[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <20200203232248.104733-9-almasrymina@google.com>
Date: Mon, 3 Feb 2020 15:22:48 -0800
From: Mina Almasry <almasrymina@...gle.com>
To: mike.kravetz@...cle.com
Cc: shuah@...nel.org, almasrymina@...gle.com, rientjes@...gle.com,
shakeelb@...gle.com, gthelen@...gle.com, akpm@...ux-foundation.org,
linux-kernel@...r.kernel.org, linux-mm@...ck.org,
linux-kselftest@...r.kernel.org, cgroups@...r.kernel.org
Subject: [PATCH v11 9/9] hugetlb_cgroup: Add hugetlb_cgroup reservation docs
Add docs for how to use hugetlb_cgroup reservations, and their behavior.
Signed-off-by: Mina Almasry <almasrymina@...gle.com>
---
Changes in v11:
- Changed resv.* to rsvd.*
Changes in v10:
- Clarify reparenting behavior.
- Reword benefits of reservation limits.
Changes in v6:
- Updated docs to reflect the new design based on a new counter that
tracks both reservations and faults.
---
.../admin-guide/cgroup-v1/hugetlb.rst | 103 ++++++++++++++++--
1 file changed, 92 insertions(+), 11 deletions(-)
diff --git a/Documentation/admin-guide/cgroup-v1/hugetlb.rst b/Documentation/admin-guide/cgroup-v1/hugetlb.rst
index a3902aa253a96..338f2c7d7a1cd 100644
--- a/Documentation/admin-guide/cgroup-v1/hugetlb.rst
+++ b/Documentation/admin-guide/cgroup-v1/hugetlb.rst
@@ -2,13 +2,6 @@
HugeTLB Controller
==================
-The HugeTLB controller allows to limit the HugeTLB usage per control group and
-enforces the controller limit during page fault. Since HugeTLB doesn't
-support page reclaim, enforcing the limit at page fault time implies that,
-the application will get SIGBUS signal if it tries to access HugeTLB pages
-beyond its limit. This requires the application to know beforehand how much
-HugeTLB pages it would require for its use.
-
HugeTLB controller can be created by first mounting the cgroup filesystem.
# mount -t cgroup -o hugetlb none /sys/fs/cgroup
@@ -28,10 +21,14 @@ process (bash) into it.
Brief summary of control files::
- hugetlb.<hugepagesize>.limit_in_bytes # set/show limit of "hugepagesize" hugetlb usage
- hugetlb.<hugepagesize>.max_usage_in_bytes # show max "hugepagesize" hugetlb usage recorded
- hugetlb.<hugepagesize>.usage_in_bytes # show current usage for "hugepagesize" hugetlb
- hugetlb.<hugepagesize>.failcnt # show the number of allocation failure due to HugeTLB limit
+ hugetlb.<hugepagesize>.rsvd.limit_in_bytes # set/show limit of "hugepagesize" hugetlb reservations
+ hugetlb.<hugepagesize>.rsvd.max_usage_in_bytes # show max "hugepagesize" hugetlb reservations and no-reserve faults
+ hugetlb.<hugepagesize>.rsvd.usage_in_bytes # show current reservations and no-reserve faults for "hugepagesize" hugetlb
+ hugetlb.<hugepagesize>.rsvd.failcnt # show the number of allocation failure due to HugeTLB reservation limit
+ hugetlb.<hugepagesize>.limit_in_bytes # set/show limit of "hugepagesize" hugetlb faults
+ hugetlb.<hugepagesize>.max_usage_in_bytes # show max "hugepagesize" hugetlb usage recorded
+ hugetlb.<hugepagesize>.usage_in_bytes # show current usage for "hugepagesize" hugetlb
+ hugetlb.<hugepagesize>.failcnt # show the number of allocation failure due to HugeTLB usage limit
For a system supporting three hugepage sizes (64k, 32M and 1G), the control
files include::
@@ -40,11 +37,95 @@ files include::
hugetlb.1GB.max_usage_in_bytes
hugetlb.1GB.usage_in_bytes
hugetlb.1GB.failcnt
+ hugetlb.1GB.rsvd.limit_in_bytes
+ hugetlb.1GB.rsvd.max_usage_in_bytes
+ hugetlb.1GB.rsvd.usage_in_bytes
+ hugetlb.1GB.rsvd.failcnt
hugetlb.64KB.limit_in_bytes
hugetlb.64KB.max_usage_in_bytes
hugetlb.64KB.usage_in_bytes
hugetlb.64KB.failcnt
+ hugetlb.64KB.rsvd.limit_in_bytes
+ hugetlb.64KB.rsvd.max_usage_in_bytes
+ hugetlb.64KB.rsvd.usage_in_bytes
+ hugetlb.64KB.rsvd.failcnt
hugetlb.32MB.limit_in_bytes
hugetlb.32MB.max_usage_in_bytes
hugetlb.32MB.usage_in_bytes
hugetlb.32MB.failcnt
+ hugetlb.32MB.rsvd.limit_in_bytes
+ hugetlb.32MB.rsvd.max_usage_in_bytes
+ hugetlb.32MB.rsvd.usage_in_bytes
+ hugetlb.32MB.rsvd.failcnt
+
+
+1. Page fault accounting
+
+hugetlb.<hugepagesize>.limit_in_bytes
+hugetlb.<hugepagesize>.max_usage_in_bytes
+hugetlb.<hugepagesize>.usage_in_bytes
+hugetlb.<hugepagesize>.failcnt
+
+The HugeTLB controller allows users to limit the HugeTLB usage (page fault) per
+control group and enforces the limit during page fault. Since HugeTLB
+doesn't support page reclaim, enforcing the limit at page fault time implies
+that, the application will get SIGBUS signal if it tries to fault in HugeTLB
+pages beyond its limit. Therefore the application needs to know exactly how many
+HugeTLB pages it uses before hand, and the sysadmin needs to make sure that
+there are enough available on the machine for all the users to avoid processes
+getting SIGBUS.
+
+
+2. Reservation accounting
+
+hugetlb.<hugepagesize>.rsvd.limit_in_bytes
+hugetlb.<hugepagesize>.rsvd.max_usage_in_bytes
+hugetlb.<hugepagesize>.rsvd.usage_in_bytes
+hugetlb.<hugepagesize>.rsvd.failcnt
+
+The HugeTLB controller allows to limit the HugeTLB reservations per control
+group and enforces the controller limit at reservation time and at the fault of
+HugeTLB memory for which no reservation exists. Since reservation limits are
+enforced at reservation time (on mmap or shget), reservation limits never causes
+the application to get SIGBUS signal if the memory was reserved before hand. For
+MAP_NORESERVE allocations, the reservation limit behaves the same as the fault
+limit, enforcing memory usage at fault time and causing the application to
+receive a SIGBUS if it's crossing its limit.
+
+Reservation limits are superior to page fault limits described above, since
+reservation limits are enforced at reservation time (on mmap or shget), and
+never causes the application to get SIGBUS signal if the memory was reserved
+before hand. This allows for easier fallback to alternatives such as
+non-HugeTLB memory for example. In the case of page fault accounting, it's very
+hard to avoid processes getting SIGBUS since the sysadmin needs precisely know
+the HugeTLB usage of all the tasks in the system and make sure there is enough
+pages to satisfy all requests. Avoiding tasks getting SIGBUS on overcommited
+systems is practically impossible with page fault accounting.
+
+
+3. Caveats with shared memory
+
+For shared HugeTLB memory, both HugeTLB reservation and page faults are charged
+to the first task that causes the memory to be reserved or faulted, and all
+subsequent uses of this reserved or faulted memory is done without charging.
+
+Shared HugeTLB memory is only uncharged when it is unreserved or deallocated.
+This is usually when the HugeTLB file is deleted, and not when the task that
+caused the reservation or fault has exited.
+
+
+4. Caveats with HugeTLB cgroup offline.
+
+When a HugeTLB cgroup goes offline with some reservations or faults still
+charged to it, the behavior is as follows:
+
+- The fault charges are charged to the parent HugeTLB cgroup (reparented),
+- the reservation charges remain on the offline HugeTLB cgroup.
+
+This means that if a HugeTLB cgroup gets offlined while there is still HugeTLB
+reservations charged to it, that cgroup persists as a zombie until all HugeTLB
+reservations are uncharged. HugeTLB reservations behave in this manner to match
+the memory controller whose cgroups also persist as zombie until all charged
+memory is uncharged. Also, the tracking of HugeTLB reservations is a bit more
+complex compared to the tracking of HugeTLB faults, so it is significantly
+harder to reparent reservations at offline time.
--
2.25.0.341.g760bfbb309-goog
Powered by blists - more mailing lists