[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20200326115023.xy3n5bl7uetuw7mx@vireshk-i7>
Date: Thu, 26 Mar 2020 17:20:23 +0530
From: Viresh Kumar <viresh.kumar@...aro.org>
To: Sumit Gupta <sumitg@...dia.com>
Cc: rjw@...ysocki.net, catalin.marinas@....com, will@...nel.org,
thierry.reding@...il.com, jonathanh@...dia.com, talho@...dia.com,
linux-pm@...r.kernel.org, linux-tegra@...r.kernel.org,
linux-arm-kernel@...ts.infradead.org, linux-kernel@...r.kernel.org,
bbasu@...dia.com, mperttunen@...dia.com
Subject: Re: [TEGRA194_CPUFREQ Patch 2/3] cpufreq: Add Tegra194 cpufreq driver
On 03-12-19, 23:02, Sumit Gupta wrote:
> diff --git a/drivers/cpufreq/tegra194-cpufreq.c b/drivers/cpufreq/tegra194-cpufreq.c
> new file mode 100644
> index 0000000..9df12f4
> --- /dev/null
> +++ b/drivers/cpufreq/tegra194-cpufreq.c
> @@ -0,0 +1,423 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved
> + */
> +
> +#include <linux/cpu.h>
> +#include <linux/cpufreq.h>
> +#include <linux/delay.h>
> +#include <linux/dma-mapping.h>
> +#include <linux/module.h>
> +#include <linux/of.h>
> +#include <linux/of_platform.h>
> +#include <linux/platform_device.h>
> +#include <linux/slab.h>
> +
> +#include <asm/smp_plat.h>
> +
> +#include <soc/tegra/bpmp.h>
> +#include <soc/tegra/bpmp-abi.h>
> +
> +#define KHZ 1000
> +#define REF_CLK_MHZ 408 /* 408 MHz */
> +#define US_DELAY 2000
> +#define US_DELAY_MIN 2
> +#define CPUFREQ_TBL_STEP_HZ (50 * KHZ * KHZ)
> +#define MAX_CNT ~0U
> +
> +/* cpufreq transisition latency */
> +#define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */
> +
> +enum cluster {
> + CLUSTER0,
> + CLUSTER1,
> + CLUSTER2,
> + CLUSTER3,
All these have same CPUs ? Or big little kind of stuff ? How come they
have different frequency tables ?
> + MAX_CLUSTERS,
> +};
> +
> +struct tegra194_cpufreq_data {
> + void __iomem *regs;
> + size_t num_clusters;
> + struct cpufreq_frequency_table **tables;
> +};
> +
> +static DEFINE_MUTEX(cpufreq_lock);
> +
> +struct tegra_cpu_ctr {
> + u32 cpu;
> + u32 delay;
> + u32 coreclk_cnt, last_coreclk_cnt;
> + u32 refclk_cnt, last_refclk_cnt;
> +};
> +
> +static struct workqueue_struct *read_counters_wq;
> +struct read_counters_work {
> + struct work_struct work;
> + struct tegra_cpu_ctr c;
> +};
> +
> +static enum cluster get_cpu_cluster(u8 cpu)
> +{
> + return MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
> +}
> +
> +/*
> + * Read per-core Read-only system register NVFREQ_FEEDBACK_EL1.
> + * The register provides frequency feedback information to
> + * determine the average actual frequency a core has run at over
> + * a period of time.
> + * [31:0] PLLP counter: Counts at fixed frequency (408 MHz)
> + * [63:32] Core clock counter: counts on every core clock cycle
> + * where the core is architecturally clocking
> + */
> +static u64 read_freq_feedback(void)
> +{
> + u64 val = 0;
> +
> + asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : );
> +
> + return val;
> +}
> +
> +u16 map_freq_to_ndiv(struct mrq_cpu_ndiv_limits_response *nltbl, u32 freq)
> +{
> + return DIV_ROUND_UP(freq * nltbl->pdiv * nltbl->mdiv,
> + nltbl->ref_clk_hz / KHZ);
> +}
> +
> +static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response
> + *nltbl, u16 ndiv)
> +{
> + return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv);
> +}
> +
> +static void tegra_read_counters(struct work_struct *work)
> +{
> + struct read_counters_work *read_counters_work;
> + struct tegra_cpu_ctr *c;
> + u64 val;
> +
> + /*
> + * ref_clk_counter(32 bit counter) runs on constant clk,
> + * pll_p(408MHz).
> + * It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter
> + * = 10526880 usec = 10.527 sec to overflow
> + *
> + * Like wise core_clk_counter(32 bit counter) runs on core clock.
> + * It's synchronized to crab_clk (cpu_crab_clk) which runs at
> + * freq of cluster. Assuming max cluster clock ~2000MHz,
> + * It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter
> + * = ~2.147 sec to overflow
> + */
> + read_counters_work = container_of(work, struct read_counters_work,
> + work);
> + c = &read_counters_work->c;
> +
> + val = read_freq_feedback();
> + c->last_refclk_cnt = lower_32_bits(val);
> + c->last_coreclk_cnt = upper_32_bits(val);
> + udelay(c->delay);
> + val = read_freq_feedback();
> + c->refclk_cnt = lower_32_bits(val);
> + c->coreclk_cnt = upper_32_bits(val);
> +}
> +
> +/*
> + * Return instantaneous cpu speed
> + * Instantaneous freq is calculated as -
> + * -Takes sample on every query of getting the freq.
> + * - Read core and ref clock counters;
> + * - Delay for X us
> + * - Read above cycle counters again
> + * - Calculates freq by subtracting current and previous counters
> + * divided by the delay time or eqv. of ref_clk_counter in delta time
> + * - Return Kcycles/second, freq in KHz
> + *
> + * delta time period = x sec
> + * = delta ref_clk_counter / (408 * 10^6) sec
> + * freq in Hz = cycles/sec
> + * = (delta cycles / x sec
> + * = (delta cycles * 408 * 10^6) / delta ref_clk_counter
> + * in KHz = (delta cycles * 408 * 10^3) / delta ref_clk_counter
> + *
> + * @cpu - logical cpu whose freq to be updated
> + * Returns freq in KHz on success, 0 if cpu is offline
> + */
> +static unsigned int tegra194_get_speed_common(u32 cpu, u32 delay)
> +{
> + struct read_counters_work read_counters_work;
> + struct tegra_cpu_ctr c;
> + u32 delta_refcnt;
> + u32 delta_ccnt;
> + u32 rate_mhz;
> +
> + read_counters_work.c.cpu = cpu;
> + read_counters_work.c.delay = delay;
> + INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters);
> + queue_work_on(cpu, read_counters_wq, &read_counters_work.work);
> + flush_work(&read_counters_work.work);
Why can't this be done in current context ?
> + c = read_counters_work.c;
> +
> + if (c.coreclk_cnt < c.last_coreclk_cnt)
> + delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt);
> + else
> + delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt;
> + if (!delta_ccnt)
> + return 0;
> +
> + /* ref clock is 32 bits */
> + if (c.refclk_cnt < c.last_refclk_cnt)
> + delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt);
> + else
> + delta_refcnt = c.refclk_cnt - c.last_refclk_cnt;
> + if (!delta_refcnt) {
> + pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu);
> + return 0;
> + }
> + rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt;
> +
> + return (rate_mhz * KHZ); /* in KHz */
> +}
> +
> +static unsigned int tegra194_get_speed(u32 cpu)
> +{
> + return tegra194_get_speed_common(cpu, US_DELAY);
> +}
> +
> +static unsigned int tegra194_fast_get_speed(u32 cpu)
> +{
> + return tegra194_get_speed_common(cpu, US_DELAY_MIN);
Why is this required specially here ? Why can't you work with normal
delay ?
> +}
> +
> +static int tegra194_cpufreq_init(struct cpufreq_policy *policy)
> +{
> + struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
> + int cluster = get_cpu_cluster(policy->cpu);
> +
> + if (cluster >= data->num_clusters)
> + return -EINVAL;
> +
> + policy->cur = tegra194_fast_get_speed(policy->cpu); /* boot freq */
> +
> + /* set same policy for all cpus */
> + cpumask_copy(policy->cpus, cpu_possible_mask);
You are copying cpu_possible_mask mask here, and so this routine will
get called only once.
I still don't understand the logic behind clusters and frequency
tables.
> +
> + policy->freq_table = data->tables[cluster];
> + policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY;
> +
> + return 0;
> +}
> +
> +static void set_cpu_ndiv(void *data)
> +{
> + struct cpufreq_frequency_table *tbl = data;
> + u64 ndiv_val = (u64)tbl->driver_data;
> +
> + asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val));
> +}
> +
> +static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy,
> + unsigned int index)
> +{
> + struct cpufreq_frequency_table *tbl = policy->freq_table + index;
> + static struct cpufreq_freqs freqs;
> +
> + mutex_lock(&cpufreq_lock);
No need of lock here.
> + freqs.old = policy->cur;
> + freqs.new = tbl->frequency;
> +
> + cpufreq_freq_transition_begin(policy, &freqs);
> + on_each_cpu_mask(policy->cpus, set_cpu_ndiv, tbl, true);
When CPUs share clock line, why is this required for every CPU ?
> + cpufreq_freq_transition_end(policy, &freqs, 0);
> +
> + mutex_unlock(&cpufreq_lock);
> +
> + return 0;
> +}
> +
> +static struct cpufreq_driver tegra194_cpufreq_driver = {
> + .name = "tegra194",
> + .flags = CPUFREQ_STICKY | CPUFREQ_CONST_LOOPS |
> + CPUFREQ_NEED_INITIAL_FREQ_CHECK | CPUFREQ_ASYNC_NOTIFICATION,
Why Async here ? I am really confused if I am not able to understand
the driver or you :)
> + .verify = cpufreq_generic_frequency_table_verify,
> + .target_index = tegra194_cpufreq_set_target,
> + .get = tegra194_get_speed,
> + .init = tegra194_cpufreq_init,
> + .attr = cpufreq_generic_attr,
> +};
> +
> +static void tegra194_cpufreq_free_resources(void)
> +{
> + flush_workqueue(read_counters_wq);
> + destroy_workqueue(read_counters_wq);
> +}
> +
> +static struct cpufreq_frequency_table *init_freq_table
Don't break line here, rather break after above *.
> + (struct platform_device *pdev, struct tegra_bpmp *bpmp,
> + unsigned int cluster_id)
> +{
> + struct cpufreq_frequency_table *opp_table;
Please name it freq_table :)
> + struct mrq_cpu_ndiv_limits_response resp;
> + unsigned int num_freqs, ndiv, delta_ndiv;
> + struct mrq_cpu_ndiv_limits_request req;
> + struct tegra_bpmp_message msg;
> + u16 freq_table_step_size;
> + int err, index;
> +
> + memset(&req, 0, sizeof(req));
> + req.cluster_id = cluster_id;
> +
> + memset(&msg, 0, sizeof(msg));
> + msg.mrq = MRQ_CPU_NDIV_LIMITS;
> + msg.tx.data = &req;
> + msg.tx.size = sizeof(req);
> + msg.rx.data = &resp;
> + msg.rx.size = sizeof(resp);
> +
> + err = tegra_bpmp_transfer(bpmp, &msg);
> + if (err)
> + return ERR_PTR(err);
> +
> + /*
> + * Make sure frequency table step is a multiple of mdiv to match
> + * vhint table granularity.
> + */
> + freq_table_step_size = resp.mdiv *
> + DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz);
> +
> + dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n",
> + cluster_id, freq_table_step_size);
> +
> + delta_ndiv = resp.ndiv_max - resp.ndiv_min;
> +
> + if (unlikely(delta_ndiv == 0))
> + num_freqs = 1;
> + else
> + /* We store both ndiv_min and ndiv_max hence the +1 */
> + num_freqs = delta_ndiv / freq_table_step_size + 1;
> +
> + num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0;
> +
> + opp_table = devm_kcalloc(&pdev->dev, num_freqs + 1, sizeof(*opp_table),
> + GFP_KERNEL);
> + if (!opp_table)
> + return ERR_PTR(-ENOMEM);
> +
> + for (index = 0, ndiv = resp.ndiv_min;
> + ndiv < resp.ndiv_max;
> + index++, ndiv += freq_table_step_size) {
> + opp_table[index].driver_data = ndiv;
> + opp_table[index].frequency = map_ndiv_to_freq(&resp, ndiv);
> + }
> +
> + opp_table[index].driver_data = resp.ndiv_max;
> + opp_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max);
> + opp_table[index].frequency = CPUFREQ_TABLE_END;
> +
> + return opp_table;
> +}
> +
> +static int tegra194_cpufreq_probe(struct platform_device *pdev)
> +{
> + struct tegra194_cpufreq_data *data;
> + struct tegra_bpmp *bpmp;
> + int err, i;
> +
> + data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
> + if (!data)
> + return -ENOMEM;
> +
> + data->num_clusters = MAX_CLUSTERS;
> + data->tables = devm_kcalloc(&pdev->dev, data->num_clusters,
> + sizeof(*data->tables), GFP_KERNEL);
> + if (!data->tables)
> + return -ENOMEM;
> +
> + platform_set_drvdata(pdev, data);
> +
> + read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1);
> + if (!read_counters_wq) {
> + dev_err(&pdev->dev, "fail to create_workqueue\n");
> + return -EINVAL;
> + }
> +
> + bpmp = of_tegra_bpmp_get();
> + if (IS_ERR(bpmp)) {
> + err = PTR_ERR(bpmp);
> + goto err_free_res;
> + }
> +
> + for (i = 0; i < data->num_clusters; i++) {
> + data->tables[i] = init_freq_table(pdev, bpmp, i);
> + if (IS_ERR(data->tables[i])) {
> + err = PTR_ERR(data->tables[i]);
> + goto put_bpmp;
> + }
> + }
> +
> + tegra_bpmp_put(bpmp);
> +
> + tegra194_cpufreq_driver.driver_data = data;
> +
> + err = cpufreq_register_driver(&tegra194_cpufreq_driver);
> + if (err)
> + goto err_free_res;
> +
> + return err;
> +
> +put_bpmp:
> + tegra_bpmp_put(bpmp);
> +err_free_res:
> + tegra194_cpufreq_free_resources();
> + return err;
> +}
> +
> +static int tegra194_cpufreq_remove(struct platform_device *pdev)
> +{
> + cpufreq_unregister_driver(&tegra194_cpufreq_driver);
> + tegra194_cpufreq_free_resources();
> +
> + return 0;
> +}
> +
> +static struct platform_driver tegra194_cpufreq_platform_driver = {
> + .driver = {
> + .name = "tegra194-cpufreq",
> + },
> + .probe = tegra194_cpufreq_probe,
> + .remove = tegra194_cpufreq_remove,
> +};
> +
> +static int __init tegra_cpufreq_init(void)
I seem to be forgetting this, but should we use __init with modules or
not ?
--
viresh
Powered by blists - more mailing lists