lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date:   Tue, 21 Jan 2020 09:51:16 -0700
From:   Alex Williamson <alex.williamson@...hat.com>
To:     Yan Zhao <yan.y.zhao@...el.com>
Cc:     "Tian, Kevin" <kevin.tian@...el.com>,
        "kvm@...r.kernel.org" <kvm@...r.kernel.org>,
        "linux-kernel@...r.kernel.org" <linux-kernel@...r.kernel.org>,
        "zhenyuw@...ux.intel.com" <zhenyuw@...ux.intel.com>,
        "peterx@...hat.com" <peterx@...hat.com>,
        "pbonzini@...hat.com" <pbonzini@...hat.com>,
        "intel-gvt-dev@...ts.freedesktop.org" 
        <intel-gvt-dev@...ts.freedesktop.org>
Subject: Re: [PATCH v2 2/2] drm/i915/gvt: subsitute kvm_read/write_guest
 with vfio_dma_rw

On Tue, 21 Jan 2020 03:12:07 -0500
Yan Zhao <yan.y.zhao@...el.com> wrote:

> On Tue, Jan 21, 2020 at 04:01:57AM +0800, Alex Williamson wrote:
> > On Sun, 19 Jan 2020 05:06:37 -0500
> > Yan Zhao <yan.y.zhao@...el.com> wrote:
> >   
> > > On Thu, Jan 16, 2020 at 11:37:29PM +0800, Alex Williamson wrote:  
> > > > On Thu, 16 Jan 2020 00:49:41 -0500
> > > > Yan Zhao <yan.y.zhao@...el.com> wrote:
> > > >     
> > > > > On Thu, Jan 16, 2020 at 04:06:51AM +0800, Alex Williamson wrote:    
> > > > > > On Tue, 14 Jan 2020 22:54:55 -0500
> > > > > > Yan Zhao <yan.y.zhao@...el.com> wrote:
> > > > > >       
> > > > > > > As a device model, it is better to read/write guest memory using vfio
> > > > > > > interface, so that vfio is able to maintain dirty info of device IOVAs.
> > > > > > > 
> > > > > > > Compared to kvm interfaces kvm_read/write_guest(), vfio_dma_rw() has ~600
> > > > > > > cycles more overhead on average.
> > > > > > > 
> > > > > > > -------------------------------------
> > > > > > > |    interface     | avg cpu cycles |
> > > > > > > |-----------------------------------|
> > > > > > > | kvm_write_guest  |     1554       |
> > > > > > > | ----------------------------------|
> > > > > > > | kvm_read_guest   |     707        |
> > > > > > > |-----------------------------------|
> > > > > > > | vfio_dma_rw(w)   |     2274       |
> > > > > > > |-----------------------------------|
> > > > > > > | vfio_dma_rw(r)   |     1378       |
> > > > > > > -------------------------------------      
> > > > > > 
> > > > > > In v1 you had:
> > > > > > 
> > > > > > -------------------------------------
> > > > > > |    interface     | avg cpu cycles |
> > > > > > |-----------------------------------|
> > > > > > | kvm_write_guest  |     1546       |
> > > > > > | ----------------------------------|
> > > > > > | kvm_read_guest   |     686        |
> > > > > > |-----------------------------------|
> > > > > > | vfio_iova_rw(w)  |     2233       |
> > > > > > |-----------------------------------|
> > > > > > | vfio_iova_rw(r)  |     1262       |
> > > > > > -------------------------------------
> > > > > > 
> > > > > > So the kvm numbers remained within +0.5-3% while the vfio numbers are
> > > > > > now +1.8-9.2%.  I would have expected the algorithm change to at least
> > > > > > not be worse for small accesses and be better for accesses crossing
> > > > > > page boundaries.  Do you know what happened?
> > > > > >      
> > > > > I only tested the 4 interfaces in GVT's environment, where most of the
> > > > > guest memory accesses are less than one page.
> > > > > And the different fluctuations should be caused by the locks.
> > > > > vfio_dma_rw contends locks with other vfio accesses which are assumed to
> > > > > be abundant in the case of GVT.    
> > > > 
> > > > Hmm, so maybe it's time to convert vfio_iommu.lock from a mutex to a
> > > > rwsem?  Thanks,
> > > >     
> > > 
> > > hi Alex
> > > I tested your rwsem patches at (https://lkml.org/lkml/2020/1/16/1869).
> > > They works without any runtime error at my side. :) 
> > > However, I found out that the previous fluctuation may be because I didn't
> > > take read/write counts in to account.
> > > For example. though the two tests have different avg read/write cycles,
> > > their average cycles are almost the same.
> > >  ______________________________________________________________________
> > > |        | avg read |            | avg write |            |            |
> > > |        | cycles   | read cnt   | cycles    | write cnt  | avg cycles |
> > > |----------------------------------------------------------------------|
> > > | test 1 |   1339   | 29,587,120 |  2258     | 17,098,364 |    1676    |
> > > | test 2 |   1340   | 28,454,262 |  2238     | 16,501,788 |    1670    |
> > >  ----------------------------------------------------------------------
> > > 
> > > After measuring the exact read/write cnt and cycles of a specific workload,
> > > I get below findings:
> > > 
> > > (1) with single VM running glmark2 inside.
> > > glmark2: 40M+ read+write cnt, among which 63% is read.
> > > among reads, 48% is of PAGE_SIZE, the rest is less than a page.
> > > among writes, 100% is less than a page.
> > > 
> > >  __________________________________________________
> > > |       cycles         | read | write |  avg | inc |
> > > |--------------------------------------------------|
> > > | kvm_read/write_page  |  694 |  1506 |  993 |  /  |
> > > |--------------------------------------------------|
> > > |  vfio_dma_rw(mutex)  | 1340 |  2248 | 1673 | 680 |
> > > |--------------------------------------------------|
> > > | vfio_dma_rw(rwsem r) | 1323 |  2198 | 1645 | 653 |
> > >  ---------------------------------------------------
> > > 
> > > so vfio_dma_rw generally has 650+ more cycles per each read/write.
> > > While kvm->srcu is of 160 cycles on average with one vm is running, the
> > > cycles spending on locks for vfio_dma_rw spread like this:
> > >  ___________________________
> > > |        cycles       | avg |
> > > |---------------------------|
> > > |     iommu->lock     | 117 |
> > > |---------------------------|
> > > |   vfio.group_lock   | 108 |
> > > |---------------------------|
> > > | group->unbound_lock | 114 |
> > > |---------------------------|
> > > |  group->device_lock | 115 |
> > > |---------------------------|
> > > |     group->mutex    | 113 |
> > >  ---------------------------
> > > 
> > > I measured the cycles for a mutex without any contention is 104 cycles
> > > on average (including time for get_cycles() and measured in the same way
> > > as other locks). So the contention of a single lock in a single vm
> > > environment is light. probably because there's a vgpu lock hold in GVT already.
> > > 
> > > (2) with two VMs each running glmark2 inside.
> > > The contention increases a little.
> > > 
> > >  ___________________________________________________
> > > |       cycles         | read | write |  avg | inc  |
> > > |---------------------------------------------------|
> > > | kvm_read/write_page  | 1035 |  1832 | 1325 |  /   |
> > > |---------------------------------------------------|
> > > |  vfio_dma_rw(mutex)  | 2104 |  2886 | 2390 | 1065 |
> > > |---------------------------------------------------|
> > > | vfio_dma_rw(rwsem r) | 1965 |  2778 | 2260 | 935  |
> > >  ---------------------------------------------------
> > > 
> > > 
> > >  -----------------------------------------------
> > > |     avg cycles       |   one VM   |  two VMs  |
> > > |-----------------------------------------------|
> > > |  iommu lock (mutex)  |     117    |   150     |
> > > |-----------------------------------|-----------|
> > > | iommu lock (rwsem r) |     117    |   156     |
> > > |-----------------------------------|-----------|
> > > |   kvm->srcu          |     160    |   213     |
> > >  -----------------------------------------------
> > > 
> > > In the kvm case, avg cycles increased 332 cycles, while kvm->srcu only costed
> > > 213 cycles. The rest 109 cycles may be spent on atomic operations.
> > > But I didn't measure them, as get_cycles() operation itself would influence final
> > > cycles by ~20 cycles.  
> > 
> > It seems like we need to extend the vfio external user interface so
> > that GVT-g can hold the group and container user references across
> > multiple calls.  For instance if we had a
> > vfio_group_get_external_user_from_dev() (based on
> > vfio_group_get_external_user()) then i915 could get an opaque
> > vfio_group pointer which it could use to call vfio_group_dma_rw() which
> > would leave us with only the iommu rw_sem locking.  i915 would release
> > the reference with vfio_group_put_external_user() when the device is
> > released.  The same could be done with the pin pages interface to
> > streamline that as well.  Thoughts?  Thanks,
> >  
> hi Alex,
> it works!

Hurrah!

> now the average vfio_dma_rw cycles can reduced to 1198. 
> one thing I want to propose is that, in sight of dma->task is always user
> space process, instead of calling get_task_mm(dma->task), can we just use
> "mmget_not_zero(dma->task->mm)"? in this way, the avg cycles can
> further reduce to 1051.

I'm not an expert there.  As noted in the type1 code we hold a
reference to the task because it's not advised to hold a long term
reference to the mm, so do we know we can look at task->mm without
acquiring task_lock()?  It's possible this is safe, but it's not
abundantly obvious to me.  Please research further and provide
justification if you think it's correct.  Thanks,

Alex

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ