lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <20190731150813.26289-55-kirill.shutemov@linux.intel.com>
Date:   Wed, 31 Jul 2019 18:08:08 +0300
From:   "Kirill A. Shutemov" <kirill@...temov.name>
To:     Andrew Morton <akpm@...ux-foundation.org>, x86@...nel.org,
        Thomas Gleixner <tglx@...utronix.de>,
        Ingo Molnar <mingo@...hat.com>,
        "H. Peter Anvin" <hpa@...or.com>, Borislav Petkov <bp@...en8.de>,
        Peter Zijlstra <peterz@...radead.org>,
        Andy Lutomirski <luto@...capital.net>,
        David Howells <dhowells@...hat.com>
Cc:     Kees Cook <keescook@...omium.org>,
        Dave Hansen <dave.hansen@...el.com>,
        Kai Huang <kai.huang@...ux.intel.com>,
        Jacob Pan <jacob.jun.pan@...ux.intel.com>,
        Alison Schofield <alison.schofield@...el.com>,
        linux-mm@...ck.org, kvm@...r.kernel.org, keyrings@...r.kernel.org,
        linux-kernel@...r.kernel.org,
        "Kirill A . Shutemov" <kirill.shutemov@...ux.intel.com>
Subject: [PATCHv2 54/59] x86/mktme: Overview of Multi-Key Total Memory Encryption

From: Alison Schofield <alison.schofield@...el.com>

Provide an overview of MKTME on Intel Platforms.

Signed-off-by: Alison Schofield <alison.schofield@...el.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@...ux.intel.com>
---
 Documentation/x86/index.rst                |  1 +
 Documentation/x86/mktme/index.rst          |  8 +++
 Documentation/x86/mktme/mktme_overview.rst | 57 ++++++++++++++++++++++
 3 files changed, 66 insertions(+)
 create mode 100644 Documentation/x86/mktme/index.rst
 create mode 100644 Documentation/x86/mktme/mktme_overview.rst

diff --git a/Documentation/x86/index.rst b/Documentation/x86/index.rst
index af64c4bb4447..449bb6abeb0e 100644
--- a/Documentation/x86/index.rst
+++ b/Documentation/x86/index.rst
@@ -22,6 +22,7 @@ x86-specific Documentation
    intel_mpx
    intel-iommu
    intel_txt
+   mktme/index
    amd-memory-encryption
    pti
    mds
diff --git a/Documentation/x86/mktme/index.rst b/Documentation/x86/mktme/index.rst
new file mode 100644
index 000000000000..1614b52dd3e9
--- /dev/null
+++ b/Documentation/x86/mktme/index.rst
@@ -0,0 +1,8 @@
+
+=========================================
+Multi-Key Total Memory Encryption (MKTME)
+=========================================
+
+.. toctree::
+
+   mktme_overview
diff --git a/Documentation/x86/mktme/mktme_overview.rst b/Documentation/x86/mktme/mktme_overview.rst
new file mode 100644
index 000000000000..64c3268a508e
--- /dev/null
+++ b/Documentation/x86/mktme/mktme_overview.rst
@@ -0,0 +1,57 @@
+Overview
+=========
+Multi-Key Total Memory Encryption (MKTME)[1] is a technology that
+allows transparent memory encryption in upcoming Intel platforms.
+It uses a new instruction (PCONFIG) for key setup and selects a
+key for individual pages by repurposing physical address bits in
+the page tables.
+
+Support for MKTME is added to the existing kernel keyring subsystem
+and via a new mprotect_encrypt() system call that can be used by
+applications to encrypt anonymous memory with keys obtained from
+the keyring.
+
+This architecture supports encrypting both normal, volatile DRAM
+and persistent memory.  However, persistent memory support is
+not included in the Linux kernel implementation at this time.
+(We anticipate adding that support next.)
+
+Hardware Background
+===================
+
+MKTME is built on top of an existing single-key technology called
+TME.  TME encrypts all system memory using a single key generated
+by the CPU on every boot of the system. TME provides mitigation
+against physical attacks, such as physically removing a DIMM or
+watching memory bus traffic.
+
+MKTME enables the use of multiple encryption keys[2], allowing
+selection of the encryption key per-page using the page tables.
+Encryption keys are programmed into each memory controller and
+the same set of keys is available to all entities on the system
+with access to that memory (all cores, DMA engines, etc...).
+
+MKTME inherits many of the mitigations against hardware attacks
+from TME.  Like TME, MKTME does not mitigate vulnerable or
+malicious operating systems or virtual machine managers.  MKTME
+offers additional mitigations when compared to TME.
+
+TME and MKTME use the AES encryption algorithm in the AES-XTS
+mode.  This mode, typically used for block-based storage devices,
+takes the physical address of the data into account when
+encrypting each block.  This ensures that the effective key is
+different for each block of memory. Moving encrypted content
+across physical address results in garbage on read, mitigating
+block-relocation attacks.  This property is the reason many of
+the discussed attacks require control of a shared physical page
+to be handed from the victim to the attacker.
+
+--
+1. https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf
+2. The MKTME architecture supports up to 16 bits of KeyIDs, so a
+   maximum of 65535 keys on top of the “TME key” at KeyID-0.  The
+   first implementation is expected to support 6 bits, making 63
+   keys available to applications.  However, this is not guaranteed.
+   The number of available keys could be reduced if, for instance,
+   additional physical address space is desired over additional
+   KeyIDs.
-- 
2.21.0

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ