[<prev] [next>] [<thread-prev] [day] [month] [year] [list]
Message-ID: <CAPcyv4g22VFhDgwb6JN4M63ey8Jm1cc2OFwOW1AOJwmoxki_DA@mail.gmail.com>
Date: Tue, 21 Apr 2020 11:43:17 -0700
From: Dan Williams <dan.j.williams@...el.com>
To: Mikulas Patocka <mpatocka@...hat.com>
Cc: Thomas Gleixner <tglx@...utronix.de>,
Ingo Molnar <mingo@...hat.com>, Borislav Petkov <bp@...en8.de>,
"H. Peter Anvin" <hpa@...or.com>,
Peter Zijlstra <peterz@...radead.org>, X86 ML <x86@...nel.org>,
Linux Kernel Mailing List <linux-kernel@...r.kernel.org>,
device-mapper development <dm-devel@...hat.com>
Subject: Re: [PATCH v2] x86: introduce memcpy_flushcache_single
On Mon, Apr 20, 2020 at 6:48 AM Mikulas Patocka <mpatocka@...hat.com> wrote:
>
>
>
> On Fri, 17 Apr 2020, Thomas Gleixner wrote:
>
> > Dan Williams <dan.j.williams@...el.com> writes:
> >
> > > The goal of naming it _inatomic() was specifically for the observation
> > > that your driver coordinates atomic access and does not benefit from
> > > the cache friendliness that non-temporal stores afford. That said
> > > _inatomic() is arguably not a good choice either because that refers
> > > to whether the copy is prepared to take a fault or not. What about
> > > _exclusive() or _single()? Anything but _clflushopt() that conveys no
> > > contextual information.
>
> OK. I renamed it to memcpy_flushcache_single
>
> > > Other than quibbling with the name, and one more comment below, this
> > > looks ok to me.
> > >
> > >> Index: linux-2.6/drivers/md/dm-writecache.c
> > >> ===================================================================
> > >> --- linux-2.6.orig/drivers/md/dm-writecache.c 2020-04-17 14:06:35.139999000 +0200
> > >> +++ linux-2.6/drivers/md/dm-writecache.c 2020-04-17 14:06:35.129999000 +0200
> > >> @@ -1166,7 +1166,10 @@ static void bio_copy_block(struct dm_wri
> > >> }
> > >> } else {
> > >> flush_dcache_page(bio_page(bio));
> > >> - memcpy_flushcache(data, buf, size);
> > >> + if (likely(size > 512))
> > >
> > > This needs some reference to how this magic number is chosen and how a
> > > future developer might determine whether the value needs to be
> > > adjusted.
> >
> > I don't think it's a good idea to make this decision in generic code as
> > architectures or even CPU models might have different constraints on the
> > size.
> >
> > So I'd rather let the architecture implementation decide and make this
> >
> > flush_dcache_page(bio_page(bio));
> > - memcpy_flushcache(data, buf, size);
> > + memcpy_flushcache_bikesheddedname(data, buf, size);
> >
> > and have the default fallback memcpy_flushcache() and let the
> > architecture sort the size limit and the underlying technology out.
> >
> > So x86 can use clflushopt or implement it with movdir64b and any other
> > architecture can provide their own magic soup without changing the
> > callsite.
> >
> > Thanks,
> >
> > tglx
>
> OK - so I moved the decision to memcpy_flushcache_single and I added a
> comment that explains the magic number.
>
> Mikulas
>
>
>
>
> From: Mikulas Patocka <mpatocka@...hat.com>
>
> Implement the function memcpy_flushcache_single which flushes cache just
> like memcpy_flushcache - except that it uses cached writes and explicit
> cache flushing instead of non-temporal stores.
>
> Explicit cache flushing performs better in singlethreaded cases (i.e. the
> dm-writecache target with block size greater than 512), non-temporal
> stores perform better in other cases (mostly multithreaded workloads) - so
> we provide these two functions and the user should select which one is
> faster for his particular workload.
I would mention that dm-writecache is choosing to use
memcpy_flushcache_single() because it is regularly invoked under a
lock.
"The dm-writecache target is singlethreaded (all the copying is done
while holding the writecache lock), so it benefits from clwb." [1]
[1]: http://lore.kernel.org/r/alpine.LRH.2.02.2004160411460.7833@file01.intranet.prod.int.rdu2.redhat.com
>
> dm-writecache througput (on real Optane-based persistent memory):
> block size 512 1024 2048 4096
> movnti 496 MB/s 642 MB/s 725 MB/s 744 MB/s
> clflushopt 373 MB/s 688 MB/s 1.1 GB/s 1.2 GB/s
>
> Signed-off-by: Mikulas Patocka <mpatocka@...hat.com>
>
> ---
> arch/x86/include/asm/string_64.h | 10 ++++++++
> arch/x86/lib/usercopy_64.c | 46 +++++++++++++++++++++++++++++++++++++++
> drivers/md/dm-writecache.c | 2 -
> include/linux/string.h | 6 +++++
> 4 files changed, 63 insertions(+), 1 deletion(-)
>
> Index: linux-2.6/arch/x86/include/asm/string_64.h
> ===================================================================
> --- linux-2.6.orig/arch/x86/include/asm/string_64.h 2020-04-20 15:31:46.939999000 +0200
> +++ linux-2.6/arch/x86/include/asm/string_64.h 2020-04-20 15:31:46.929999000 +0200
> @@ -114,6 +114,14 @@ memcpy_mcsafe(void *dst, const void *src
> return 0;
> }
>
> +/*
> + * In some cases (mostly single-threaded workload), clflushopt is faster
> + * than non-temporal stores. In other situations, non-temporal stores are
> + * faster. So, we provide two functions:
> + * memcpy_flushcache using non-temporal stores
> + * memcpy_flushcache_single using clflushopt
> + * The caller should test which one is faster for the particular workload.
> + */
> #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
> #define __HAVE_ARCH_MEMCPY_FLUSHCACHE 1
> void __memcpy_flushcache(void *dst, const void *src, size_t cnt);
> @@ -135,6 +143,8 @@ static __always_inline void memcpy_flush
> }
> __memcpy_flushcache(dst, src, cnt);
> }
> +#define __HAVE_ARCH_MEMCPY_FLUSHCACHE_CLFLUSHOPT 1
> +void memcpy_flushcache_single(void *dst, const void *src, size_t cnt);
> #endif
>
> #endif /* __KERNEL__ */
> Index: linux-2.6/include/linux/string.h
> ===================================================================
> --- linux-2.6.orig/include/linux/string.h 2020-04-20 15:31:46.939999000 +0200
> +++ linux-2.6/include/linux/string.h 2020-04-20 15:31:46.929999000 +0200
> @@ -175,6 +175,12 @@ static inline void memcpy_flushcache(voi
> memcpy(dst, src, cnt);
> }
> #endif
> +#ifndef __HAVE_ARCH_MEMCPY_FLUSHCACHE_CLFLUSHOPT
> +static inline void memcpy_flushcache_single(void *dst, const void *src, size_t cnt)
> +{
> + memcpy_flushcache(dst, src, cnt);
> +}
> +#endif
> void *memchr_inv(const void *s, int c, size_t n);
> char *strreplace(char *s, char old, char new);
>
> Index: linux-2.6/arch/x86/lib/usercopy_64.c
> ===================================================================
> --- linux-2.6.orig/arch/x86/lib/usercopy_64.c 2020-04-20 15:31:46.939999000 +0200
> +++ linux-2.6/arch/x86/lib/usercopy_64.c 2020-04-20 15:38:13.159999000 +0200
> @@ -199,6 +199,52 @@ void __memcpy_flushcache(void *_dst, con
> }
> EXPORT_SYMBOL_GPL(__memcpy_flushcache);
>
> +void memcpy_flushcache_single(void *_dst, const void *_src, size_t size)
> +{
> + unsigned long dest = (unsigned long) _dst;
> + unsigned long source = (unsigned long) _src;
> +
> + /*
> + * dm-writecache througput (on real Optane-based persistent memory):
> + * measured with dd:
Why mention Optane? There are several types of persistent memory.
Typical persistent memory to date behaves like DDR because it is
battery backed. So if you're going to mention the memory type I would
also include the DDR details.
At a minimum include the lore link in the changelog to the wider
analysis you contributed on the mailing list.
> + *
> + * block size 512 1024 2048 4096
> + * movnti 496 MB/s 642 MB/s 725 MB/s 744 MB/s
> + * clflushopt 373 MB/s 688 MB/s 1.1 GB/s 1.2 GB/s
> + *
> + * We see that movnti performs better for 512-byte blocks, and
> + * clflushopt performs better for 1024-byte and larger blocks. So, we
> + * prefer clflushopt for sizes >= 768.
> + */
> +
> + if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) && likely(boot_cpu_data.x86_clflush_size == 64) &&
> + likely(size >= 768)) {
> + if (unlikely(!IS_ALIGNED(dest, 64))) {
> + size_t len = min_t(size_t, size, ALIGN(dest, 64) - dest);
> +
> + memcpy((void *) dest, (void *) source, len);
> + clflushopt((void *)dest);
> + dest += len;
> + source += len;
> + size -= len;
> + }
> + do {
> + memcpy((void *)dest, (void *)source, 64);
> + clflushopt((void *)dest);
> + dest += 64;
> + source += 64;
> + size -= 64;
> + } while (size >= 64)
> + if (unlikely(size != 0)) {
> + memcpy((void *)dest, (void *)source, size);
> + clflushopt((void *)dest);
> + }
> + return;
> + }
> + memcpy_flushcache((void *)dest, (void *)source, size);
> +}
> +EXPORT_SYMBOL_GPL(memcpy_flushcache_single);
> +
> void memcpy_page_flushcache(char *to, struct page *page, size_t offset,
> size_t len)
> {
> Index: linux-2.6/drivers/md/dm-writecache.c
> ===================================================================
> --- linux-2.6.orig/drivers/md/dm-writecache.c 2020-04-20 15:31:46.939999000 +0200
> +++ linux-2.6/drivers/md/dm-writecache.c 2020-04-20 15:32:35.549999000 +0200
> @@ -1166,7 +1166,7 @@ static void bio_copy_block(struct dm_wri
> }
> } else {
> flush_dcache_page(bio_page(bio));
> - memcpy_flushcache(data, buf, size);
> + memcpy_flushcache_single(data, buf, size);
> }
>
> bvec_kunmap_irq(buf, &flags);
>
Powered by blists - more mailing lists