lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date:   Sat, 27 Apr 2019 15:09:15 -0300
From:   Mauro Carvalho Chehab <mchehab+samsung@...nel.org>
To:     Changbin Du <changbin.du@...il.com>
Cc:     Jonathan Corbet <corbet@....net>, tglx@...utronix.de,
        mingo@...hat.com, bp@...en8.de, x86@...nel.org,
        linux-doc@...r.kernel.org, linux-kernel@...r.kernel.org
Subject: Re: [PATCH 17/27] Documentation: x86: convert resctrl_ui.txt to
 reST

Em Fri, 26 Apr 2019 23:31:40 +0800
Changbin Du <changbin.du@...il.com> escreveu:

> This converts the plain text documentation to reStructuredText format and
> add it to Sphinx TOC tree. No essential content change.
> 
> Signed-off-by: Changbin Du <changbin.du@...il.com>
> ---
>  Documentation/x86/index.rst                   |   1 +
>  .../x86/{resctrl_ui.txt => resctrl_ui.rst}    | 913 ++++++++++--------
>  2 files changed, 490 insertions(+), 424 deletions(-)
>  rename Documentation/x86/{resctrl_ui.txt => resctrl_ui.rst} (68%)
> 
> diff --git a/Documentation/x86/index.rst b/Documentation/x86/index.rst
> index 2fcd10f29b87..4e9fa2b046df 100644
> --- a/Documentation/x86/index.rst
> +++ b/Documentation/x86/index.rst
> @@ -23,3 +23,4 @@ Linux x86 Support
>     amd-memory-encryption
>     pti
>     microcode
> +   resctrl_ui
> diff --git a/Documentation/x86/resctrl_ui.txt b/Documentation/x86/resctrl_ui.rst
> similarity index 68%
> rename from Documentation/x86/resctrl_ui.txt
> rename to Documentation/x86/resctrl_ui.rst
> index c1f95b59e14d..81aaa271d5ea 100644
> --- a/Documentation/x86/resctrl_ui.txt
> +++ b/Documentation/x86/resctrl_ui.rst
> @@ -1,33 +1,39 @@
> +.. SPDX-License-Identifier: GPL-2.0
> +.. include:: <isonum.txt>
> +
> +===========================================
>  User Interface for Resource Control feature
> +===========================================
>  
> -Intel refers to this feature as Intel Resource Director Technology(Intel(R) RDT).
> -AMD refers to this feature as AMD Platform Quality of Service(AMD QoS).
> +:Copyright: |copy| 2016 Intel Corporation
> +:Authors: - Fenghua Yu <fenghua.yu@...el.com>
> +          - Tony Luck <tony.luck@...el.com>
> +          - Vikas Shivappa <vikas.shivappa@...el.com>
>  
> -Copyright (C) 2016 Intel Corporation
>  
> -Fenghua Yu <fenghua.yu@...el.com>
> -Tony Luck <tony.luck@...el.com>
> -Vikas Shivappa <vikas.shivappa@...el.com>
> +Intel refers to this feature as Intel Resource Director Technology(Intel(R) RDT).
> +AMD refers to this feature as AMD Platform Quality of Service(AMD QoS).
>  
>  This feature is enabled by the CONFIG_X86_CPU_RESCTRL and the x86 /proc/cpuinfo
> -flag bits:
> -RDT (Resource Director Technology) Allocation - "rdt_a"
> -CAT (Cache Allocation Technology) - "cat_l3", "cat_l2"
> -CDP (Code and Data Prioritization ) - "cdp_l3", "cdp_l2"
> -CQM (Cache QoS Monitoring) - "cqm_llc", "cqm_occup_llc"
> -MBM (Memory Bandwidth Monitoring) - "cqm_mbm_total", "cqm_mbm_local"
> -MBA (Memory Bandwidth Allocation) - "mba"
> +flag bits::
> +
> +  RDT (Resource Director Technology) Allocation - "rdt_a"
> +  CAT (Cache Allocation Technology) - "cat_l3", "cat_l2"
> +  CDP (Code and Data Prioritization ) - "cdp_l3", "cdp_l2"
> +  CQM (Cache QoS Monitoring) - "cqm_llc", "cqm_occup_llc"
> +  MBM (Memory Bandwidth Monitoring) - "cqm_mbm_total", "cqm_mbm_local"
> +  MBA (Memory Bandwidth Allocation) - "mba"

I don't see any reason to convert this into a literal block. I
would either convert it into a table or into something like:

   RDT
	(Resource Director Technology) Allocation - "rdt_a"
   CAT
	(Cache Allocation Technology) - "cat_l3", "cat_l2"
   CDP
	(Code and Data Prioritization ) - "cdp_l3", "cdp_l2"
   CQM
	(Cache QoS Monitoring) - "cqm_llc", "cqm_occup_llc"
   MBM
	(Memory Bandwidth Monitoring) - "cqm_mbm_total", "cqm_mbm_local"
   MBA
	(Memory Bandwidth Allocation) - "mba"


A table seems to be the best approach, though:

  =============================================		================================
  RDT (Resource Director Technology) Allocation		"rdt_a"
  CAT (Cache Allocation Technology)			"cat_l3", "cat_l2"
  CDP (Code and Data Prioritization)			"cdp_l3", "cdp_l2"
  CQM (Cache QoS Monitoring)				"cqm_llc", "cqm_occup_llc"
  MBM (Memory Bandwidth Monitoring)			"cqm_mbm_total", "cqm_mbm_local"
  MBA (Memory Bandwidth Allocation)			"mba"
  =============================================		================================

>  
> -To use the feature mount the file system:
> +To use the feature mount the file system::
>  
>   # mount -t resctrl resctrl [-o cdp[,cdpl2][,mba_MBps]] /sys/fs/resctrl
>  
>  mount options are:
>  
> -"cdp": Enable code/data prioritization in L3 cache allocations.
> -"cdpl2": Enable code/data prioritization in L2 cache allocations.
> -"mba_MBps": Enable the MBA Software Controller(mba_sc) to specify MBA
> - bandwidth in MBps
> +* "cdp": Enable code/data prioritization in L3 cache allocations.
> +* "cdpl2": Enable code/data prioritization in L2 cache allocations.
> +* "mba_MBps": Enable the MBA Software Controller(mba_sc) to specify MBA
> +  bandwidth in MBps

I would add a \n\t after each :, in order to show the options in
bold and the explanation on a separate indented line, just like what
you did with the next similar set of options.

>  
>  L2 and L3 CDP are controlled seperately.
>  
> @@ -44,7 +50,7 @@ For more details on the behavior of the interface during monitoring
>  and allocation, see the "Resource alloc and monitor groups" section.
>  
>  Info directory
> ---------------
> +==============
>  
>  The 'info' directory contains information about the enabled
>  resources. Each resource has its own subdirectory. The subdirectory
> @@ -56,77 +62,93 @@ allocation:
>  Cache resource(L3/L2)  subdirectory contains the following files
>  related to allocation:
>  
> -"num_closids":  	The number of CLOSIDs which are valid for this
> -			resource. The kernel uses the smallest number of
> -			CLOSIDs of all enabled resources as limit.
> -
> -"cbm_mask":     	The bitmask which is valid for this resource.
> -			This mask is equivalent to 100%.
> -
> -"min_cbm_bits": 	The minimum number of consecutive bits which
> -			must be set when writing a mask.
> -
> -"shareable_bits":	Bitmask of shareable resource with other executing
> -			entities (e.g. I/O). User can use this when
> -			setting up exclusive cache partitions. Note that
> -			some platforms support devices that have their
> -			own settings for cache use which can over-ride
> -			these bits.
> -"bit_usage":		Annotated capacity bitmasks showing how all
> -			instances of the resource are used. The legend is:
> -			"0" - Corresponding region is unused. When the system's
> +"num_closids":
> +		The number of CLOSIDs which are valid for this
> +		resource. The kernel uses the smallest number of
> +		CLOSIDs of all enabled resources as limit.
> +"cbm_mask":
> +		The bitmask which is valid for this resource.
> +		This mask is equivalent to 100%.
> +"min_cbm_bits":
> +		The minimum number of consecutive bits which
> +		must be set when writing a mask.
> +
> +"shareable_bits":
> +		Bitmask of shareable resource with other executing
> +		entities (e.g. I/O). User can use this when
> +		setting up exclusive cache partitions. Note that
> +		some platforms support devices that have their
> +		own settings for cache use which can over-ride
> +		these bits.
> +"bit_usage":
> +		Annotated capacity bitmasks showing how all
> +		instances of the resource are used. The legend is:
> +
> +			"0":
> +			      Corresponding region is unused. When the system's
>  			      resources have been allocated and a "0" is found
>  			      in "bit_usage" it is a sign that resources are
>  			      wasted.
> -			"H" - Corresponding region is used by hardware only
> +
> +			"H":
> +			      Corresponding region is used by hardware only
>  			      but available for software use. If a resource
>  			      has bits set in "shareable_bits" but not all
>  			      of these bits appear in the resource groups'
>  			      schematas then the bits appearing in
>  			      "shareable_bits" but no resource group will
>  			      be marked as "H".
> -			"X" - Corresponding region is available for sharing and
> +			"X":
> +			      Corresponding region is available for sharing and
>  			      used by hardware and software. These are the
>  			      bits that appear in "shareable_bits" as
>  			      well as a resource group's allocation.
> -			"S" - Corresponding region is used by software
> +			"S":
> +			      Corresponding region is used by software
>  			      and available for sharing.
> -			"E" - Corresponding region is used exclusively by
> +			"E":
> +			      Corresponding region is used exclusively by
>  			      one resource group. No sharing allowed.
> -			"P" - Corresponding region is pseudo-locked. No
> +			"P":
> +			      Corresponding region is pseudo-locked. No
>  			      sharing allowed.
>  
>  Memory bandwitdh(MB) subdirectory contains the following files
>  with respect to allocation:
>  
> -"min_bandwidth":	The minimum memory bandwidth percentage which
> -			user can request.
> +"min_bandwidth":
> +		The minimum memory bandwidth percentage which
> +		user can request.
>  
> -"bandwidth_gran":	The granularity in which the memory bandwidth
> -			percentage is allocated. The allocated
> -			b/w percentage is rounded off to the next
> -			control step available on the hardware. The
> -			available bandwidth control steps are:
> -			min_bandwidth + N * bandwidth_gran.
> +"bandwidth_gran":
> +		The granularity in which the memory bandwidth
> +		percentage is allocated. The allocated
> +		b/w percentage is rounded off to the next
> +		control step available on the hardware. The
> +		available bandwidth control steps are:
> +		min_bandwidth + N * bandwidth_gran.
>  
> -"delay_linear": 	Indicates if the delay scale is linear or
> -			non-linear. This field is purely informational
> -			only.
> +"delay_linear":
> +		Indicates if the delay scale is linear or
> +		non-linear. This field is purely informational
> +		only.
>  
>  If RDT monitoring is available there will be an "L3_MON" directory
>  with the following files:
>  
> -"num_rmids":		The number of RMIDs available. This is the
> -			upper bound for how many "CTRL_MON" + "MON"
> -			groups can be created.
> +"num_rmids":
> +		The number of RMIDs available. This is the
> +		upper bound for how many "CTRL_MON" + "MON"
> +		groups can be created.
>  
> -"mon_features":	Lists the monitoring events if
> -			monitoring is enabled for the resource.
> +"mon_features":
> +		Lists the monitoring events if
> +		monitoring is enabled for the resource.
>  
>  "max_threshold_occupancy":
> -			Read/write file provides the largest value (in
> -			bytes) at which a previously used LLC_occupancy
> -			counter can be considered for re-use.
> +		Read/write file provides the largest value (in
> +		bytes) at which a previously used LLC_occupancy
> +		counter can be considered for re-use.
>  
>  Finally, in the top level of the "info" directory there is a file
>  named "last_cmd_status". This is reset with every "command" issued
> @@ -134,6 +156,7 @@ via the file system (making new directories or writing to any of the
>  control files). If the command was successful, it will read as "ok".
>  If the command failed, it will provide more information that can be
>  conveyed in the error returns from file operations. E.g.
> +::
>  
>  	# echo L3:0=f7 > schemata
>  	bash: echo: write error: Invalid argument
> @@ -141,7 +164,7 @@ conveyed in the error returns from file operations. E.g.
>  	mask f7 has non-consecutive 1-bits
>  
>  Resource alloc and monitor groups
> ----------------------------------
> +=================================
>  
>  Resource groups are represented as directories in the resctrl file
>  system.  The default group is the root directory which, immediately
> @@ -226,6 +249,7 @@ When monitoring is enabled all MON groups will also contain:
>  
>  Resource allocation rules
>  -------------------------
> +
>  When a task is running the following rules define which resources are
>  available to it:
>  
> @@ -252,7 +276,7 @@ Resource monitoring rules
>  
>  
>  Notes on cache occupancy monitoring and control
> ------------------------------------------------
> +===============================================
>  When moving a task from one group to another you should remember that
>  this only affects *new* cache allocations by the task. E.g. you may have
>  a task in a monitor group showing 3 MB of cache occupancy. If you move
> @@ -321,7 +345,7 @@ of the capacity of the cache. You could partition the cache into four
>  equal parts with masks: 0x1f, 0x3e0, 0x7c00, 0xf8000.
>  
>  Memory bandwidth Allocation and monitoring
> -------------------------------------------
> +==========================================
>  
>  For Memory bandwidth resource, by default the user controls the resource
>  by indicating the percentage of total memory bandwidth.
> @@ -369,7 +393,7 @@ In order to mitigate this and make the interface more user friendly,
>  resctrl added support for specifying the bandwidth in MBps as well.  The
>  kernel underneath would use a software feedback mechanism or a "Software
>  Controller(mba_sc)" which reads the actual bandwidth using MBM counters
> -and adjust the memowy bandwidth percentages to ensure
> +and adjust the memowy bandwidth percentages to ensure::
>  
>  	"actual bandwidth < user specified bandwidth".
>  
> @@ -380,14 +404,14 @@ sections.
>  
>  L3 schemata file details (code and data prioritization disabled)
>  ----------------------------------------------------------------
> -With CDP disabled the L3 schemata format is:
> +With CDP disabled the L3 schemata format is::
>  
>  	L3:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
>  
>  L3 schemata file details (CDP enabled via mount option to resctrl)
>  ------------------------------------------------------------------
>  When CDP is enabled L3 control is split into two separate resources
> -so you can specify independent masks for code and data like this:
> +so you can specify independent masks for code and data like this::
>  
>  	L3data:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
>  	L3code:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
> @@ -395,7 +419,7 @@ so you can specify independent masks for code and data like this:
>  L2 schemata file details
>  ------------------------
>  L2 cache does not support code and data prioritization, so the
> -schemata format is always:
> +schemata format is always::
>  
>  	L2:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
>  
> @@ -403,6 +427,7 @@ Memory bandwidth Allocation (default mode)
>  ------------------------------------------
>  
>  Memory b/w domain is L3 cache.
> +::
>  
>  	MB:<cache_id0>=bandwidth0;<cache_id1>=bandwidth1;...
>  
> @@ -410,6 +435,7 @@ Memory bandwidth Allocation specified in MBps
>  ---------------------------------------------
>  
>  Memory bandwidth domain is L3 cache.
> +::
>  
>  	MB:<cache_id0>=bw_MBps0;<cache_id1>=bw_MBps1;...
>  
> @@ -418,17 +444,18 @@ Reading/writing the schemata file
>  Reading the schemata file will show the state of all resources
>  on all domains. When writing you only need to specify those values
>  which you wish to change.  E.g.
> +::
>  
> -# cat schemata
> -L3DATA:0=fffff;1=fffff;2=fffff;3=fffff
> -L3CODE:0=fffff;1=fffff;2=fffff;3=fffff
> -# echo "L3DATA:2=3c0;" > schemata
> -# cat schemata
> -L3DATA:0=fffff;1=fffff;2=3c0;3=fffff
> -L3CODE:0=fffff;1=fffff;2=fffff;3=fffff
> +  # cat schemata
> +  L3DATA:0=fffff;1=fffff;2=fffff;3=fffff
> +  L3CODE:0=fffff;1=fffff;2=fffff;3=fffff
> +  # echo "L3DATA:2=3c0;" > schemata
> +  # cat schemata
> +  L3DATA:0=fffff;1=fffff;2=3c0;3=fffff
> +  L3CODE:0=fffff;1=fffff;2=fffff;3=fffff
>  
>  Cache Pseudo-Locking
> ---------------------
> +====================
>  CAT enables a user to specify the amount of cache space that an
>  application can fill. Cache pseudo-locking builds on the fact that a
>  CPU can still read and write data pre-allocated outside its current
> @@ -442,6 +469,7 @@ a region of memory with reduced average read latency.
>  The creation of a cache pseudo-locked region is triggered by a request
>  from the user to do so that is accompanied by a schemata of the region
>  to be pseudo-locked. The cache pseudo-locked region is created as follows:
> +
>  - Create a CAT allocation CLOSNEW with a CBM matching the schemata
>    from the user of the cache region that will contain the pseudo-locked
>    memory. This region must not overlap with any current CAT allocation/CLOS
> @@ -480,6 +508,7 @@ initial mmap() handling, there is no enforcement afterwards and the
>  application self needs to ensure it remains affine to the correct cores.
>  
>  Pseudo-locking is accomplished in two stages:
> +
>  1) During the first stage the system administrator allocates a portion
>     of cache that should be dedicated to pseudo-locking. At this time an
>     equivalent portion of memory is allocated, loaded into allocated
> @@ -506,7 +535,7 @@ by user space in order to obtain access to the pseudo-locked memory region.
>  An example of cache pseudo-locked region creation and usage can be found below.
>  
>  Cache Pseudo-Locking Debugging Interface
> ----------------------------------------
> +----------------------------------------
>  The pseudo-locking debugging interface is enabled by default (if
>  CONFIG_DEBUG_FS is enabled) and can be found in /sys/kernel/debug/resctrl.
>  
> @@ -514,6 +543,7 @@ There is no explicit way for the kernel to test if a provided memory
>  location is present in the cache. The pseudo-locking debugging interface uses
>  the tracing infrastructure to provide two ways to measure cache residency of
>  the pseudo-locked region:
> +
>  1) Memory access latency using the pseudo_lock_mem_latency tracepoint. Data
>     from these measurements are best visualized using a hist trigger (see
>     example below). In this test the pseudo-locked region is traversed at
> @@ -529,87 +559,97 @@ it in debugfs as /sys/kernel/debug/resctrl/<newdir>. A single
>  write-only file, pseudo_lock_measure, is present in this directory. The
>  measurement of the pseudo-locked region depends on the number written to this
>  debugfs file:
> -1 -  writing "1" to the pseudo_lock_measure file will trigger the latency
> +
> +1:
> +     writing "1" to the pseudo_lock_measure file will trigger the latency
>       measurement captured in the pseudo_lock_mem_latency tracepoint. See
>       example below.
> -2 -  writing "2" to the pseudo_lock_measure file will trigger the L2 cache
> +2:
> +     writing "2" to the pseudo_lock_measure file will trigger the L2 cache
>       residency (cache hits and misses) measurement captured in the
>       pseudo_lock_l2 tracepoint. See example below.
> -3 -  writing "3" to the pseudo_lock_measure file will trigger the L3 cache
> +3:
> +     writing "3" to the pseudo_lock_measure file will trigger the L3 cache
>       residency (cache hits and misses) measurement captured in the
>       pseudo_lock_l3 tracepoint.
>  
>  All measurements are recorded with the tracing infrastructure. This requires
>  the relevant tracepoints to be enabled before the measurement is triggered.
>  
> -Example of latency debugging interface:
> +Example of latency debugging interface
> +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
>  In this example a pseudo-locked region named "newlock" was created. Here is
>  how we can measure the latency in cycles of reading from this region and
>  visualize this data with a histogram that is available if CONFIG_HIST_TRIGGERS
> -is set:
> -# :> /sys/kernel/debug/tracing/trace
> -# echo 'hist:keys=latency' > /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_mem_latency/trigger
> -# echo 1 > /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_mem_latency/enable
> -# echo 1 > /sys/kernel/debug/resctrl/newlock/pseudo_lock_measure
> -# echo 0 > /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_mem_latency/enable
> -# cat /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_mem_latency/hist
> -
> -# event histogram
> -#
> -# trigger info: hist:keys=latency:vals=hitcount:sort=hitcount:size=2048 [active]
> -#
> -
> -{ latency:        456 } hitcount:          1
> -{ latency:         50 } hitcount:         83
> -{ latency:         36 } hitcount:         96
> -{ latency:         44 } hitcount:        174
> -{ latency:         48 } hitcount:        195
> -{ latency:         46 } hitcount:        262
> -{ latency:         42 } hitcount:        693
> -{ latency:         40 } hitcount:       3204
> -{ latency:         38 } hitcount:       3484
> -
> -Totals:
> -    Hits: 8192
> -    Entries: 9
> -   Dropped: 0
> -
> -Example of cache hits/misses debugging:
> +is set::
> +
> +  # :> /sys/kernel/debug/tracing/trace
> +  # echo 'hist:keys=latency' > /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_mem_latency/trigger
> +  # echo 1 > /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_mem_latency/enable
> +  # echo 1 > /sys/kernel/debug/resctrl/newlock/pseudo_lock_measure
> +  # echo 0 > /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_mem_latency/enable
> +  # cat /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_mem_latency/hist
> +
> +  # event histogram
> +  #
> +  # trigger info: hist:keys=latency:vals=hitcount:sort=hitcount:size=2048 [active]
> +  #
> +
> +  { latency:        456 } hitcount:          1
> +  { latency:         50 } hitcount:         83
> +  { latency:         36 } hitcount:         96
> +  { latency:         44 } hitcount:        174
> +  { latency:         48 } hitcount:        195
> +  { latency:         46 } hitcount:        262
> +  { latency:         42 } hitcount:        693
> +  { latency:         40 } hitcount:       3204
> +  { latency:         38 } hitcount:       3484
> +
> +  Totals:
> +      Hits: 8192
> +      Entries: 9
> +    Dropped: 0
> +
> +Example of cache hits/misses debugging
> +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
>  In this example a pseudo-locked region named "newlock" was created on the L2
>  cache of a platform. Here is how we can obtain details of the cache hits
>  and misses using the platform's precision counters.
> +::
>  
> -# :> /sys/kernel/debug/tracing/trace
> -# echo 1 > /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_l2/enable
> -# echo 2 > /sys/kernel/debug/resctrl/newlock/pseudo_lock_measure
> -# echo 0 > /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_l2/enable
> -# cat /sys/kernel/debug/tracing/trace
> +  # :> /sys/kernel/debug/tracing/trace
> +  # echo 1 > /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_l2/enable
> +  # echo 2 > /sys/kernel/debug/resctrl/newlock/pseudo_lock_measure
> +  # echo 0 > /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_l2/enable
> +  # cat /sys/kernel/debug/tracing/trace
>  
> -# tracer: nop
> -#
> -#                              _-----=> irqs-off
> -#                             / _----=> need-resched
> -#                            | / _---=> hardirq/softirq
> -#                            || / _--=> preempt-depth
> -#                            ||| /     delay
> -#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
> -#              | |       |   ||||       |         |
> - pseudo_lock_mea-1672  [002] ....  3132.860500: pseudo_lock_l2: hits=4097 miss=0
> +  # tracer: nop
> +  #
> +  #                              _-----=> irqs-off
> +  #                             / _----=> need-resched
> +  #                            | / _---=> hardirq/softirq
> +  #                            || / _--=> preempt-depth
> +  #                            ||| /     delay
> +  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
> +  #              | |       |   ||||       |         |
> +  pseudo_lock_mea-1672  [002] ....  3132.860500: pseudo_lock_l2: hits=4097 miss=0
>  
>  
> -Examples for RDT allocation usage:
> +Examples for RDT allocation usage
> +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> +
> +1) Example 1
>  
> -Example 1
> ----------
>  On a two socket machine (one L3 cache per socket) with just four bits
>  for cache bit masks, minimum b/w of 10% with a memory bandwidth
> -granularity of 10%
> +granularity of 10%.
> +::
>  
> -# mount -t resctrl resctrl /sys/fs/resctrl
> -# cd /sys/fs/resctrl
> -# mkdir p0 p1
> -# echo "L3:0=3;1=c\nMB:0=50;1=50" > /sys/fs/resctrl/p0/schemata
> -# echo "L3:0=3;1=3\nMB:0=50;1=50" > /sys/fs/resctrl/p1/schemata
> +  # mount -t resctrl resctrl /sys/fs/resctrl
> +  # cd /sys/fs/resctrl
> +  # mkdir p0 p1
> +  # echo "L3:0=3;1=c\nMB:0=50;1=50" > /sys/fs/resctrl/p0/schemata
> +  # echo "L3:0=3;1=3\nMB:0=50;1=50" > /sys/fs/resctrl/p1/schemata
>  
>  The default resource group is unmodified, so we have access to all parts
>  of all caches (its schemata file reads "L3:0=f;1=f").
> @@ -628,100 +668,106 @@ the b/w accordingly.
>  
>  If the MBA is specified in MB(megabytes) then user can enter the max b/w in MB
>  rather than the percentage values.
> +::
>  
> -# echo "L3:0=3;1=c\nMB:0=1024;1=500" > /sys/fs/resctrl/p0/schemata
> -# echo "L3:0=3;1=3\nMB:0=1024;1=500" > /sys/fs/resctrl/p1/schemata
> +  # echo "L3:0=3;1=c\nMB:0=1024;1=500" > /sys/fs/resctrl/p0/schemata
> +  # echo "L3:0=3;1=3\nMB:0=1024;1=500" > /sys/fs/resctrl/p1/schemata
>  
>  In the above example the tasks in "p1" and "p0" on socket 0 would use a max b/w
>  of 1024MB where as on socket 1 they would use 500MB.
>  
> -Example 2
> ----------
> +2) Example 2
> +
>  Again two sockets, but this time with a more realistic 20-bit mask.
>  
>  Two real time tasks pid=1234 running on processor 0 and pid=5678 running on
>  processor 1 on socket 0 on a 2-socket and dual core machine. To avoid noisy
>  neighbors, each of the two real-time tasks exclusively occupies one quarter
>  of L3 cache on socket 0.
> +::
>  
> -# mount -t resctrl resctrl /sys/fs/resctrl
> -# cd /sys/fs/resctrl
> +  # mount -t resctrl resctrl /sys/fs/resctrl
> +  # cd /sys/fs/resctrl
>  
>  First we reset the schemata for the default group so that the "upper"
>  50% of the L3 cache on socket 0 and 50% of memory b/w cannot be used by
> -ordinary tasks:
> +ordinary tasks::
>  
> -# echo "L3:0=3ff;1=fffff\nMB:0=50;1=100" > schemata
> +  # echo "L3:0=3ff;1=fffff\nMB:0=50;1=100" > schemata
>  
>  Next we make a resource group for our first real time task and give
>  it access to the "top" 25% of the cache on socket 0.
> +::
>  
> -# mkdir p0
> -# echo "L3:0=f8000;1=fffff" > p0/schemata
> +  # mkdir p0
> +  # echo "L3:0=f8000;1=fffff" > p0/schemata
>  
>  Finally we move our first real time task into this resource group. We
>  also use taskset(1) to ensure the task always runs on a dedicated CPU
>  on socket 0. Most uses of resource groups will also constrain which
>  processors tasks run on.
> +::
>  
> -# echo 1234 > p0/tasks
> -# taskset -cp 1 1234
> +  # echo 1234 > p0/tasks
> +  # taskset -cp 1 1234
>  
> -Ditto for the second real time task (with the remaining 25% of cache):
> +Ditto for the second real time task (with the remaining 25% of cache)::
>  
> -# mkdir p1
> -# echo "L3:0=7c00;1=fffff" > p1/schemata
> -# echo 5678 > p1/tasks
> -# taskset -cp 2 5678
> +  # mkdir p1
> +  # echo "L3:0=7c00;1=fffff" > p1/schemata
> +  # echo 5678 > p1/tasks
> +  # taskset -cp 2 5678
>  
>  For the same 2 socket system with memory b/w resource and CAT L3 the
>  schemata would look like(Assume min_bandwidth 10 and bandwidth_gran is
>  10):
>  
> -For our first real time task this would request 20% memory b/w on socket
> -0.
> +For our first real time task this would request 20% memory b/w on socket 0.
> +::
>  
> -# echo -e "L3:0=f8000;1=fffff\nMB:0=20;1=100" > p0/schemata
> +  # echo -e "L3:0=f8000;1=fffff\nMB:0=20;1=100" > p0/schemata
>  
>  For our second real time task this would request an other 20% memory b/w
>  on socket 0.
> +::
>  
> -# echo -e "L3:0=f8000;1=fffff\nMB:0=20;1=100" > p0/schemata
> +  # echo -e "L3:0=f8000;1=fffff\nMB:0=20;1=100" > p0/schemata
>  
> -Example 3
> ----------
> +3) Example 3
>  
>  A single socket system which has real-time tasks running on core 4-7 and
>  non real-time workload assigned to core 0-3. The real-time tasks share text
>  and data, so a per task association is not required and due to interaction
>  with the kernel it's desired that the kernel on these cores shares L3 with
>  the tasks.
> +::
>  
> -# mount -t resctrl resctrl /sys/fs/resctrl
> -# cd /sys/fs/resctrl
> +  # mount -t resctrl resctrl /sys/fs/resctrl
> +  # cd /sys/fs/resctrl
>  
>  First we reset the schemata for the default group so that the "upper"
>  50% of the L3 cache on socket 0, and 50% of memory bandwidth on socket 0
> -cannot be used by ordinary tasks:
> +cannot be used by ordinary tasks::
>  
> -# echo "L3:0=3ff\nMB:0=50" > schemata
> +  # echo "L3:0=3ff\nMB:0=50" > schemata
>  
>  Next we make a resource group for our real time cores and give it access
>  to the "top" 50% of the cache on socket 0 and 50% of memory bandwidth on
>  socket 0.
> +::
>  
> -# mkdir p0
> -# echo "L3:0=ffc00\nMB:0=50" > p0/schemata
> +  # mkdir p0
> +  # echo "L3:0=ffc00\nMB:0=50" > p0/schemata
>  
>  Finally we move core 4-7 over to the new group and make sure that the
>  kernel and the tasks running there get 50% of the cache. They should
>  also get 50% of memory bandwidth assuming that the cores 4-7 are SMT
>  siblings and only the real time threads are scheduled on the cores 4-7.
> +::
>  
> -# echo F0 > p0/cpus
> +  # echo F0 > p0/cpus
>  
> -Example 4
> ----------
> +4) Example 4
>  
>  The resource groups in previous examples were all in the default "shareable"
>  mode allowing sharing of their cache allocations. If one resource group
> @@ -732,157 +778,168 @@ In this example a new exclusive resource group will be created on a L2 CAT
>  system with two L2 cache instances that can be configured with an 8-bit
>  capacity bitmask. The new exclusive resource group will be configured to use
>  25% of each cache instance.
> +::
>  
> -# mount -t resctrl resctrl /sys/fs/resctrl/
> -# cd /sys/fs/resctrl
> +  # mount -t resctrl resctrl /sys/fs/resctrl/
> +  # cd /sys/fs/resctrl
>  
>  First, we observe that the default group is configured to allocate to all L2
> -cache:
> +cache::
>  
> -# cat schemata
> -L2:0=ff;1=ff
> +  # cat schemata
> +  L2:0=ff;1=ff
>  
>  We could attempt to create the new resource group at this point, but it will
> -fail because of the overlap with the schemata of the default group:
> -# mkdir p0
> -# echo 'L2:0=0x3;1=0x3' > p0/schemata
> -# cat p0/mode
> -shareable
> -# echo exclusive > p0/mode
> --sh: echo: write error: Invalid argument
> -# cat info/last_cmd_status
> -schemata overlaps
> +fail because of the overlap with the schemata of the default group::
> +
> +  # mkdir p0
> +  # echo 'L2:0=0x3;1=0x3' > p0/schemata
> +  # cat p0/mode
> +  shareable
> +  # echo exclusive > p0/mode
> +  -sh: echo: write error: Invalid argument
> +  # cat info/last_cmd_status
> +  schemata overlaps
>  
>  To ensure that there is no overlap with another resource group the default
>  resource group's schemata has to change, making it possible for the new
>  resource group to become exclusive.
> -# echo 'L2:0=0xfc;1=0xfc' > schemata
> -# echo exclusive > p0/mode
> -# grep . p0/*
> -p0/cpus:0
> -p0/mode:exclusive
> -p0/schemata:L2:0=03;1=03
> -p0/size:L2:0=262144;1=262144
> +::
> +
> +  # echo 'L2:0=0xfc;1=0xfc' > schemata
> +  # echo exclusive > p0/mode
> +  # grep . p0/*
> +  p0/cpus:0
> +  p0/mode:exclusive
> +  p0/schemata:L2:0=03;1=03
> +  p0/size:L2:0=262144;1=262144
>  
>  A new resource group will on creation not overlap with an exclusive resource
> -group:
> -# mkdir p1
> -# grep . p1/*
> -p1/cpus:0
> -p1/mode:shareable
> -p1/schemata:L2:0=fc;1=fc
> -p1/size:L2:0=786432;1=786432
> -
> -The bit_usage will reflect how the cache is used:
> -# cat info/L2/bit_usage
> -0=SSSSSSEE;1=SSSSSSEE
> -
> -A resource group cannot be forced to overlap with an exclusive resource group:
> -# echo 'L2:0=0x1;1=0x1' > p1/schemata
> --sh: echo: write error: Invalid argument
> -# cat info/last_cmd_status
> -overlaps with exclusive group
> +group::
> +
> +  # mkdir p1
> +  # grep . p1/*
> +  p1/cpus:0
> +  p1/mode:shareable
> +  p1/schemata:L2:0=fc;1=fc
> +  p1/size:L2:0=786432;1=786432
> +
> +The bit_usage will reflect how the cache is used::
> +
> +  # cat info/L2/bit_usage
> +  0=SSSSSSEE;1=SSSSSSEE
> +
> +A resource group cannot be forced to overlap with an exclusive resource group::
> +
> +  # echo 'L2:0=0x1;1=0x1' > p1/schemata
> +  -sh: echo: write error: Invalid argument
> +  # cat info/last_cmd_status
> +  overlaps with exclusive group
>  
>  Example of Cache Pseudo-Locking
> --------------------------------
> +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
>  Lock portion of L2 cache from cache id 1 using CBM 0x3. Pseudo-locked
>  region is exposed at /dev/pseudo_lock/newlock that can be provided to
>  application for argument to mmap().
> +::
>  
> -# mount -t resctrl resctrl /sys/fs/resctrl/
> -# cd /sys/fs/resctrl
> +  # mount -t resctrl resctrl /sys/fs/resctrl/
> +  # cd /sys/fs/resctrl
>  
>  Ensure that there are bits available that can be pseudo-locked, since only
>  unused bits can be pseudo-locked the bits to be pseudo-locked needs to be
> -removed from the default resource group's schemata:
> -# cat info/L2/bit_usage
> -0=SSSSSSSS;1=SSSSSSSS
> -# echo 'L2:1=0xfc' > schemata
> -# cat info/L2/bit_usage
> -0=SSSSSSSS;1=SSSSSS00
> +removed from the default resource group's schemata::
> +
> +  # cat info/L2/bit_usage
> +  0=SSSSSSSS;1=SSSSSSSS
> +  # echo 'L2:1=0xfc' > schemata
> +  # cat info/L2/bit_usage
> +  0=SSSSSSSS;1=SSSSSS00
>  
>  Create a new resource group that will be associated with the pseudo-locked
>  region, indicate that it will be used for a pseudo-locked region, and
> -configure the requested pseudo-locked region capacity bitmask:
> +configure the requested pseudo-locked region capacity bitmask::
>  
> -# mkdir newlock
> -# echo pseudo-locksetup > newlock/mode
> -# echo 'L2:1=0x3' > newlock/schemata
> +  # mkdir newlock
> +  # echo pseudo-locksetup > newlock/mode
> +  # echo 'L2:1=0x3' > newlock/schemata
>  
>  On success the resource group's mode will change to pseudo-locked, the
>  bit_usage will reflect the pseudo-locked region, and the character device
> -exposing the pseudo-locked region will exist:
> -
> -# cat newlock/mode
> -pseudo-locked
> -# cat info/L2/bit_usage
> -0=SSSSSSSS;1=SSSSSSPP
> -# ls -l /dev/pseudo_lock/newlock
> -crw------- 1 root root 243, 0 Apr  3 05:01 /dev/pseudo_lock/newlock
> -
> -/*
> - * Example code to access one page of pseudo-locked cache region
> - * from user space.
> - */
> -#define _GNU_SOURCE
> -#include <fcntl.h>
> -#include <sched.h>
> -#include <stdio.h>
> -#include <stdlib.h>
> -#include <unistd.h>
> -#include <sys/mman.h>
> -
> -/*
> - * It is required that the application runs with affinity to only
> - * cores associated with the pseudo-locked region. Here the cpu
> - * is hardcoded for convenience of example.
> - */
> -static int cpuid = 2;
> -
> -int main(int argc, char *argv[])
> -{
> -	cpu_set_t cpuset;
> -	long page_size;
> -	void *mapping;
> -	int dev_fd;
> -	int ret;
> -
> -	page_size = sysconf(_SC_PAGESIZE);
> -
> -	CPU_ZERO(&cpuset);
> -	CPU_SET(cpuid, &cpuset);
> -	ret = sched_setaffinity(0, sizeof(cpuset), &cpuset);
> -	if (ret < 0) {
> -		perror("sched_setaffinity");
> -		exit(EXIT_FAILURE);
> -	}
> -
> -	dev_fd = open("/dev/pseudo_lock/newlock", O_RDWR);
> -	if (dev_fd < 0) {
> -		perror("open");
> -		exit(EXIT_FAILURE);
> -	}
> -
> -	mapping = mmap(0, page_size, PROT_READ | PROT_WRITE, MAP_SHARED,
> -		       dev_fd, 0);
> -	if (mapping == MAP_FAILED) {
> -		perror("mmap");
> -		close(dev_fd);
> -		exit(EXIT_FAILURE);
> -	}
> -
> -	/* Application interacts with pseudo-locked memory @mapping */
> -
> -	ret = munmap(mapping, page_size);
> -	if (ret < 0) {
> -		perror("munmap");
> -		close(dev_fd);
> -		exit(EXIT_FAILURE);
> -	}
> -
> -	close(dev_fd);
> -	exit(EXIT_SUCCESS);
> -}
> +exposing the pseudo-locked region will exist::
> +
> +  # cat newlock/mode
> +  pseudo-locked
> +  # cat info/L2/bit_usage
> +  0=SSSSSSSS;1=SSSSSSPP
> +  # ls -l /dev/pseudo_lock/newlock
> +  crw------- 1 root root 243, 0 Apr  3 05:01 /dev/pseudo_lock/newlock
> +
> +::
> +
> +  /*
> +  * Example code to access one page of pseudo-locked cache region
> +  * from user space.
> +  */
> +  #define _GNU_SOURCE
> +  #include <fcntl.h>
> +  #include <sched.h>
> +  #include <stdio.h>
> +  #include <stdlib.h>
> +  #include <unistd.h>
> +  #include <sys/mman.h>
> +
> +  /*
> +  * It is required that the application runs with affinity to only
> +  * cores associated with the pseudo-locked region. Here the cpu
> +  * is hardcoded for convenience of example.
> +  */
> +  static int cpuid = 2;
> +
> +  int main(int argc, char *argv[])
> +  {
> +    cpu_set_t cpuset;
> +    long page_size;
> +    void *mapping;
> +    int dev_fd;
> +    int ret;
> +
> +    page_size = sysconf(_SC_PAGESIZE);
> +
> +    CPU_ZERO(&cpuset);
> +    CPU_SET(cpuid, &cpuset);
> +    ret = sched_setaffinity(0, sizeof(cpuset), &cpuset);
> +    if (ret < 0) {
> +      perror("sched_setaffinity");
> +      exit(EXIT_FAILURE);
> +    }
> +
> +    dev_fd = open("/dev/pseudo_lock/newlock", O_RDWR);
> +    if (dev_fd < 0) {
> +      perror("open");
> +      exit(EXIT_FAILURE);
> +    }
> +
> +    mapping = mmap(0, page_size, PROT_READ | PROT_WRITE, MAP_SHARED,
> +            dev_fd, 0);
> +    if (mapping == MAP_FAILED) {
> +      perror("mmap");
> +      close(dev_fd);
> +      exit(EXIT_FAILURE);
> +    }
> +
> +    /* Application interacts with pseudo-locked memory @mapping */
> +
> +    ret = munmap(mapping, page_size);
> +    if (ret < 0) {
> +      perror("munmap");
> +      close(dev_fd);
> +      exit(EXIT_FAILURE);
> +    }
> +
> +    close(dev_fd);
> +    exit(EXIT_SUCCESS);
> +  }
>  
>  Locking between applications
>  ----------------------------
> @@ -921,86 +978,86 @@ Read lock:
>   B) If success read the directory structure.
>   C) funlock
>  
> -Example with bash:
> -
> -# Atomically read directory structure
> -$ flock -s /sys/fs/resctrl/ find /sys/fs/resctrl
> -
> -# Read directory contents and create new subdirectory
> -
> -$ cat create-dir.sh
> -find /sys/fs/resctrl/ > output.txt
> -mask = function-of(output.txt)
> -mkdir /sys/fs/resctrl/newres/
> -echo mask > /sys/fs/resctrl/newres/schemata
> -
> -$ flock /sys/fs/resctrl/ ./create-dir.sh
> -
> -Example with C:
> -
> -/*
> - * Example code do take advisory locks
> - * before accessing resctrl filesystem
> - */
> -#include <sys/file.h>
> -#include <stdlib.h>
> -
> -void resctrl_take_shared_lock(int fd)
> -{
> -	int ret;
> -
> -	/* take shared lock on resctrl filesystem */
> -	ret = flock(fd, LOCK_SH);
> -	if (ret) {
> -		perror("flock");
> -		exit(-1);
> -	}
> -}
> -
> -void resctrl_take_exclusive_lock(int fd)
> -{
> -	int ret;
> -
> -	/* release lock on resctrl filesystem */
> -	ret = flock(fd, LOCK_EX);
> -	if (ret) {
> -		perror("flock");
> -		exit(-1);
> -	}
> -}
> -
> -void resctrl_release_lock(int fd)
> -{
> -	int ret;
> -
> -	/* take shared lock on resctrl filesystem */
> -	ret = flock(fd, LOCK_UN);
> -	if (ret) {
> -		perror("flock");
> -		exit(-1);
> -	}
> -}
> -
> -void main(void)
> -{
> -	int fd, ret;
> -
> -	fd = open("/sys/fs/resctrl", O_DIRECTORY);
> -	if (fd == -1) {
> -		perror("open");
> -		exit(-1);
> -	}
> -	resctrl_take_shared_lock(fd);
> -	/* code to read directory contents */
> -	resctrl_release_lock(fd);
> -
> -	resctrl_take_exclusive_lock(fd);
> -	/* code to read and write directory contents */
> -	resctrl_release_lock(fd);
> -}
> -
> -Examples for RDT Monitoring along with allocation usage:
> -
> +Example with bash::
> +
> +  # Atomically read directory structure
> +  $ flock -s /sys/fs/resctrl/ find /sys/fs/resctrl
> +
> +  # Read directory contents and create new subdirectory
> +
> +  $ cat create-dir.sh
> +  find /sys/fs/resctrl/ > output.txt
> +  mask = function-of(output.txt)
> +  mkdir /sys/fs/resctrl/newres/
> +  echo mask > /sys/fs/resctrl/newres/schemata
> +
> +  $ flock /sys/fs/resctrl/ ./create-dir.sh
> +
> +Example with C::
> +
> +  /*
> +  * Example code do take advisory locks
> +  * before accessing resctrl filesystem
> +  */
> +  #include <sys/file.h>
> +  #include <stdlib.h>
> +
> +  void resctrl_take_shared_lock(int fd)
> +  {
> +    int ret;
> +
> +    /* take shared lock on resctrl filesystem */
> +    ret = flock(fd, LOCK_SH);
> +    if (ret) {
> +      perror("flock");
> +      exit(-1);
> +    }
> +  }
> +
> +  void resctrl_take_exclusive_lock(int fd)
> +  {
> +    int ret;
> +
> +    /* release lock on resctrl filesystem */
> +    ret = flock(fd, LOCK_EX);
> +    if (ret) {
> +      perror("flock");
> +      exit(-1);
> +    }
> +  }
> +
> +  void resctrl_release_lock(int fd)
> +  {
> +    int ret;
> +
> +    /* take shared lock on resctrl filesystem */
> +    ret = flock(fd, LOCK_UN);
> +    if (ret) {
> +      perror("flock");
> +      exit(-1);
> +    }
> +  }
> +
> +  void main(void)
> +  {
> +    int fd, ret;
> +
> +    fd = open("/sys/fs/resctrl", O_DIRECTORY);
> +    if (fd == -1) {
> +      perror("open");
> +      exit(-1);
> +    }
> +    resctrl_take_shared_lock(fd);
> +    /* code to read directory contents */
> +    resctrl_release_lock(fd);
> +
> +    resctrl_take_exclusive_lock(fd);
> +    /* code to read and write directory contents */
> +    resctrl_release_lock(fd);
> +  }
> +
> +Examples for RDT Monitoring along with allocation usage
> +=======================================================
>  Reading monitored data
>  ----------------------
>  Reading an event file (for ex: mon_data/mon_L3_00/llc_occupancy) would
> @@ -1009,17 +1066,17 @@ group or CTRL_MON group.
>  
>  
>  Example 1 (Monitor CTRL_MON group and subset of tasks in CTRL_MON group)
> ----------
> +------------------------------------------------------------------------
>  On a two socket machine (one L3 cache per socket) with just four bits
> -for cache bit masks
> +for cache bit masks::
>  
> -# mount -t resctrl resctrl /sys/fs/resctrl
> -# cd /sys/fs/resctrl
> -# mkdir p0 p1
> -# echo "L3:0=3;1=c" > /sys/fs/resctrl/p0/schemata
> -# echo "L3:0=3;1=3" > /sys/fs/resctrl/p1/schemata
> -# echo 5678 > p1/tasks
> -# echo 5679 > p1/tasks
> +  # mount -t resctrl resctrl /sys/fs/resctrl
> +  # cd /sys/fs/resctrl
> +  # mkdir p0 p1
> +  # echo "L3:0=3;1=c" > /sys/fs/resctrl/p0/schemata
> +  # echo "L3:0=3;1=3" > /sys/fs/resctrl/p1/schemata
> +  # echo 5678 > p1/tasks
> +  # echo 5679 > p1/tasks
>  
>  The default resource group is unmodified, so we have access to all parts
>  of all caches (its schemata file reads "L3:0=f;1=f").
> @@ -1029,47 +1086,51 @@ Tasks that are under the control of group "p0" may only allocate from the
>  Tasks in group "p1" use the "lower" 50% of cache on both sockets.
>  
>  Create monitor groups and assign a subset of tasks to each monitor group.
> +::
>  
> -# cd /sys/fs/resctrl/p1/mon_groups
> -# mkdir m11 m12
> -# echo 5678 > m11/tasks
> -# echo 5679 > m12/tasks
> +  # cd /sys/fs/resctrl/p1/mon_groups
> +  # mkdir m11 m12
> +  # echo 5678 > m11/tasks
> +  # echo 5679 > m12/tasks
>  
>  fetch data (data shown in bytes)
> +::
>  
> -# cat m11/mon_data/mon_L3_00/llc_occupancy
> -16234000
> -# cat m11/mon_data/mon_L3_01/llc_occupancy
> -14789000
> -# cat m12/mon_data/mon_L3_00/llc_occupancy
> -16789000
> +  # cat m11/mon_data/mon_L3_00/llc_occupancy
> +  16234000
> +  # cat m11/mon_data/mon_L3_01/llc_occupancy
> +  14789000
> +  # cat m12/mon_data/mon_L3_00/llc_occupancy
> +  16789000
>  
>  The parent ctrl_mon group shows the aggregated data.
> +::
>  
> -# cat /sys/fs/resctrl/p1/mon_data/mon_l3_00/llc_occupancy
> -31234000
> +  # cat /sys/fs/resctrl/p1/mon_data/mon_l3_00/llc_occupancy
> +  31234000
>  
>  Example 2 (Monitor a task from its creation)
> ----------
> -On a two socket machine (one L3 cache per socket)
> +--------------------------------------------
> +On a two socket machine (one L3 cache per socket)::
>  
> -# mount -t resctrl resctrl /sys/fs/resctrl
> -# cd /sys/fs/resctrl
> -# mkdir p0 p1
> +  # mount -t resctrl resctrl /sys/fs/resctrl
> +  # cd /sys/fs/resctrl
> +  # mkdir p0 p1
>  
>  An RMID is allocated to the group once its created and hence the <cmd>
>  below is monitored from its creation.
> +::
>  
> -# echo $$ > /sys/fs/resctrl/p1/tasks
> -# <cmd>
> +  # echo $$ > /sys/fs/resctrl/p1/tasks
> +  # <cmd>
>  
> -Fetch the data
> +Fetch the data::
>  
> -# cat /sys/fs/resctrl/p1/mon_data/mon_l3_00/llc_occupancy
> -31789000
> +  # cat /sys/fs/resctrl/p1/mon_data/mon_l3_00/llc_occupancy
> +  31789000
>  
>  Example 3 (Monitor without CAT support or before creating CAT groups)
> ----------
> +---------------------------------------------------------------------
>  
>  Assume a system like HSW has only CQM and no CAT support. In this case
>  the resctrl will still mount but cannot create CTRL_MON directories.
> @@ -1078,27 +1139,29 @@ able to monitor all tasks including kernel threads.
>  
>  This can also be used to profile jobs cache size footprint before being
>  able to allocate them to different allocation groups.
> +::
>  
> -# mount -t resctrl resctrl /sys/fs/resctrl
> -# cd /sys/fs/resctrl
> -# mkdir mon_groups/m01
> -# mkdir mon_groups/m02
> +  # mount -t resctrl resctrl /sys/fs/resctrl
> +  # cd /sys/fs/resctrl
> +  # mkdir mon_groups/m01
> +  # mkdir mon_groups/m02
>  
> -# echo 3478 > /sys/fs/resctrl/mon_groups/m01/tasks
> -# echo 2467 > /sys/fs/resctrl/mon_groups/m02/tasks
> +  # echo 3478 > /sys/fs/resctrl/mon_groups/m01/tasks
> +  # echo 2467 > /sys/fs/resctrl/mon_groups/m02/tasks
>  
>  Monitor the groups separately and also get per domain data. From the
>  below its apparent that the tasks are mostly doing work on
>  domain(socket) 0.
> +::
>  
> -# cat /sys/fs/resctrl/mon_groups/m01/mon_L3_00/llc_occupancy
> -31234000
> -# cat /sys/fs/resctrl/mon_groups/m01/mon_L3_01/llc_occupancy
> -34555
> -# cat /sys/fs/resctrl/mon_groups/m02/mon_L3_00/llc_occupancy
> -31234000
> -# cat /sys/fs/resctrl/mon_groups/m02/mon_L3_01/llc_occupancy
> -32789
> +  # cat /sys/fs/resctrl/mon_groups/m01/mon_L3_00/llc_occupancy
> +  31234000
> +  # cat /sys/fs/resctrl/mon_groups/m01/mon_L3_01/llc_occupancy
> +  34555
> +  # cat /sys/fs/resctrl/mon_groups/m02/mon_L3_00/llc_occupancy
> +  31234000
> +  # cat /sys/fs/resctrl/mon_groups/m02/mon_L3_01/llc_occupancy
> +  32789
>  
>  
>  Example 4 (Monitor real time tasks)
> @@ -1107,15 +1170,17 @@ Example 4 (Monitor real time tasks)
>  A single socket system which has real time tasks running on cores 4-7
>  and non real time tasks on other cpus. We want to monitor the cache
>  occupancy of the real time threads on these cores.
> +::
>  
> -# mount -t resctrl resctrl /sys/fs/resctrl
> -# cd /sys/fs/resctrl
> -# mkdir p1
> +  # mount -t resctrl resctrl /sys/fs/resctrl
> +  # cd /sys/fs/resctrl
> +  # mkdir p1
>  
> -Move the cpus 4-7 over to p1
> -# echo f0 > p1/cpus
> +Move the cpus 4-7 over to p1::
> +  

There are extra whitespaces at the tail of the above line.


After fixing the above:

Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@...nel.org>

> +  # echo f0 > p1/cpus
>  
> -View the llc occupancy snapshot
> +View the llc occupancy snapshot::
>  
> -# cat /sys/fs/resctrl/p1/mon_data/mon_L3_00/llc_occupancy
> -11234000
> +  # cat /sys/fs/resctrl/p1/mon_data/mon_L3_00/llc_occupancy
> +  11234000



Thanks,
Mauro

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ