[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <CAPDyKFqBzEu4qqerihkxXXvRWq8suShP6tWjrh2-WCAgW8z-YQ@mail.gmail.com>
Date: Mon, 2 Dec 2019 10:56:57 +0100
From: Ulf Hansson <ulf.hansson@...aro.org>
To: Niklas Cassel <niklas.cassel@...aro.org>
Cc: Kevin Hilman <khilman@...nel.org>, Nishanth Menon <nm@...com>,
Niklas Cassel <nks@...wful.org>,
Andy Gross <agross@...nel.org>,
Bjorn Andersson <bjorn.andersson@...aro.org>,
linux-arm-msm <linux-arm-msm@...r.kernel.org>,
Amit Kucheria <amit.kucheria@...aro.org>,
Stephen Boyd <sboyd@...nel.org>,
Viresh Kumar <vireshk@...nel.org>,
Linux Kernel Mailing List <linux-kernel@...r.kernel.org>,
Linux PM <linux-pm@...r.kernel.org>
Subject: Re: [PATCH v7 2/5] power: avs: Add support for CPR (Core Power Reduction)
On Fri, 29 Nov 2019 at 22:39, Niklas Cassel <niklas.cassel@...aro.org> wrote:
>
> CPR (Core Power Reduction) is a technology that reduces core power on a
> CPU or other device. It reads voltage settings in efuse from product
> test process as initial settings.
> Each OPP corresponds to a "corner" that has a range of valid voltages
> for a particular frequency. While the device is running at a particular
> frequency, CPR monitors dynamic factors such as temperature, etc. and
> adjusts the voltage for that frequency accordingly to save power
> and meet silicon characteristic requirements.
>
> This driver is based on an RFC by Stephen Boyd[1], which in turn is
> based on work by others on codeaurora.org[2].
>
> [1] https://lkml.org/lkml/2015/9/18/833
> [2] https://source.codeaurora.org/quic/la/kernel/msm-4.14/tree/drivers/regulator/cpr-regulator.c?h=msm-4.14
>
> Co-developed-by: Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@...aro.org>
> Signed-off-by: Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@...aro.org>
> Signed-off-by: Niklas Cassel <niklas.cassel@...aro.org>
> Reviewed-by: Bjorn Andersson <bjorn.andersson@...aro.org>
Thanks for addressing my earlier comments, this looks good to me!
Reviewed-by: Ulf Hansson <ulf.hansson@...aro.org>
Kind regards
Uffe
> ---
> Changes since v6:
> -Picked up Bjorn's Reviewed-by.
> -Initialize mutex later.
> -Take the mutex in cpr_pd_attach_dev(), in case we ever
> implement async attach in the future.
> -Add comment regarding why we get the cpu clock rate.
> -Add comment how we handle unlisted frequencies.
> -Clarify comment regarding why things related to virtual corners
> are performed in cpr_pd_attach_dev().
> -Removed the internal performance_state variable, the performance
> state is instead calculated using the current corner pointer.
> -Save a pointer to the first genpd dev that gets attached,
> and use that rather than get_cpu_device(0), when getting the CPU
> OPP table.
>
> MAINTAINERS | 8 +
> drivers/power/avs/Kconfig | 15 +
> drivers/power/avs/Makefile | 1 +
> drivers/power/avs/qcom-cpr.c | 1792 ++++++++++++++++++++++++++++++++++
> 4 files changed, 1816 insertions(+)
> create mode 100644 drivers/power/avs/qcom-cpr.c
>
> diff --git a/MAINTAINERS b/MAINTAINERS
> index b8fa7652a736..3ab2bfb02b7d 100644
> --- a/MAINTAINERS
> +++ b/MAINTAINERS
> @@ -13674,6 +13674,14 @@ S: Maintained
> F: Documentation/devicetree/bindings/opp/qcom-nvmem-cpufreq.txt
> F: drivers/cpufreq/qcom-cpufreq-nvmem.c
>
> +QUALCOMM CORE POWER REDUCTION (CPR) AVS DRIVER
> +M: Niklas Cassel <nks@...wful.org>
> +L: linux-pm@...r.kernel.org
> +L: linux-arm-msm@...r.kernel.org
> +S: Maintained
> +F: Documentation/devicetree/bindings/power/avs/qcom,cpr.txt
> +F: drivers/power/avs/qcom-cpr.c
> +
> QUALCOMM EMAC GIGABIT ETHERNET DRIVER
> M: Timur Tabi <timur@...nel.org>
> L: netdev@...r.kernel.org
> diff --git a/drivers/power/avs/Kconfig b/drivers/power/avs/Kconfig
> index b5a217b828dc..f4bf313257bb 100644
> --- a/drivers/power/avs/Kconfig
> +++ b/drivers/power/avs/Kconfig
> @@ -12,6 +12,21 @@ menuconfig POWER_AVS
>
> Say Y here to enable Adaptive Voltage Scaling class support.
>
> +config QCOM_CPR
> + tristate "QCOM Core Power Reduction (CPR) support"
> + depends on POWER_AVS
> + select PM_OPP
> + help
> + Say Y here to enable support for the CPR hardware found on Qualcomm
> + SoCs like QCS404.
> +
> + This driver populates CPU OPPs tables and makes adjustments to the
> + tables based on feedback from the CPR hardware. If you want to do
> + CPUfrequency scaling say Y here.
> +
> + To compile this driver as a module, choose M here: the module will
> + be called qcom-cpr
> +
> config ROCKCHIP_IODOMAIN
> tristate "Rockchip IO domain support"
> depends on POWER_AVS && ARCH_ROCKCHIP && OF
> diff --git a/drivers/power/avs/Makefile b/drivers/power/avs/Makefile
> index a1b8cd453f19..9007d05853e2 100644
> --- a/drivers/power/avs/Makefile
> +++ b/drivers/power/avs/Makefile
> @@ -1,3 +1,4 @@
> # SPDX-License-Identifier: GPL-2.0-only
> obj-$(CONFIG_POWER_AVS_OMAP) += smartreflex.o
> +obj-$(CONFIG_QCOM_CPR) += qcom-cpr.o
> obj-$(CONFIG_ROCKCHIP_IODOMAIN) += rockchip-io-domain.o
> diff --git a/drivers/power/avs/qcom-cpr.c b/drivers/power/avs/qcom-cpr.c
> new file mode 100644
> index 000000000000..a3187973bbb5
> --- /dev/null
> +++ b/drivers/power/avs/qcom-cpr.c
> @@ -0,0 +1,1792 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * Copyright (c) 2013-2015, The Linux Foundation. All rights reserved.
> + * Copyright (c) 2019, Linaro Limited
> + */
> +
> +#include <linux/module.h>
> +#include <linux/err.h>
> +#include <linux/debugfs.h>
> +#include <linux/string.h>
> +#include <linux/kernel.h>
> +#include <linux/list.h>
> +#include <linux/init.h>
> +#include <linux/io.h>
> +#include <linux/bitops.h>
> +#include <linux/slab.h>
> +#include <linux/of.h>
> +#include <linux/of_device.h>
> +#include <linux/platform_device.h>
> +#include <linux/pm_domain.h>
> +#include <linux/pm_opp.h>
> +#include <linux/interrupt.h>
> +#include <linux/regmap.h>
> +#include <linux/mfd/syscon.h>
> +#include <linux/regulator/consumer.h>
> +#include <linux/clk.h>
> +#include <linux/nvmem-consumer.h>
> +#include <linux/bitops.h>
> +
> +/* Register Offsets for RB-CPR and Bit Definitions */
> +
> +/* RBCPR Version Register */
> +#define REG_RBCPR_VERSION 0
> +#define RBCPR_VER_2 0x02
> +#define FLAGS_IGNORE_1ST_IRQ_STATUS BIT(0)
> +
> +/* RBCPR Gate Count and Target Registers */
> +#define REG_RBCPR_GCNT_TARGET(n) (0x60 + 4 * (n))
> +
> +#define RBCPR_GCNT_TARGET_TARGET_SHIFT 0
> +#define RBCPR_GCNT_TARGET_TARGET_MASK GENMASK(11, 0)
> +#define RBCPR_GCNT_TARGET_GCNT_SHIFT 12
> +#define RBCPR_GCNT_TARGET_GCNT_MASK GENMASK(9, 0)
> +
> +/* RBCPR Timer Control */
> +#define REG_RBCPR_TIMER_INTERVAL 0x44
> +#define REG_RBIF_TIMER_ADJUST 0x4c
> +
> +#define RBIF_TIMER_ADJ_CONS_UP_MASK GENMASK(3, 0)
> +#define RBIF_TIMER_ADJ_CONS_UP_SHIFT 0
> +#define RBIF_TIMER_ADJ_CONS_DOWN_MASK GENMASK(3, 0)
> +#define RBIF_TIMER_ADJ_CONS_DOWN_SHIFT 4
> +#define RBIF_TIMER_ADJ_CLAMP_INT_MASK GENMASK(7, 0)
> +#define RBIF_TIMER_ADJ_CLAMP_INT_SHIFT 8
> +
> +/* RBCPR Config Register */
> +#define REG_RBIF_LIMIT 0x48
> +#define RBIF_LIMIT_CEILING_MASK GENMASK(5, 0)
> +#define RBIF_LIMIT_CEILING_SHIFT 6
> +#define RBIF_LIMIT_FLOOR_BITS 6
> +#define RBIF_LIMIT_FLOOR_MASK GENMASK(5, 0)
> +
> +#define RBIF_LIMIT_CEILING_DEFAULT RBIF_LIMIT_CEILING_MASK
> +#define RBIF_LIMIT_FLOOR_DEFAULT 0
> +
> +#define REG_RBIF_SW_VLEVEL 0x94
> +#define RBIF_SW_VLEVEL_DEFAULT 0x20
> +
> +#define REG_RBCPR_STEP_QUOT 0x80
> +#define RBCPR_STEP_QUOT_STEPQUOT_MASK GENMASK(7, 0)
> +#define RBCPR_STEP_QUOT_IDLE_CLK_MASK GENMASK(3, 0)
> +#define RBCPR_STEP_QUOT_IDLE_CLK_SHIFT 8
> +
> +/* RBCPR Control Register */
> +#define REG_RBCPR_CTL 0x90
> +
> +#define RBCPR_CTL_LOOP_EN BIT(0)
> +#define RBCPR_CTL_TIMER_EN BIT(3)
> +#define RBCPR_CTL_SW_AUTO_CONT_ACK_EN BIT(5)
> +#define RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN BIT(6)
> +#define RBCPR_CTL_COUNT_MODE BIT(10)
> +#define RBCPR_CTL_UP_THRESHOLD_MASK GENMASK(3, 0)
> +#define RBCPR_CTL_UP_THRESHOLD_SHIFT 24
> +#define RBCPR_CTL_DN_THRESHOLD_MASK GENMASK(3, 0)
> +#define RBCPR_CTL_DN_THRESHOLD_SHIFT 28
> +
> +/* RBCPR Ack/Nack Response */
> +#define REG_RBIF_CONT_ACK_CMD 0x98
> +#define REG_RBIF_CONT_NACK_CMD 0x9c
> +
> +/* RBCPR Result status Register */
> +#define REG_RBCPR_RESULT_0 0xa0
> +
> +#define RBCPR_RESULT0_BUSY_SHIFT 19
> +#define RBCPR_RESULT0_BUSY_MASK BIT(RBCPR_RESULT0_BUSY_SHIFT)
> +#define RBCPR_RESULT0_ERROR_LT0_SHIFT 18
> +#define RBCPR_RESULT0_ERROR_SHIFT 6
> +#define RBCPR_RESULT0_ERROR_MASK GENMASK(11, 0)
> +#define RBCPR_RESULT0_ERROR_STEPS_SHIFT 2
> +#define RBCPR_RESULT0_ERROR_STEPS_MASK GENMASK(3, 0)
> +#define RBCPR_RESULT0_STEP_UP_SHIFT 1
> +
> +/* RBCPR Interrupt Control Register */
> +#define REG_RBIF_IRQ_EN(n) (0x100 + 4 * (n))
> +#define REG_RBIF_IRQ_CLEAR 0x110
> +#define REG_RBIF_IRQ_STATUS 0x114
> +
> +#define CPR_INT_DONE BIT(0)
> +#define CPR_INT_MIN BIT(1)
> +#define CPR_INT_DOWN BIT(2)
> +#define CPR_INT_MID BIT(3)
> +#define CPR_INT_UP BIT(4)
> +#define CPR_INT_MAX BIT(5)
> +#define CPR_INT_CLAMP BIT(6)
> +#define CPR_INT_ALL (CPR_INT_DONE | CPR_INT_MIN | CPR_INT_DOWN | \
> + CPR_INT_MID | CPR_INT_UP | CPR_INT_MAX | CPR_INT_CLAMP)
> +#define CPR_INT_DEFAULT (CPR_INT_UP | CPR_INT_DOWN)
> +
> +#define CPR_NUM_RING_OSC 8
> +
> +/* CPR eFuse parameters */
> +#define CPR_FUSE_TARGET_QUOT_BITS_MASK GENMASK(11, 0)
> +
> +#define CPR_FUSE_MIN_QUOT_DIFF 50
> +
> +#define FUSE_REVISION_UNKNOWN (-1)
> +
> +enum voltage_change_dir {
> + NO_CHANGE,
> + DOWN,
> + UP,
> +};
> +
> +struct cpr_fuse {
> + char *ring_osc;
> + char *init_voltage;
> + char *quotient;
> + char *quotient_offset;
> +};
> +
> +struct fuse_corner_data {
> + int ref_uV;
> + int max_uV;
> + int min_uV;
> + int max_volt_scale;
> + int max_quot_scale;
> + /* fuse quot */
> + int quot_offset;
> + int quot_scale;
> + int quot_adjust;
> + /* fuse quot_offset */
> + int quot_offset_scale;
> + int quot_offset_adjust;
> +};
> +
> +struct cpr_fuses {
> + int init_voltage_step;
> + int init_voltage_width;
> + struct fuse_corner_data *fuse_corner_data;
> +};
> +
> +struct corner_data {
> + unsigned int fuse_corner;
> + unsigned long freq;
> +};
> +
> +struct cpr_desc {
> + unsigned int num_fuse_corners;
> + int min_diff_quot;
> + int *step_quot;
> +
> + unsigned int timer_delay_us;
> + unsigned int timer_cons_up;
> + unsigned int timer_cons_down;
> + unsigned int up_threshold;
> + unsigned int down_threshold;
> + unsigned int idle_clocks;
> + unsigned int gcnt_us;
> + unsigned int vdd_apc_step_up_limit;
> + unsigned int vdd_apc_step_down_limit;
> + unsigned int clamp_timer_interval;
> +
> + struct cpr_fuses cpr_fuses;
> + bool reduce_to_fuse_uV;
> + bool reduce_to_corner_uV;
> +};
> +
> +struct acc_desc {
> + unsigned int enable_reg;
> + u32 enable_mask;
> +
> + struct reg_sequence *config;
> + struct reg_sequence *settings;
> + int num_regs_per_fuse;
> +};
> +
> +struct cpr_acc_desc {
> + const struct cpr_desc *cpr_desc;
> + const struct acc_desc *acc_desc;
> +};
> +
> +struct fuse_corner {
> + int min_uV;
> + int max_uV;
> + int uV;
> + int quot;
> + int step_quot;
> + const struct reg_sequence *accs;
> + int num_accs;
> + unsigned long max_freq;
> + u8 ring_osc_idx;
> +};
> +
> +struct corner {
> + int min_uV;
> + int max_uV;
> + int uV;
> + int last_uV;
> + int quot_adjust;
> + u32 save_ctl;
> + u32 save_irq;
> + unsigned long freq;
> + struct fuse_corner *fuse_corner;
> +};
> +
> +struct cpr_drv {
> + unsigned int num_corners;
> + unsigned int ref_clk_khz;
> +
> + struct generic_pm_domain pd;
> + struct device *dev;
> + struct device *attached_cpu_dev;
> + struct mutex lock;
> + void __iomem *base;
> + struct corner *corner;
> + struct regulator *vdd_apc;
> + struct clk *cpu_clk;
> + struct regmap *tcsr;
> + bool loop_disabled;
> + u32 gcnt;
> + unsigned long flags;
> +
> + struct fuse_corner *fuse_corners;
> + struct corner *corners;
> +
> + const struct cpr_desc *desc;
> + const struct acc_desc *acc_desc;
> + const struct cpr_fuse *cpr_fuses;
> +
> + struct dentry *debugfs;
> +};
> +
> +static bool cpr_is_allowed(struct cpr_drv *drv)
> +{
> + return !drv->loop_disabled;
> +}
> +
> +static void cpr_write(struct cpr_drv *drv, u32 offset, u32 value)
> +{
> + writel_relaxed(value, drv->base + offset);
> +}
> +
> +static u32 cpr_read(struct cpr_drv *drv, u32 offset)
> +{
> + return readl_relaxed(drv->base + offset);
> +}
> +
> +static void
> +cpr_masked_write(struct cpr_drv *drv, u32 offset, u32 mask, u32 value)
> +{
> + u32 val;
> +
> + val = readl_relaxed(drv->base + offset);
> + val &= ~mask;
> + val |= value & mask;
> + writel_relaxed(val, drv->base + offset);
> +}
> +
> +static void cpr_irq_clr(struct cpr_drv *drv)
> +{
> + cpr_write(drv, REG_RBIF_IRQ_CLEAR, CPR_INT_ALL);
> +}
> +
> +static void cpr_irq_clr_nack(struct cpr_drv *drv)
> +{
> + cpr_irq_clr(drv);
> + cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
> +}
> +
> +static void cpr_irq_clr_ack(struct cpr_drv *drv)
> +{
> + cpr_irq_clr(drv);
> + cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
> +}
> +
> +static void cpr_irq_set(struct cpr_drv *drv, u32 int_bits)
> +{
> + cpr_write(drv, REG_RBIF_IRQ_EN(0), int_bits);
> +}
> +
> +static void cpr_ctl_modify(struct cpr_drv *drv, u32 mask, u32 value)
> +{
> + cpr_masked_write(drv, REG_RBCPR_CTL, mask, value);
> +}
> +
> +static void cpr_ctl_enable(struct cpr_drv *drv, struct corner *corner)
> +{
> + u32 val, mask;
> + const struct cpr_desc *desc = drv->desc;
> +
> + /* Program Consecutive Up & Down */
> + val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
> + val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
> + mask = RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK;
> + cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, mask, val);
> + cpr_masked_write(drv, REG_RBCPR_CTL,
> + RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
> + RBCPR_CTL_SW_AUTO_CONT_ACK_EN,
> + corner->save_ctl);
> + cpr_irq_set(drv, corner->save_irq);
> +
> + if (cpr_is_allowed(drv) && corner->max_uV > corner->min_uV)
> + val = RBCPR_CTL_LOOP_EN;
> + else
> + val = 0;
> + cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, val);
> +}
> +
> +static void cpr_ctl_disable(struct cpr_drv *drv)
> +{
> + cpr_irq_set(drv, 0);
> + cpr_ctl_modify(drv, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
> + RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 0);
> + cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST,
> + RBIF_TIMER_ADJ_CONS_UP_MASK |
> + RBIF_TIMER_ADJ_CONS_DOWN_MASK, 0);
> + cpr_irq_clr(drv);
> + cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
> + cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
> + cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, 0);
> +}
> +
> +static bool cpr_ctl_is_enabled(struct cpr_drv *drv)
> +{
> + u32 reg_val;
> +
> + reg_val = cpr_read(drv, REG_RBCPR_CTL);
> + return reg_val & RBCPR_CTL_LOOP_EN;
> +}
> +
> +static bool cpr_ctl_is_busy(struct cpr_drv *drv)
> +{
> + u32 reg_val;
> +
> + reg_val = cpr_read(drv, REG_RBCPR_RESULT_0);
> + return reg_val & RBCPR_RESULT0_BUSY_MASK;
> +}
> +
> +static void cpr_corner_save(struct cpr_drv *drv, struct corner *corner)
> +{
> + corner->save_ctl = cpr_read(drv, REG_RBCPR_CTL);
> + corner->save_irq = cpr_read(drv, REG_RBIF_IRQ_EN(0));
> +}
> +
> +static void cpr_corner_restore(struct cpr_drv *drv, struct corner *corner)
> +{
> + u32 gcnt, ctl, irq, ro_sel, step_quot;
> + struct fuse_corner *fuse = corner->fuse_corner;
> + const struct cpr_desc *desc = drv->desc;
> + int i;
> +
> + ro_sel = fuse->ring_osc_idx;
> + gcnt = drv->gcnt;
> + gcnt |= fuse->quot - corner->quot_adjust;
> +
> + /* Program the step quotient and idle clocks */
> + step_quot = desc->idle_clocks << RBCPR_STEP_QUOT_IDLE_CLK_SHIFT;
> + step_quot |= fuse->step_quot & RBCPR_STEP_QUOT_STEPQUOT_MASK;
> + cpr_write(drv, REG_RBCPR_STEP_QUOT, step_quot);
> +
> + /* Clear the target quotient value and gate count of all ROs */
> + for (i = 0; i < CPR_NUM_RING_OSC; i++)
> + cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
> +
> + cpr_write(drv, REG_RBCPR_GCNT_TARGET(ro_sel), gcnt);
> + ctl = corner->save_ctl;
> + cpr_write(drv, REG_RBCPR_CTL, ctl);
> + irq = corner->save_irq;
> + cpr_irq_set(drv, irq);
> + dev_dbg(drv->dev, "gcnt = %#08x, ctl = %#08x, irq = %#08x\n", gcnt,
> + ctl, irq);
> +}
> +
> +static void cpr_set_acc(struct regmap *tcsr, struct fuse_corner *f,
> + struct fuse_corner *end)
> +{
> + if (f == end)
> + return;
> +
> + if (f < end) {
> + for (f += 1; f <= end; f++)
> + regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
> + } else {
> + for (f -= 1; f >= end; f--)
> + regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
> + }
> +}
> +
> +static int cpr_pre_voltage(struct cpr_drv *drv,
> + struct fuse_corner *fuse_corner,
> + enum voltage_change_dir dir)
> +{
> + struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
> +
> + if (drv->tcsr && dir == DOWN)
> + cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
> +
> + return 0;
> +}
> +
> +static int cpr_post_voltage(struct cpr_drv *drv,
> + struct fuse_corner *fuse_corner,
> + enum voltage_change_dir dir)
> +{
> + struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
> +
> + if (drv->tcsr && dir == UP)
> + cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
> +
> + return 0;
> +}
> +
> +static int cpr_scale_voltage(struct cpr_drv *drv, struct corner *corner,
> + int new_uV, enum voltage_change_dir dir)
> +{
> + int ret;
> + struct fuse_corner *fuse_corner = corner->fuse_corner;
> +
> + ret = cpr_pre_voltage(drv, fuse_corner, dir);
> + if (ret)
> + return ret;
> +
> + ret = regulator_set_voltage(drv->vdd_apc, new_uV, new_uV);
> + if (ret) {
> + dev_err_ratelimited(drv->dev, "failed to set apc voltage %d\n",
> + new_uV);
> + return ret;
> + }
> +
> + ret = cpr_post_voltage(drv, fuse_corner, dir);
> + if (ret)
> + return ret;
> +
> + return 0;
> +}
> +
> +static unsigned int cpr_get_cur_perf_state(struct cpr_drv *drv)
> +{
> + return drv->corner ? drv->corner - drv->corners + 1 : 0;
> +}
> +
> +static int cpr_scale(struct cpr_drv *drv, enum voltage_change_dir dir)
> +{
> + u32 val, error_steps, reg_mask;
> + int last_uV, new_uV, step_uV, ret;
> + struct corner *corner;
> + const struct cpr_desc *desc = drv->desc;
> +
> + if (dir != UP && dir != DOWN)
> + return 0;
> +
> + step_uV = regulator_get_linear_step(drv->vdd_apc);
> + if (!step_uV)
> + return -EINVAL;
> +
> + corner = drv->corner;
> +
> + val = cpr_read(drv, REG_RBCPR_RESULT_0);
> +
> + error_steps = val >> RBCPR_RESULT0_ERROR_STEPS_SHIFT;
> + error_steps &= RBCPR_RESULT0_ERROR_STEPS_MASK;
> + last_uV = corner->last_uV;
> +
> + if (dir == UP) {
> + if (desc->clamp_timer_interval &&
> + error_steps < desc->up_threshold) {
> + /*
> + * Handle the case where another measurement started
> + * after the interrupt was triggered due to a core
> + * exiting from power collapse.
> + */
> + error_steps = max(desc->up_threshold,
> + desc->vdd_apc_step_up_limit);
> + }
> +
> + if (last_uV >= corner->max_uV) {
> + cpr_irq_clr_nack(drv);
> +
> + /* Maximize the UP threshold */
> + reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
> + reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
> + val = reg_mask;
> + cpr_ctl_modify(drv, reg_mask, val);
> +
> + /* Disable UP interrupt */
> + cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_UP);
> +
> + return 0;
> + }
> +
> + if (error_steps > desc->vdd_apc_step_up_limit)
> + error_steps = desc->vdd_apc_step_up_limit;
> +
> + /* Calculate new voltage */
> + new_uV = last_uV + error_steps * step_uV;
> + new_uV = min(new_uV, corner->max_uV);
> +
> + dev_dbg(drv->dev,
> + "UP: -> new_uV: %d last_uV: %d perf state: %u\n",
> + new_uV, last_uV, cpr_get_cur_perf_state(drv));
> + } else if (dir == DOWN) {
> + if (desc->clamp_timer_interval &&
> + error_steps < desc->down_threshold) {
> + /*
> + * Handle the case where another measurement started
> + * after the interrupt was triggered due to a core
> + * exiting from power collapse.
> + */
> + error_steps = max(desc->down_threshold,
> + desc->vdd_apc_step_down_limit);
> + }
> +
> + if (last_uV <= corner->min_uV) {
> + cpr_irq_clr_nack(drv);
> +
> + /* Enable auto nack down */
> + reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
> + val = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
> +
> + cpr_ctl_modify(drv, reg_mask, val);
> +
> + /* Disable DOWN interrupt */
> + cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_DOWN);
> +
> + return 0;
> + }
> +
> + if (error_steps > desc->vdd_apc_step_down_limit)
> + error_steps = desc->vdd_apc_step_down_limit;
> +
> + /* Calculate new voltage */
> + new_uV = last_uV - error_steps * step_uV;
> + new_uV = max(new_uV, corner->min_uV);
> +
> + dev_dbg(drv->dev,
> + "DOWN: -> new_uV: %d last_uV: %d perf state: %u\n",
> + new_uV, last_uV, cpr_get_cur_perf_state(drv));
> + }
> +
> + ret = cpr_scale_voltage(drv, corner, new_uV, dir);
> + if (ret) {
> + cpr_irq_clr_nack(drv);
> + return ret;
> + }
> + drv->corner->last_uV = new_uV;
> +
> + if (dir == UP) {
> + /* Disable auto nack down */
> + reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
> + val = 0;
> + } else if (dir == DOWN) {
> + /* Restore default threshold for UP */
> + reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
> + reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
> + val = desc->up_threshold;
> + val <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
> + }
> +
> + cpr_ctl_modify(drv, reg_mask, val);
> +
> + /* Re-enable default interrupts */
> + cpr_irq_set(drv, CPR_INT_DEFAULT);
> +
> + /* Ack */
> + cpr_irq_clr_ack(drv);
> +
> + return 0;
> +}
> +
> +static irqreturn_t cpr_irq_handler(int irq, void *dev)
> +{
> + struct cpr_drv *drv = dev;
> + const struct cpr_desc *desc = drv->desc;
> + irqreturn_t ret = IRQ_HANDLED;
> + u32 val;
> +
> + mutex_lock(&drv->lock);
> +
> + val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
> + if (drv->flags & FLAGS_IGNORE_1ST_IRQ_STATUS)
> + val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
> +
> + dev_dbg(drv->dev, "IRQ_STATUS = %#02x\n", val);
> +
> + if (!cpr_ctl_is_enabled(drv)) {
> + dev_dbg(drv->dev, "CPR is disabled\n");
> + ret = IRQ_NONE;
> + } else if (cpr_ctl_is_busy(drv) && !desc->clamp_timer_interval) {
> + dev_dbg(drv->dev, "CPR measurement is not ready\n");
> + } else if (!cpr_is_allowed(drv)) {
> + val = cpr_read(drv, REG_RBCPR_CTL);
> + dev_err_ratelimited(drv->dev,
> + "Interrupt broken? RBCPR_CTL = %#02x\n",
> + val);
> + ret = IRQ_NONE;
> + } else {
> + /*
> + * Following sequence of handling is as per each IRQ's
> + * priority
> + */
> + if (val & CPR_INT_UP) {
> + cpr_scale(drv, UP);
> + } else if (val & CPR_INT_DOWN) {
> + cpr_scale(drv, DOWN);
> + } else if (val & CPR_INT_MIN) {
> + cpr_irq_clr_nack(drv);
> + } else if (val & CPR_INT_MAX) {
> + cpr_irq_clr_nack(drv);
> + } else if (val & CPR_INT_MID) {
> + /* RBCPR_CTL_SW_AUTO_CONT_ACK_EN is enabled */
> + dev_dbg(drv->dev, "IRQ occurred for Mid Flag\n");
> + } else {
> + dev_dbg(drv->dev,
> + "IRQ occurred for unknown flag (%#08x)\n", val);
> + }
> +
> + /* Save register values for the corner */
> + cpr_corner_save(drv, drv->corner);
> + }
> +
> + mutex_unlock(&drv->lock);
> +
> + return ret;
> +}
> +
> +static int cpr_enable(struct cpr_drv *drv)
> +{
> + int ret;
> +
> + ret = regulator_enable(drv->vdd_apc);
> + if (ret)
> + return ret;
> +
> + mutex_lock(&drv->lock);
> +
> + if (cpr_is_allowed(drv) && drv->corner) {
> + cpr_irq_clr(drv);
> + cpr_corner_restore(drv, drv->corner);
> + cpr_ctl_enable(drv, drv->corner);
> + }
> +
> + mutex_unlock(&drv->lock);
> +
> + return 0;
> +}
> +
> +static int cpr_disable(struct cpr_drv *drv)
> +{
> + int ret;
> +
> + mutex_lock(&drv->lock);
> +
> + if (cpr_is_allowed(drv)) {
> + cpr_ctl_disable(drv);
> + cpr_irq_clr(drv);
> + }
> +
> + mutex_unlock(&drv->lock);
> +
> + ret = regulator_disable(drv->vdd_apc);
> + if (ret)
> + return ret;
> +
> + return 0;
> +}
> +
> +static int cpr_config(struct cpr_drv *drv)
> +{
> + int i;
> + u32 val, gcnt;
> + struct corner *corner;
> + const struct cpr_desc *desc = drv->desc;
> +
> + /* Disable interrupt and CPR */
> + cpr_write(drv, REG_RBIF_IRQ_EN(0), 0);
> + cpr_write(drv, REG_RBCPR_CTL, 0);
> +
> + /* Program the default HW ceiling, floor and vlevel */
> + val = (RBIF_LIMIT_CEILING_DEFAULT & RBIF_LIMIT_CEILING_MASK)
> + << RBIF_LIMIT_CEILING_SHIFT;
> + val |= RBIF_LIMIT_FLOOR_DEFAULT & RBIF_LIMIT_FLOOR_MASK;
> + cpr_write(drv, REG_RBIF_LIMIT, val);
> + cpr_write(drv, REG_RBIF_SW_VLEVEL, RBIF_SW_VLEVEL_DEFAULT);
> +
> + /*
> + * Clear the target quotient value and gate count of all
> + * ring oscillators
> + */
> + for (i = 0; i < CPR_NUM_RING_OSC; i++)
> + cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
> +
> + /* Init and save gcnt */
> + gcnt = (drv->ref_clk_khz * desc->gcnt_us) / 1000;
> + gcnt = gcnt & RBCPR_GCNT_TARGET_GCNT_MASK;
> + gcnt <<= RBCPR_GCNT_TARGET_GCNT_SHIFT;
> + drv->gcnt = gcnt;
> +
> + /* Program the delay count for the timer */
> + val = (drv->ref_clk_khz * desc->timer_delay_us) / 1000;
> + cpr_write(drv, REG_RBCPR_TIMER_INTERVAL, val);
> + dev_dbg(drv->dev, "Timer count: %#0x (for %d us)\n", val,
> + desc->timer_delay_us);
> +
> + /* Program Consecutive Up & Down */
> + val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
> + val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
> + val |= desc->clamp_timer_interval << RBIF_TIMER_ADJ_CLAMP_INT_SHIFT;
> + cpr_write(drv, REG_RBIF_TIMER_ADJUST, val);
> +
> + /* Program the control register */
> + val = desc->up_threshold << RBCPR_CTL_UP_THRESHOLD_SHIFT;
> + val |= desc->down_threshold << RBCPR_CTL_DN_THRESHOLD_SHIFT;
> + val |= RBCPR_CTL_TIMER_EN | RBCPR_CTL_COUNT_MODE;
> + val |= RBCPR_CTL_SW_AUTO_CONT_ACK_EN;
> + cpr_write(drv, REG_RBCPR_CTL, val);
> +
> + for (i = 0; i < drv->num_corners; i++) {
> + corner = &drv->corners[i];
> + corner->save_ctl = val;
> + corner->save_irq = CPR_INT_DEFAULT;
> + }
> +
> + cpr_irq_set(drv, CPR_INT_DEFAULT);
> +
> + val = cpr_read(drv, REG_RBCPR_VERSION);
> + if (val <= RBCPR_VER_2)
> + drv->flags |= FLAGS_IGNORE_1ST_IRQ_STATUS;
> +
> + return 0;
> +}
> +
> +static int cpr_set_performance_state(struct generic_pm_domain *domain,
> + unsigned int state)
> +{
> + struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
> + struct corner *corner, *end;
> + enum voltage_change_dir dir;
> + int ret = 0, new_uV;
> +
> + mutex_lock(&drv->lock);
> +
> + dev_dbg(drv->dev, "%s: setting perf state: %u (prev state: %u)\n",
> + __func__, state, cpr_get_cur_perf_state(drv));
> +
> + /*
> + * Determine new corner we're going to.
> + * Remove one since lowest performance state is 1.
> + */
> + corner = drv->corners + state - 1;
> + end = &drv->corners[drv->num_corners - 1];
> + if (corner > end || corner < drv->corners) {
> + ret = -EINVAL;
> + goto unlock;
> + }
> +
> + /* Determine direction */
> + if (drv->corner > corner)
> + dir = DOWN;
> + else if (drv->corner < corner)
> + dir = UP;
> + else
> + dir = NO_CHANGE;
> +
> + if (cpr_is_allowed(drv))
> + new_uV = corner->last_uV;
> + else
> + new_uV = corner->uV;
> +
> + if (cpr_is_allowed(drv))
> + cpr_ctl_disable(drv);
> +
> + ret = cpr_scale_voltage(drv, corner, new_uV, dir);
> + if (ret)
> + goto unlock;
> +
> + if (cpr_is_allowed(drv)) {
> + cpr_irq_clr(drv);
> + if (drv->corner != corner)
> + cpr_corner_restore(drv, corner);
> + cpr_ctl_enable(drv, corner);
> + }
> +
> + drv->corner = corner;
> +
> +unlock:
> + mutex_unlock(&drv->lock);
> +
> + return ret;
> +}
> +
> +static int cpr_read_efuse(struct device *dev, const char *cname, u32 *data)
> +{
> + struct nvmem_cell *cell;
> + ssize_t len;
> + char *ret;
> + int i;
> +
> + *data = 0;
> +
> + cell = nvmem_cell_get(dev, cname);
> + if (IS_ERR(cell)) {
> + if (PTR_ERR(cell) != -EPROBE_DEFER)
> + dev_err(dev, "undefined cell %s\n", cname);
> + return PTR_ERR(cell);
> + }
> +
> + ret = nvmem_cell_read(cell, &len);
> + nvmem_cell_put(cell);
> + if (IS_ERR(ret)) {
> + dev_err(dev, "can't read cell %s\n", cname);
> + return PTR_ERR(ret);
> + }
> +
> + for (i = 0; i < len; i++)
> + *data |= ret[i] << (8 * i);
> +
> + kfree(ret);
> + dev_dbg(dev, "efuse read(%s) = %x, bytes %ld\n", cname, *data, len);
> +
> + return 0;
> +}
> +
> +static int
> +cpr_populate_ring_osc_idx(struct cpr_drv *drv)
> +{
> + struct fuse_corner *fuse = drv->fuse_corners;
> + struct fuse_corner *end = fuse + drv->desc->num_fuse_corners;
> + const struct cpr_fuse *fuses = drv->cpr_fuses;
> + u32 data;
> + int ret;
> +
> + for (; fuse < end; fuse++, fuses++) {
> + ret = cpr_read_efuse(drv->dev, fuses->ring_osc,
> + &data);
> + if (ret)
> + return ret;
> + fuse->ring_osc_idx = data;
> + }
> +
> + return 0;
> +}
> +
> +static int cpr_read_fuse_uV(const struct cpr_desc *desc,
> + const struct fuse_corner_data *fdata,
> + const char *init_v_efuse,
> + int step_volt,
> + struct cpr_drv *drv)
> +{
> + int step_size_uV, steps, uV;
> + u32 bits = 0;
> + int ret;
> +
> + ret = cpr_read_efuse(drv->dev, init_v_efuse, &bits);
> + if (ret)
> + return ret;
> +
> + steps = bits & ~BIT(desc->cpr_fuses.init_voltage_width - 1);
> + /* Not two's complement.. instead highest bit is sign bit */
> + if (bits & BIT(desc->cpr_fuses.init_voltage_width - 1))
> + steps = -steps;
> +
> + step_size_uV = desc->cpr_fuses.init_voltage_step;
> +
> + uV = fdata->ref_uV + steps * step_size_uV;
> + return DIV_ROUND_UP(uV, step_volt) * step_volt;
> +}
> +
> +static int cpr_fuse_corner_init(struct cpr_drv *drv)
> +{
> + const struct cpr_desc *desc = drv->desc;
> + const struct cpr_fuse *fuses = drv->cpr_fuses;
> + const struct acc_desc *acc_desc = drv->acc_desc;
> + int i;
> + unsigned int step_volt;
> + struct fuse_corner_data *fdata;
> + struct fuse_corner *fuse, *end, *prev;
> + int uV;
> + const struct reg_sequence *accs;
> + int ret;
> +
> + accs = acc_desc->settings;
> +
> + step_volt = regulator_get_linear_step(drv->vdd_apc);
> + if (!step_volt)
> + return -EINVAL;
> +
> + /* Populate fuse_corner members */
> + fuse = drv->fuse_corners;
> + end = &fuse[desc->num_fuse_corners - 1];
> + fdata = desc->cpr_fuses.fuse_corner_data;
> +
> + for (i = 0, prev = NULL; fuse <= end; fuse++, fuses++, i++, fdata++) {
> + /*
> + * Update SoC voltages: platforms might choose a different
> + * regulators than the one used to characterize the algorithms
> + * (ie, init_voltage_step).
> + */
> + fdata->min_uV = roundup(fdata->min_uV, step_volt);
> + fdata->max_uV = roundup(fdata->max_uV, step_volt);
> +
> + /* Populate uV */
> + uV = cpr_read_fuse_uV(desc, fdata, fuses->init_voltage,
> + step_volt, drv);
> + if (uV < 0)
> + return ret;
> +
> + fuse->min_uV = fdata->min_uV;
> + fuse->max_uV = fdata->max_uV;
> + fuse->uV = clamp(uV, fuse->min_uV, fuse->max_uV);
> +
> + if (fuse == end) {
> + /*
> + * Allow the highest fuse corner's PVS voltage to
> + * define the ceiling voltage for that corner in order
> + * to support SoC's in which variable ceiling values
> + * are required.
> + */
> + end->max_uV = max(end->max_uV, end->uV);
> + }
> +
> + /* Populate target quotient by scaling */
> + ret = cpr_read_efuse(drv->dev, fuses->quotient, &fuse->quot);
> + if (ret)
> + return ret;
> +
> + fuse->quot *= fdata->quot_scale;
> + fuse->quot += fdata->quot_offset;
> + fuse->quot += fdata->quot_adjust;
> + fuse->step_quot = desc->step_quot[fuse->ring_osc_idx];
> +
> + /* Populate acc settings */
> + fuse->accs = accs;
> + fuse->num_accs = acc_desc->num_regs_per_fuse;
> + accs += acc_desc->num_regs_per_fuse;
> + }
> +
> + /*
> + * Restrict all fuse corner PVS voltages based upon per corner
> + * ceiling and floor voltages.
> + */
> + for (fuse = drv->fuse_corners, i = 0; fuse <= end; fuse++, i++) {
> + if (fuse->uV > fuse->max_uV)
> + fuse->uV = fuse->max_uV;
> + else if (fuse->uV < fuse->min_uV)
> + fuse->uV = fuse->min_uV;
> +
> + ret = regulator_is_supported_voltage(drv->vdd_apc,
> + fuse->min_uV,
> + fuse->min_uV);
> + if (!ret) {
> + dev_err(drv->dev,
> + "min uV: %d (fuse corner: %d) not supported by regulator\n",
> + fuse->min_uV, i);
> + return -EINVAL;
> + }
> +
> + ret = regulator_is_supported_voltage(drv->vdd_apc,
> + fuse->max_uV,
> + fuse->max_uV);
> + if (!ret) {
> + dev_err(drv->dev,
> + "max uV: %d (fuse corner: %d) not supported by regulator\n",
> + fuse->max_uV, i);
> + return -EINVAL;
> + }
> +
> + dev_dbg(drv->dev,
> + "fuse corner %d: [%d %d %d] RO%hhu quot %d squot %d\n",
> + i, fuse->min_uV, fuse->uV, fuse->max_uV,
> + fuse->ring_osc_idx, fuse->quot, fuse->step_quot);
> + }
> +
> + return 0;
> +}
> +
> +static int cpr_calculate_scaling(const char *quot_offset,
> + struct cpr_drv *drv,
> + const struct fuse_corner_data *fdata,
> + const struct corner *corner)
> +{
> + u32 quot_diff = 0;
> + unsigned long freq_diff;
> + int scaling;
> + const struct fuse_corner *fuse, *prev_fuse;
> + int ret;
> +
> + fuse = corner->fuse_corner;
> + prev_fuse = fuse - 1;
> +
> + if (quot_offset) {
> + ret = cpr_read_efuse(drv->dev, quot_offset, "_diff);
> + if (ret)
> + return ret;
> +
> + quot_diff *= fdata->quot_offset_scale;
> + quot_diff += fdata->quot_offset_adjust;
> + } else {
> + quot_diff = fuse->quot - prev_fuse->quot;
> + }
> +
> + freq_diff = fuse->max_freq - prev_fuse->max_freq;
> + freq_diff /= 1000000; /* Convert to MHz */
> + scaling = 1000 * quot_diff / freq_diff;
> + return min(scaling, fdata->max_quot_scale);
> +}
> +
> +static int cpr_interpolate(const struct corner *corner, int step_volt,
> + const struct fuse_corner_data *fdata)
> +{
> + unsigned long f_high, f_low, f_diff;
> + int uV_high, uV_low, uV;
> + u64 temp, temp_limit;
> + const struct fuse_corner *fuse, *prev_fuse;
> +
> + fuse = corner->fuse_corner;
> + prev_fuse = fuse - 1;
> +
> + f_high = fuse->max_freq;
> + f_low = prev_fuse->max_freq;
> + uV_high = fuse->uV;
> + uV_low = prev_fuse->uV;
> + f_diff = fuse->max_freq - corner->freq;
> +
> + /*
> + * Don't interpolate in the wrong direction. This could happen
> + * if the adjusted fuse voltage overlaps with the previous fuse's
> + * adjusted voltage.
> + */
> + if (f_high <= f_low || uV_high <= uV_low || f_high <= corner->freq)
> + return corner->uV;
> +
> + temp = f_diff * (uV_high - uV_low);
> + do_div(temp, f_high - f_low);
> +
> + /*
> + * max_volt_scale has units of uV/MHz while freq values
> + * have units of Hz. Divide by 1000000 to convert to.
> + */
> + temp_limit = f_diff * fdata->max_volt_scale;
> + do_div(temp_limit, 1000000);
> +
> + uV = uV_high - min(temp, temp_limit);
> + return roundup(uV, step_volt);
> +}
> +
> +static unsigned int cpr_get_fuse_corner(struct dev_pm_opp *opp)
> +{
> + struct device_node *np;
> + unsigned int fuse_corner = 0;
> +
> + np = dev_pm_opp_get_of_node(opp);
> + if (of_property_read_u32(np, "qcom,opp-fuse-level", &fuse_corner))
> + pr_err("%s: missing 'qcom,opp-fuse-level' property\n",
> + __func__);
> +
> + of_node_put(np);
> +
> + return fuse_corner;
> +}
> +
> +unsigned long cpr_get_opp_hz_for_req(struct dev_pm_opp *ref,
> + struct device *cpu_dev)
> +{
> + u64 rate = 0;
> + struct device_node *ref_np;
> + struct device_node *desc_np;
> + struct device_node *child_np = NULL;
> + struct device_node *child_req_np = NULL;
> +
> + desc_np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
> + if (!desc_np)
> + return 0;
> +
> + ref_np = dev_pm_opp_get_of_node(ref);
> + if (!ref_np)
> + goto out_ref;
> +
> + do {
> + of_node_put(child_req_np);
> + child_np = of_get_next_available_child(desc_np, child_np);
> + child_req_np = of_parse_phandle(child_np, "required-opps", 0);
> + } while (child_np && child_req_np != ref_np);
> +
> + if (child_np && child_req_np == ref_np)
> + of_property_read_u64(child_np, "opp-hz", &rate);
> +
> + of_node_put(child_req_np);
> + of_node_put(child_np);
> + of_node_put(ref_np);
> +out_ref:
> + of_node_put(desc_np);
> +
> + return (unsigned long) rate;
> +}
> +
> +static int cpr_corner_init(struct cpr_drv *drv)
> +{
> + const struct cpr_desc *desc = drv->desc;
> + const struct cpr_fuse *fuses = drv->cpr_fuses;
> + int i, level, scaling = 0;
> + unsigned int fnum, fc;
> + const char *quot_offset;
> + struct fuse_corner *fuse, *prev_fuse;
> + struct corner *corner, *end;
> + struct corner_data *cdata;
> + const struct fuse_corner_data *fdata;
> + bool apply_scaling;
> + unsigned long freq_diff, freq_diff_mhz;
> + unsigned long freq;
> + int step_volt = regulator_get_linear_step(drv->vdd_apc);
> + struct dev_pm_opp *opp;
> +
> + if (!step_volt)
> + return -EINVAL;
> +
> + corner = drv->corners;
> + end = &corner[drv->num_corners - 1];
> +
> + cdata = devm_kcalloc(drv->dev, drv->num_corners,
> + sizeof(struct corner_data),
> + GFP_KERNEL);
> + if (!cdata)
> + return -ENOMEM;
> +
> + /*
> + * Store maximum frequency for each fuse corner based on the frequency
> + * plan
> + */
> + for (level = 1; level <= drv->num_corners; level++) {
> + opp = dev_pm_opp_find_level_exact(&drv->pd.dev, level);
> + if (IS_ERR(opp))
> + return -EINVAL;
> + fc = cpr_get_fuse_corner(opp);
> + if (!fc) {
> + dev_pm_opp_put(opp);
> + return -EINVAL;
> + }
> + fnum = fc - 1;
> + freq = cpr_get_opp_hz_for_req(opp, drv->attached_cpu_dev);
> + if (!freq) {
> + dev_pm_opp_put(opp);
> + return -EINVAL;
> + }
> + cdata[level - 1].fuse_corner = fnum;
> + cdata[level - 1].freq = freq;
> +
> + fuse = &drv->fuse_corners[fnum];
> + dev_dbg(drv->dev, "freq: %lu level: %u fuse level: %u\n",
> + freq, dev_pm_opp_get_level(opp) - 1, fnum);
> + if (freq > fuse->max_freq)
> + fuse->max_freq = freq;
> + dev_pm_opp_put(opp);
> + }
> +
> + /*
> + * Get the quotient adjustment scaling factor, according to:
> + *
> + * scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1))
> + * / (freq(corner_N) - freq(corner_N-1)), max_factor)
> + *
> + * QUOT(corner_N): quotient read from fuse for fuse corner N
> + * QUOT(corner_N-1): quotient read from fuse for fuse corner (N - 1)
> + * freq(corner_N): max frequency in MHz supported by fuse corner N
> + * freq(corner_N-1): max frequency in MHz supported by fuse corner
> + * (N - 1)
> + *
> + * Then walk through the corners mapped to each fuse corner
> + * and calculate the quotient adjustment for each one using the
> + * following formula:
> + *
> + * quot_adjust = (freq_max - freq_corner) * scaling / 1000
> + *
> + * freq_max: max frequency in MHz supported by the fuse corner
> + * freq_corner: frequency in MHz corresponding to the corner
> + * scaling: calculated from above equation
> + *
> + *
> + * + +
> + * | v |
> + * q | f c o | f c
> + * u | c l | c
> + * o | f t | f
> + * t | c a | c
> + * | c f g | c f
> + * | e |
> + * +--------------- +----------------
> + * 0 1 2 3 4 5 6 0 1 2 3 4 5 6
> + * corner corner
> + *
> + * c = corner
> + * f = fuse corner
> + *
> + */
> + for (apply_scaling = false, i = 0; corner <= end; corner++, i++) {
> + fnum = cdata[i].fuse_corner;
> + fdata = &desc->cpr_fuses.fuse_corner_data[fnum];
> + quot_offset = fuses[fnum].quotient_offset;
> + fuse = &drv->fuse_corners[fnum];
> + if (fnum)
> + prev_fuse = &drv->fuse_corners[fnum - 1];
> + else
> + prev_fuse = NULL;
> +
> + corner->fuse_corner = fuse;
> + corner->freq = cdata[i].freq;
> + corner->uV = fuse->uV;
> +
> + if (prev_fuse && cdata[i - 1].freq == prev_fuse->max_freq) {
> + scaling = cpr_calculate_scaling(quot_offset, drv,
> + fdata, corner);
> + if (scaling < 0)
> + return scaling;
> +
> + apply_scaling = true;
> + } else if (corner->freq == fuse->max_freq) {
> + /* This is a fuse corner; don't scale anything */
> + apply_scaling = false;
> + }
> +
> + if (apply_scaling) {
> + freq_diff = fuse->max_freq - corner->freq;
> + freq_diff_mhz = freq_diff / 1000000;
> + corner->quot_adjust = scaling * freq_diff_mhz / 1000;
> +
> + corner->uV = cpr_interpolate(corner, step_volt, fdata);
> + }
> +
> + corner->max_uV = fuse->max_uV;
> + corner->min_uV = fuse->min_uV;
> + corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV);
> + corner->last_uV = corner->uV;
> +
> + /* Reduce the ceiling voltage if needed */
> + if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV)
> + corner->max_uV = corner->uV;
> + else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV)
> + corner->max_uV = max(corner->min_uV, fuse->uV);
> +
> + dev_dbg(drv->dev, "corner %d: [%d %d %d] quot %d\n", i,
> + corner->min_uV, corner->uV, corner->max_uV,
> + fuse->quot - corner->quot_adjust);
> + }
> +
> + return 0;
> +}
> +
> +static const struct cpr_fuse *cpr_get_fuses(struct cpr_drv *drv)
> +{
> + const struct cpr_desc *desc = drv->desc;
> + struct cpr_fuse *fuses;
> + int i;
> +
> + fuses = devm_kcalloc(drv->dev, desc->num_fuse_corners,
> + sizeof(struct cpr_fuse),
> + GFP_KERNEL);
> + if (!fuses)
> + return ERR_PTR(-ENOMEM);
> +
> + for (i = 0; i < desc->num_fuse_corners; i++) {
> + char tbuf[32];
> +
> + snprintf(tbuf, 32, "cpr_ring_osc%d", i + 1);
> + fuses[i].ring_osc = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
> + if (!fuses[i].ring_osc)
> + return ERR_PTR(-ENOMEM);
> +
> + snprintf(tbuf, 32, "cpr_init_voltage%d", i + 1);
> + fuses[i].init_voltage = devm_kstrdup(drv->dev, tbuf,
> + GFP_KERNEL);
> + if (!fuses[i].init_voltage)
> + return ERR_PTR(-ENOMEM);
> +
> + snprintf(tbuf, 32, "cpr_quotient%d", i + 1);
> + fuses[i].quotient = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
> + if (!fuses[i].quotient)
> + return ERR_PTR(-ENOMEM);
> +
> + snprintf(tbuf, 32, "cpr_quotient_offset%d", i + 1);
> + fuses[i].quotient_offset = devm_kstrdup(drv->dev, tbuf,
> + GFP_KERNEL);
> + if (!fuses[i].quotient_offset)
> + return ERR_PTR(-ENOMEM);
> + }
> +
> + return fuses;
> +}
> +
> +static void cpr_set_loop_allowed(struct cpr_drv *drv)
> +{
> + drv->loop_disabled = false;
> +}
> +
> +static int cpr_init_parameters(struct cpr_drv *drv)
> +{
> + const struct cpr_desc *desc = drv->desc;
> + struct clk *clk;
> +
> + clk = clk_get(drv->dev, "ref");
> + if (IS_ERR(clk))
> + return PTR_ERR(clk);
> +
> + drv->ref_clk_khz = clk_get_rate(clk) / 1000;
> + clk_put(clk);
> +
> + if (desc->timer_cons_up > RBIF_TIMER_ADJ_CONS_UP_MASK ||
> + desc->timer_cons_down > RBIF_TIMER_ADJ_CONS_DOWN_MASK ||
> + desc->up_threshold > RBCPR_CTL_UP_THRESHOLD_MASK ||
> + desc->down_threshold > RBCPR_CTL_DN_THRESHOLD_MASK ||
> + desc->idle_clocks > RBCPR_STEP_QUOT_IDLE_CLK_MASK ||
> + desc->clamp_timer_interval > RBIF_TIMER_ADJ_CLAMP_INT_MASK)
> + return -EINVAL;
> +
> + dev_dbg(drv->dev, "up threshold = %u, down threshold = %u\n",
> + desc->up_threshold, desc->down_threshold);
> +
> + return 0;
> +}
> +
> +static int cpr_find_initial_corner(struct cpr_drv *drv)
> +{
> + unsigned long rate;
> + const struct corner *end;
> + struct corner *iter;
> + unsigned int i = 0;
> +
> + if (!drv->cpu_clk) {
> + dev_err(drv->dev, "cannot get rate from NULL clk\n");
> + return -EINVAL;
> + }
> +
> + end = &drv->corners[drv->num_corners - 1];
> + rate = clk_get_rate(drv->cpu_clk);
> +
> + /*
> + * Some bootloaders set a CPU clock frequency that is not defined
> + * in the OPP table. When running at an unlisted frequency,
> + * cpufreq_online() will change to the OPP which has the lowest
> + * frequency, at or above the unlisted frequency.
> + * Since cpufreq_online() always "rounds up" in the case of an
> + * unlisted frequency, this function always "rounds down" in case
> + * of an unlisted frequency. That way, when cpufreq_online()
> + * triggers the first ever call to cpr_set_performance_state(),
> + * it will correctly determine the direction as UP.
> + */
> + for (iter = drv->corners; iter <= end; iter++) {
> + if (iter->freq > rate)
> + break;
> + i++;
> + if (iter->freq == rate) {
> + drv->corner = iter;
> + break;
> + }
> + if (iter->freq < rate)
> + drv->corner = iter;
> + }
> +
> + if (!drv->corner) {
> + dev_err(drv->dev, "boot up corner not found\n");
> + return -EINVAL;
> + }
> +
> + dev_dbg(drv->dev, "boot up perf state: %u\n", i);
> +
> + return 0;
> +}
> +
> +static const struct cpr_desc qcs404_cpr_desc = {
> + .num_fuse_corners = 3,
> + .min_diff_quot = CPR_FUSE_MIN_QUOT_DIFF,
> + .step_quot = (int []){ 25, 25, 25, },
> + .timer_delay_us = 5000,
> + .timer_cons_up = 0,
> + .timer_cons_down = 2,
> + .up_threshold = 1,
> + .down_threshold = 3,
> + .idle_clocks = 15,
> + .gcnt_us = 1,
> + .vdd_apc_step_up_limit = 1,
> + .vdd_apc_step_down_limit = 1,
> + .cpr_fuses = {
> + .init_voltage_step = 8000,
> + .init_voltage_width = 6,
> + .fuse_corner_data = (struct fuse_corner_data[]){
> + /* fuse corner 0 */
> + {
> + .ref_uV = 1224000,
> + .max_uV = 1224000,
> + .min_uV = 1048000,
> + .max_volt_scale = 0,
> + .max_quot_scale = 0,
> + .quot_offset = 0,
> + .quot_scale = 1,
> + .quot_adjust = 0,
> + .quot_offset_scale = 5,
> + .quot_offset_adjust = 0,
> + },
> + /* fuse corner 1 */
> + {
> + .ref_uV = 1288000,
> + .max_uV = 1288000,
> + .min_uV = 1048000,
> + .max_volt_scale = 2000,
> + .max_quot_scale = 1400,
> + .quot_offset = 0,
> + .quot_scale = 1,
> + .quot_adjust = -20,
> + .quot_offset_scale = 5,
> + .quot_offset_adjust = 0,
> + },
> + /* fuse corner 2 */
> + {
> + .ref_uV = 1352000,
> + .max_uV = 1384000,
> + .min_uV = 1088000,
> + .max_volt_scale = 2000,
> + .max_quot_scale = 1400,
> + .quot_offset = 0,
> + .quot_scale = 1,
> + .quot_adjust = 0,
> + .quot_offset_scale = 5,
> + .quot_offset_adjust = 0,
> + },
> + },
> + },
> +};
> +
> +static const struct acc_desc qcs404_acc_desc = {
> + .settings = (struct reg_sequence[]){
> + { 0xb120, 0x1041040 },
> + { 0xb124, 0x41 },
> + { 0xb120, 0x0 },
> + { 0xb124, 0x0 },
> + { 0xb120, 0x0 },
> + { 0xb124, 0x0 },
> + },
> + .config = (struct reg_sequence[]){
> + { 0xb138, 0xff },
> + { 0xb130, 0x5555 },
> + },
> + .num_regs_per_fuse = 2,
> +};
> +
> +static const struct cpr_acc_desc qcs404_cpr_acc_desc = {
> + .cpr_desc = &qcs404_cpr_desc,
> + .acc_desc = &qcs404_acc_desc,
> +};
> +
> +static unsigned int cpr_get_performance_state(struct generic_pm_domain *genpd,
> + struct dev_pm_opp *opp)
> +{
> + return dev_pm_opp_get_level(opp);
> +}
> +
> +static int cpr_power_off(struct generic_pm_domain *domain)
> +{
> + struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
> +
> + return cpr_disable(drv);
> +}
> +
> +static int cpr_power_on(struct generic_pm_domain *domain)
> +{
> + struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
> +
> + return cpr_enable(drv);
> +}
> +
> +static int cpr_pd_attach_dev(struct generic_pm_domain *domain,
> + struct device *dev)
> +{
> + struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
> + const struct acc_desc *acc_desc = drv->acc_desc;
> + int ret = 0;
> +
> + mutex_lock(&drv->lock);
> +
> + dev_dbg(drv->dev, "attach callback for: %s\n", dev_name(dev));
> +
> + /*
> + * This driver only supports scaling voltage for a CPU cluster
> + * where all CPUs in the cluster share a single regulator.
> + * Therefore, save the struct device pointer only for the first
> + * CPU device that gets attached. There is no need to do any
> + * additional initialization when further CPUs get attached.
> + */
> + if (drv->attached_cpu_dev)
> + goto unlock;
> +
> + /*
> + * cpr_scale_voltage() requires the direction (if we are changing
> + * to a higher or lower OPP). The first time
> + * cpr_set_performance_state() is called, there is no previous
> + * performance state defined. Therefore, we call
> + * cpr_find_initial_corner() that gets the CPU clock frequency
> + * set by the bootloader, so that we can determine the direction
> + * the first time cpr_set_performance_state() is called.
> + */
> + drv->cpu_clk = devm_clk_get(dev, NULL);
> + if (IS_ERR(drv->cpu_clk)) {
> + ret = PTR_ERR(drv->cpu_clk);
> + if (ret != -EPROBE_DEFER)
> + dev_err(drv->dev, "could not get cpu clk: %d\n", ret);
> + goto unlock;
> + }
> + drv->attached_cpu_dev = dev;
> +
> + dev_dbg(drv->dev, "using cpu clk from: %s\n",
> + dev_name(drv->attached_cpu_dev));
> +
> + /*
> + * Everything related to (virtual) corners has to be initialized
> + * here, when attaching to the power domain, since we need to know
> + * the maximum frequency for each fuse corner, and this is only
> + * available after the cpufreq driver has attached to us.
> + * The reason for this is that we need to know the highest
> + * frequency associated with each fuse corner.
> + */
> + drv->num_corners = dev_pm_opp_get_opp_count(&drv->pd.dev);
> + if (drv->num_corners < 0) {
> + ret = drv->num_corners;
> + goto unlock;
> + }
> + if (drv->num_corners < 2) {
> + dev_err(drv->dev, "need at least 2 OPPs to use CPR\n");
> + ret = -EINVAL;
> + goto unlock;
> + }
> +
> + dev_dbg(drv->dev, "number of OPPs: %d\n", drv->num_corners);
> +
> + drv->corners = devm_kcalloc(drv->dev, drv->num_corners,
> + sizeof(*drv->corners),
> + GFP_KERNEL);
> + if (!drv->corners) {
> + ret = -ENOMEM;
> + goto unlock;
> + }
> +
> + ret = cpr_corner_init(drv);
> + if (ret)
> + goto unlock;
> +
> + cpr_set_loop_allowed(drv);
> +
> + ret = cpr_init_parameters(drv);
> + if (ret)
> + goto unlock;
> +
> + /* Configure CPR HW but keep it disabled */
> + ret = cpr_config(drv);
> + if (ret)
> + goto unlock;
> +
> + ret = cpr_find_initial_corner(drv);
> + if (ret)
> + goto unlock;
> +
> + if (acc_desc->config)
> + regmap_multi_reg_write(drv->tcsr, acc_desc->config,
> + acc_desc->num_regs_per_fuse);
> +
> + /* Enable ACC if required */
> + if (acc_desc->enable_mask)
> + regmap_update_bits(drv->tcsr, acc_desc->enable_reg,
> + acc_desc->enable_mask,
> + acc_desc->enable_mask);
> +
> +unlock:
> + mutex_unlock(&drv->lock);
> +
> + return ret;
> +}
> +
> +static int cpr_debug_info_show(struct seq_file *s, void *unused)
> +{
> + u32 gcnt, ro_sel, ctl, irq_status, reg, error_steps;
> + u32 step_dn, step_up, error, error_lt0, busy;
> + struct cpr_drv *drv = s->private;
> + struct fuse_corner *fuse_corner;
> + struct corner *corner;
> +
> + corner = drv->corner;
> + fuse_corner = corner->fuse_corner;
> +
> + seq_printf(s, "corner, current_volt = %d uV\n",
> + corner->last_uV);
> +
> + ro_sel = fuse_corner->ring_osc_idx;
> + gcnt = cpr_read(drv, REG_RBCPR_GCNT_TARGET(ro_sel));
> + seq_printf(s, "rbcpr_gcnt_target (%u) = %#02X\n", ro_sel, gcnt);
> +
> + ctl = cpr_read(drv, REG_RBCPR_CTL);
> + seq_printf(s, "rbcpr_ctl = %#02X\n", ctl);
> +
> + irq_status = cpr_read(drv, REG_RBIF_IRQ_STATUS);
> + seq_printf(s, "rbcpr_irq_status = %#02X\n", irq_status);
> +
> + reg = cpr_read(drv, REG_RBCPR_RESULT_0);
> + seq_printf(s, "rbcpr_result_0 = %#02X\n", reg);
> +
> + step_dn = reg & 0x01;
> + step_up = (reg >> RBCPR_RESULT0_STEP_UP_SHIFT) & 0x01;
> + seq_printf(s, " [step_dn = %u", step_dn);
> +
> + seq_printf(s, ", step_up = %u", step_up);
> +
> + error_steps = (reg >> RBCPR_RESULT0_ERROR_STEPS_SHIFT)
> + & RBCPR_RESULT0_ERROR_STEPS_MASK;
> + seq_printf(s, ", error_steps = %u", error_steps);
> +
> + error = (reg >> RBCPR_RESULT0_ERROR_SHIFT) & RBCPR_RESULT0_ERROR_MASK;
> + seq_printf(s, ", error = %u", error);
> +
> + error_lt0 = (reg >> RBCPR_RESULT0_ERROR_LT0_SHIFT) & 0x01;
> + seq_printf(s, ", error_lt_0 = %u", error_lt0);
> +
> + busy = (reg >> RBCPR_RESULT0_BUSY_SHIFT) & 0x01;
> + seq_printf(s, ", busy = %u]\n", busy);
> +
> + return 0;
> +}
> +DEFINE_SHOW_ATTRIBUTE(cpr_debug_info);
> +
> +static void cpr_debugfs_init(struct cpr_drv *drv)
> +{
> + drv->debugfs = debugfs_create_dir("qcom_cpr", NULL);
> +
> + debugfs_create_file("debug_info", 0444, drv->debugfs,
> + drv, &cpr_debug_info_fops);
> +}
> +
> +static int cpr_probe(struct platform_device *pdev)
> +{
> + struct resource *res;
> + struct device *dev = &pdev->dev;
> + struct cpr_drv *drv;
> + int irq, ret;
> + const struct cpr_acc_desc *data;
> + struct device_node *np;
> + u32 cpr_rev = FUSE_REVISION_UNKNOWN;
> +
> + data = of_device_get_match_data(dev);
> + if (!data || !data->cpr_desc || !data->acc_desc)
> + return -EINVAL;
> +
> + drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL);
> + if (!drv)
> + return -ENOMEM;
> + drv->dev = dev;
> + drv->desc = data->cpr_desc;
> + drv->acc_desc = data->acc_desc;
> +
> + drv->fuse_corners = devm_kcalloc(dev, drv->desc->num_fuse_corners,
> + sizeof(*drv->fuse_corners),
> + GFP_KERNEL);
> + if (!drv->fuse_corners)
> + return -ENOMEM;
> +
> + np = of_parse_phandle(dev->of_node, "acc-syscon", 0);
> + if (!np)
> + return -ENODEV;
> +
> + drv->tcsr = syscon_node_to_regmap(np);
> + of_node_put(np);
> + if (IS_ERR(drv->tcsr))
> + return PTR_ERR(drv->tcsr);
> +
> + res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
> + drv->base = devm_ioremap_resource(dev, res);
> + if (IS_ERR(drv->base))
> + return PTR_ERR(drv->base);
> +
> + irq = platform_get_irq(pdev, 0);
> + if (irq < 0)
> + return -EINVAL;
> +
> + drv->vdd_apc = devm_regulator_get(dev, "vdd-apc");
> + if (IS_ERR(drv->vdd_apc))
> + return PTR_ERR(drv->vdd_apc);
> +
> + /*
> + * Initialize fuse corners, since it simply depends
> + * on data in efuses.
> + * Everything related to (virtual) corners has to be
> + * initialized after attaching to the power domain,
> + * since it depends on the CPU's OPP table.
> + */
> + ret = cpr_read_efuse(dev, "cpr_fuse_revision", &cpr_rev);
> + if (ret)
> + return ret;
> +
> + drv->cpr_fuses = cpr_get_fuses(drv);
> + if (IS_ERR(drv->cpr_fuses))
> + return PTR_ERR(drv->cpr_fuses);
> +
> + ret = cpr_populate_ring_osc_idx(drv);
> + if (ret)
> + return ret;
> +
> + ret = cpr_fuse_corner_init(drv);
> + if (ret)
> + return ret;
> +
> + mutex_init(&drv->lock);
> +
> + ret = devm_request_threaded_irq(dev, irq, NULL,
> + cpr_irq_handler,
> + IRQF_ONESHOT | IRQF_TRIGGER_RISING,
> + "cpr", drv);
> + if (ret)
> + return ret;
> +
> + drv->pd.name = devm_kstrdup_const(dev, dev->of_node->full_name,
> + GFP_KERNEL);
> + if (!drv->pd.name)
> + return -EINVAL;
> +
> + drv->pd.power_off = cpr_power_off;
> + drv->pd.power_on = cpr_power_on;
> + drv->pd.set_performance_state = cpr_set_performance_state;
> + drv->pd.opp_to_performance_state = cpr_get_performance_state;
> + drv->pd.attach_dev = cpr_pd_attach_dev;
> +
> + ret = pm_genpd_init(&drv->pd, NULL, true);
> + if (ret)
> + return ret;
> +
> + ret = of_genpd_add_provider_simple(dev->of_node, &drv->pd);
> + if (ret)
> + return ret;
> +
> + platform_set_drvdata(pdev, drv);
> + cpr_debugfs_init(drv);
> +
> + return 0;
> +}
> +
> +static int cpr_remove(struct platform_device *pdev)
> +{
> + struct cpr_drv *drv = platform_get_drvdata(pdev);
> +
> + if (cpr_is_allowed(drv)) {
> + cpr_ctl_disable(drv);
> + cpr_irq_set(drv, 0);
> + }
> +
> + of_genpd_del_provider(pdev->dev.of_node);
> + pm_genpd_remove(&drv->pd);
> +
> + debugfs_remove_recursive(drv->debugfs);
> +
> + return 0;
> +}
> +
> +static const struct of_device_id cpr_match_table[] = {
> + { .compatible = "qcom,qcs404-cpr", .data = &qcs404_cpr_acc_desc },
> + { }
> +};
> +MODULE_DEVICE_TABLE(of, cpr_match_table);
> +
> +static struct platform_driver cpr_driver = {
> + .probe = cpr_probe,
> + .remove = cpr_remove,
> + .driver = {
> + .name = "qcom-cpr",
> + .of_match_table = cpr_match_table,
> + },
> +};
> +module_platform_driver(cpr_driver);
> +
> +MODULE_DESCRIPTION("Core Power Reduction (CPR) driver");
> +MODULE_LICENSE("GPL v2");
> --
> 2.23.0
>
Powered by blists - more mailing lists