cadence_nand_init(struct cdns_nand_info *cdns_nand);
+void cadence_nand_remove(struct cdns_nand_info *cdns_nand);
+
+#endif
+
--
2.15.0
Powered by blists - more mailing lists