lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <20200127215453.15144-3-lukasz.luba@arm.com>
Date:   Mon, 27 Jan 2020 21:54:52 +0000
From:   lukasz.luba@....com
To:     kgene@...nel.org, krzk@...nel.org,
        linux-arm-kernel@...ts.infradead.org,
        linux-samsung-soc@...r.kernel.org, linux-kernel@...r.kernel.org,
        devicetree@...r.kernel.org, linux-pm@...r.kernel.org
Cc:     myungjoo.ham@...sung.com, kyungmin.park@...sung.com,
        cw00.choi@...sung.com, robh+dt@...nel.org, mark.rutland@....com,
        b.zolnierkie@...sung.com, lukasz.luba@....com,
        dietmar.eggemann@....com
Subject: [PATCH 2/3] ARM: dts: exynos: Add Exynos5422 CPU dynamic-power-coefficient information

From: Lukasz Luba <lukasz.luba@....com>

Add dynamic power coefficient into CPU nodes which let CPUFreq subsystem
register the Energy Model (EM) for the CPUs.

The 'dynamic-power-coefficient' is used for calculating the dynamic power
according to the equation in documentation [1].  The Energy Model (EM)
framework relies on calculated power and cost for each OPP. The OPP power
values come from CPUFreq driver, which registered required callback
function. The simple implementation of a CPUFREQ driver, like cpufreq-dt,
uses 'dev_pm_opp_of_register_em()' which relay on
'dynamic-power-coefficient' to calculate the power of requested OPP for the
EM [2].

The calculated values might be checked in
/sys/kernel/debug/energy_model/pd*/

$ grep . /sys/kernel/debug/energy_model/pd1/cs*/*
/sys/kernel/debug/energy_model/pd1/cs:1000000/cost:558
/sys/kernel/debug/energy_model/pd1/cs:1000000/frequency:1000000
/sys/kernel/debug/energy_model/pd1/cs:1000000/power:310
/sys/kernel/debug/energy_model/pd1/cs:1100000/cost:558
/sys/kernel/debug/energy_model/pd1/cs:1100000/frequency:1100000
/sys/kernel/debug/energy_model/pd1/cs:1100000/power:341
/sys/kernel/debug/energy_model/pd1/cs:1200000/cost:558
/sys/kernel/debug/energy_model/pd1/cs:1200000/frequency:1200000
/sys/kernel/debug/energy_model/pd1/cs:1200000/power:372
/sys/kernel/debug/energy_model/pd1/cs:1300000/cost:674
/sys/kernel/debug/energy_model/pd1/cs:1300000/frequency:1300000
/sys/kernel/debug/energy_model/pd1/cs:1300000/power:487
/sys/kernel/debug/energy_model/pd1/cs:1400000/cost:675 ...

$ grep . /sys/kernel/debug/energy_model/pd0/cs*/*
/sys/kernel/debug/energy_model/pd0/cs:1000000/cost:200
/sys/kernel/debug/energy_model/pd0/cs:1000000/frequency:1000000
/sys/kernel/debug/energy_model/pd0/cs:1000000/power:154
/sys/kernel/debug/energy_model/pd0/cs:1100000/cost:260
/sys/kernel/debug/energy_model/pd0/cs:1100000/frequency:1100000
/sys/kernel/debug/energy_model/pd0/cs:1100000/power:220
/sys/kernel/debug/energy_model/pd0/cs:1200000/cost:260
/sys/kernel/debug/energy_model/pd0/cs:1200000/frequency:1200000
/sys/kernel/debug/energy_model/pd0/cs:1200000/power:240
/sys/kernel/debug/energy_model/pd0/cs:1300000/cost:260
/sys/kernel/debug/energy_model/pd0/cs:1300000/frequency:1300000
/sys/kernel/debug/energy_model/pd0/cs:1300000/power:260
/sys/kernel/debug/energy_model/pd0/cs:200000/cost:130 ...

To provide a proper value of the 'dynamic-power-coefficient' the real power
can be measured using a dedicated hardware, i.e. INA2xx. The Odroid-XU3
hwmon sensors have been used to capture the power value during a sysbench
test running on single core and at each possible OPP. The measured values
were divided by 2, since the dynamic power is typically half of the
consumed power (the second half is static power). Next, the approximation
was made and the power model derived, showing the 'C' value of routhly X.
Check the example equations in drivers/opp/of.c [2].
Thus, i.e. the power = 1.0Watt at 1GHz => 0.5W dynamic power =>
dynamic-power-coefficient = 400

Using this simple technique we can provide and needed coefficient.  The
approximation does not have to be super precised. The proportion is
important and the difference between power consumed by different CPUs
running at the same frequency, which is then used in Energy Aware Scheduler
algorithms. An example power values on Odroid-XU3:

(LITTLE CPU)
/sys/kernel/debug/energy_model/pd0/cs:1000000/frequency:1000000
/sys/kernel/debug/energy_model/pd0/cs:1000000/power:154
(big CPU)
/sys/kernel/debug/energy_model/pd1/cs:1000000/frequency:1000000
/sys/kernel/debug/energy_model/pd1/cs:1000000/power:310

In Odroid-XU3 case the derived coefficient value for 'big' CPU has:
dynamic-power-coefficient = <310>;
while the 'LITTLE':
dynamic-power-coefficient = <128>;

[1] Documentation/devicetree/bindings/arm/cpus.yaml
[2] https://elixir.bootlin.com/linux/v5.4/source/drivers/opp/of.c#L1044

Signed-off-by: Lukasz Luba <lukasz.luba@....com>
---
 arch/arm/boot/dts/exynos5422-cpus.dtsi | 8 ++++++++
 1 file changed, 8 insertions(+)

diff --git a/arch/arm/boot/dts/exynos5422-cpus.dtsi b/arch/arm/boot/dts/exynos5422-cpus.dtsi
index 1b8605cf2407..c9a0dc99d2fb 100644
--- a/arch/arm/boot/dts/exynos5422-cpus.dtsi
+++ b/arch/arm/boot/dts/exynos5422-cpus.dtsi
@@ -31,6 +31,7 @@
 			operating-points-v2 = <&cluster_a7_opp_table>;
 			#cooling-cells = <2>; /* min followed by max */
 			capacity-dmips-mhz = <539>;
+			dynamic-power-coefficient = <128>;
 		};
 
 		cpu1: cpu@101 {
@@ -43,6 +44,7 @@
 			operating-points-v2 = <&cluster_a7_opp_table>;
 			#cooling-cells = <2>; /* min followed by max */
 			capacity-dmips-mhz = <539>;
+			dynamic-power-coefficient = <128>;
 		};
 
 		cpu2: cpu@102 {
@@ -55,6 +57,7 @@
 			operating-points-v2 = <&cluster_a7_opp_table>;
 			#cooling-cells = <2>; /* min followed by max */
 			capacity-dmips-mhz = <539>;
+			dynamic-power-coefficient = <128>;
 		};
 
 		cpu3: cpu@103 {
@@ -67,6 +70,7 @@
 			operating-points-v2 = <&cluster_a7_opp_table>;
 			#cooling-cells = <2>; /* min followed by max */
 			capacity-dmips-mhz = <539>;
+			dynamic-power-coefficient = <128>;
 		};
 
 		cpu4: cpu@0 {
@@ -79,6 +83,7 @@
 			operating-points-v2 = <&cluster_a15_opp_table>;
 			#cooling-cells = <2>; /* min followed by max */
 			capacity-dmips-mhz = <1024>;
+			dynamic-power-coefficient = <310>;
 		};
 
 		cpu5: cpu@1 {
@@ -91,6 +96,7 @@
 			operating-points-v2 = <&cluster_a15_opp_table>;
 			#cooling-cells = <2>; /* min followed by max */
 			capacity-dmips-mhz = <1024>;
+			dynamic-power-coefficient = <310>;
 		};
 
 		cpu6: cpu@2 {
@@ -103,6 +109,7 @@
 			operating-points-v2 = <&cluster_a15_opp_table>;
 			#cooling-cells = <2>; /* min followed by max */
 			capacity-dmips-mhz = <1024>;
+			dynamic-power-coefficient = <310>;
 		};
 
 		cpu7: cpu@3 {
@@ -115,6 +122,7 @@
 			operating-points-v2 = <&cluster_a15_opp_table>;
 			#cooling-cells = <2>; /* min followed by max */
 			capacity-dmips-mhz = <1024>;
+			dynamic-power-coefficient = <310>;
 		};
 	};
 };
-- 
2.17.1

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ