[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <af2ba2c29e8dfa9fb66dda16311a28a9f7c8cf43.1588344146.git.mchehab+huawei@kernel.org>
Date: Fri, 1 May 2020 16:44:25 +0200
From: Mauro Carvalho Chehab <mchehab+huawei@...nel.org>
To: Linux Doc Mailing List <linux-doc@...r.kernel.org>
Cc: Mauro Carvalho Chehab <mchehab+huawei@...nel.org>,
linux-kernel@...r.kernel.org, Jonathan Corbet <corbet@....net>,
"David S. Miller" <davem@...emloft.net>,
Jakub Kicinski <kuba@...nel.org>,
David Ahern <dsahern@...nel.org>,
Shrijeet Mukherjee <shrijeet@...il.com>, netdev@...r.kernel.org
Subject: [PATCH 03/37] docs: networking: convert vrf.txt to ReST
- add SPDX header;
- adjust title markup;
- Add a subtitle for the first section;
- mark code blocks and literals as such;
- adjust identation, whitespaces and blank lines;
- add to networking/index.rst.
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@...nel.org>
---
Documentation/networking/index.rst | 1 +
Documentation/networking/vrf.rst | 451 +++++++++++++++++++++++++++++
Documentation/networking/vrf.txt | 418 --------------------------
MAINTAINERS | 2 +-
4 files changed, 453 insertions(+), 419 deletions(-)
create mode 100644 Documentation/networking/vrf.rst
delete mode 100644 Documentation/networking/vrf.txt
diff --git a/Documentation/networking/index.rst b/Documentation/networking/index.rst
index ca0b0dbfd9ad..2227b9f4509d 100644
--- a/Documentation/networking/index.rst
+++ b/Documentation/networking/index.rst
@@ -113,6 +113,7 @@ Contents:
tproxy
tuntap
udplite
+ vrf
.. only:: subproject and html
diff --git a/Documentation/networking/vrf.rst b/Documentation/networking/vrf.rst
new file mode 100644
index 000000000000..0dde145043bc
--- /dev/null
+++ b/Documentation/networking/vrf.rst
@@ -0,0 +1,451 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+====================================
+Virtual Routing and Forwarding (VRF)
+====================================
+
+The VRF Device
+==============
+
+The VRF device combined with ip rules provides the ability to create virtual
+routing and forwarding domains (aka VRFs, VRF-lite to be specific) in the
+Linux network stack. One use case is the multi-tenancy problem where each
+tenant has their own unique routing tables and in the very least need
+different default gateways.
+
+Processes can be "VRF aware" by binding a socket to the VRF device. Packets
+through the socket then use the routing table associated with the VRF
+device. An important feature of the VRF device implementation is that it
+impacts only Layer 3 and above so L2 tools (e.g., LLDP) are not affected
+(ie., they do not need to be run in each VRF). The design also allows
+the use of higher priority ip rules (Policy Based Routing, PBR) to take
+precedence over the VRF device rules directing specific traffic as desired.
+
+In addition, VRF devices allow VRFs to be nested within namespaces. For
+example network namespaces provide separation of network interfaces at the
+device layer, VLANs on the interfaces within a namespace provide L2 separation
+and then VRF devices provide L3 separation.
+
+Design
+------
+A VRF device is created with an associated route table. Network interfaces
+are then enslaved to a VRF device::
+
+ +-----------------------------+
+ | vrf-blue | ===> route table 10
+ +-----------------------------+
+ | | |
+ +------+ +------+ +-------------+
+ | eth1 | | eth2 | ... | bond1 |
+ +------+ +------+ +-------------+
+ | |
+ +------+ +------+
+ | eth8 | | eth9 |
+ +------+ +------+
+
+Packets received on an enslaved device and are switched to the VRF device
+in the IPv4 and IPv6 processing stacks giving the impression that packets
+flow through the VRF device. Similarly on egress routing rules are used to
+send packets to the VRF device driver before getting sent out the actual
+interface. This allows tcpdump on a VRF device to capture all packets into
+and out of the VRF as a whole\ [1]_. Similarly, netfilter\ [2]_ and tc rules
+can be applied using the VRF device to specify rules that apply to the VRF
+domain as a whole.
+
+.. [1] Packets in the forwarded state do not flow through the device, so those
+ packets are not seen by tcpdump. Will revisit this limitation in a
+ future release.
+
+.. [2] Iptables on ingress supports PREROUTING with skb->dev set to the real
+ ingress device and both INPUT and PREROUTING rules with skb->dev set to
+ the VRF device. For egress POSTROUTING and OUTPUT rules can be written
+ using either the VRF device or real egress device.
+
+Setup
+-----
+1. VRF device is created with an association to a FIB table.
+ e.g,::
+
+ ip link add vrf-blue type vrf table 10
+ ip link set dev vrf-blue up
+
+2. An l3mdev FIB rule directs lookups to the table associated with the device.
+ A single l3mdev rule is sufficient for all VRFs. The VRF device adds the
+ l3mdev rule for IPv4 and IPv6 when the first device is created with a
+ default preference of 1000. Users may delete the rule if desired and add
+ with a different priority or install per-VRF rules.
+
+ Prior to the v4.8 kernel iif and oif rules are needed for each VRF device::
+
+ ip ru add oif vrf-blue table 10
+ ip ru add iif vrf-blue table 10
+
+3. Set the default route for the table (and hence default route for the VRF)::
+
+ ip route add table 10 unreachable default metric 4278198272
+
+ This high metric value ensures that the default unreachable route can
+ be overridden by a routing protocol suite. FRRouting interprets
+ kernel metrics as a combined admin distance (upper byte) and priority
+ (lower 3 bytes). Thus the above metric translates to [255/8192].
+
+4. Enslave L3 interfaces to a VRF device::
+
+ ip link set dev eth1 master vrf-blue
+
+ Local and connected routes for enslaved devices are automatically moved to
+ the table associated with VRF device. Any additional routes depending on
+ the enslaved device are dropped and will need to be reinserted to the VRF
+ FIB table following the enslavement.
+
+ The IPv6 sysctl option keep_addr_on_down can be enabled to keep IPv6 global
+ addresses as VRF enslavement changes::
+
+ sysctl -w net.ipv6.conf.all.keep_addr_on_down=1
+
+5. Additional VRF routes are added to associated table::
+
+ ip route add table 10 ...
+
+
+Applications
+------------
+Applications that are to work within a VRF need to bind their socket to the
+VRF device::
+
+ setsockopt(sd, SOL_SOCKET, SO_BINDTODEVICE, dev, strlen(dev)+1);
+
+or to specify the output device using cmsg and IP_PKTINFO.
+
+By default the scope of the port bindings for unbound sockets is
+limited to the default VRF. That is, it will not be matched by packets
+arriving on interfaces enslaved to an l3mdev and processes may bind to
+the same port if they bind to an l3mdev.
+
+TCP & UDP services running in the default VRF context (ie., not bound
+to any VRF device) can work across all VRF domains by enabling the
+tcp_l3mdev_accept and udp_l3mdev_accept sysctl options::
+
+ sysctl -w net.ipv4.tcp_l3mdev_accept=1
+ sysctl -w net.ipv4.udp_l3mdev_accept=1
+
+These options are disabled by default so that a socket in a VRF is only
+selected for packets in that VRF. There is a similar option for RAW
+sockets, which is enabled by default for reasons of backwards compatibility.
+This is so as to specify the output device with cmsg and IP_PKTINFO, but
+using a socket not bound to the corresponding VRF. This allows e.g. older ping
+implementations to be run with specifying the device but without executing it
+in the VRF. This option can be disabled so that packets received in a VRF
+context are only handled by a raw socket bound to the VRF, and packets in the
+default VRF are only handled by a socket not bound to any VRF::
+
+ sysctl -w net.ipv4.raw_l3mdev_accept=0
+
+netfilter rules on the VRF device can be used to limit access to services
+running in the default VRF context as well.
+
+--------------------------------------------------------------------------------
+
+Using iproute2 for VRFs
+=======================
+iproute2 supports the vrf keyword as of v4.7. For backwards compatibility this
+section lists both commands where appropriate -- with the vrf keyword and the
+older form without it.
+
+1. Create a VRF
+
+ To instantiate a VRF device and associate it with a table::
+
+ $ ip link add dev NAME type vrf table ID
+
+ As of v4.8 the kernel supports the l3mdev FIB rule where a single rule
+ covers all VRFs. The l3mdev rule is created for IPv4 and IPv6 on first
+ device create.
+
+2. List VRFs
+
+ To list VRFs that have been created::
+
+ $ ip [-d] link show type vrf
+ NOTE: The -d option is needed to show the table id
+
+ For example::
+
+ $ ip -d link show type vrf
+ 11: mgmt: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
+ link/ether 72:b3:ba:91:e2:24 brd ff:ff:ff:ff:ff:ff promiscuity 0
+ vrf table 1 addrgenmode eui64
+ 12: red: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
+ link/ether b6:6f:6e:f6:da:73 brd ff:ff:ff:ff:ff:ff promiscuity 0
+ vrf table 10 addrgenmode eui64
+ 13: blue: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
+ link/ether 36:62:e8:7d:bb:8c brd ff:ff:ff:ff:ff:ff promiscuity 0
+ vrf table 66 addrgenmode eui64
+ 14: green: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
+ link/ether e6:28:b8:63:70:bb brd ff:ff:ff:ff:ff:ff promiscuity 0
+ vrf table 81 addrgenmode eui64
+
+
+ Or in brief output::
+
+ $ ip -br link show type vrf
+ mgmt UP 72:b3:ba:91:e2:24 <NOARP,MASTER,UP,LOWER_UP>
+ red UP b6:6f:6e:f6:da:73 <NOARP,MASTER,UP,LOWER_UP>
+ blue UP 36:62:e8:7d:bb:8c <NOARP,MASTER,UP,LOWER_UP>
+ green UP e6:28:b8:63:70:bb <NOARP,MASTER,UP,LOWER_UP>
+
+
+3. Assign a Network Interface to a VRF
+
+ Network interfaces are assigned to a VRF by enslaving the netdevice to a
+ VRF device::
+
+ $ ip link set dev NAME master NAME
+
+ On enslavement connected and local routes are automatically moved to the
+ table associated with the VRF device.
+
+ For example::
+
+ $ ip link set dev eth0 master mgmt
+
+
+4. Show Devices Assigned to a VRF
+
+ To show devices that have been assigned to a specific VRF add the master
+ option to the ip command::
+
+ $ ip link show vrf NAME
+ $ ip link show master NAME
+
+ For example::
+
+ $ ip link show vrf red
+ 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
+ link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
+ 4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
+ link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
+ 7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN mode DEFAULT group default qlen 1000
+ link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
+
+
+ Or using the brief output::
+
+ $ ip -br link show vrf red
+ eth1 UP 02:00:00:00:02:02 <BROADCAST,MULTICAST,UP,LOWER_UP>
+ eth2 UP 02:00:00:00:02:03 <BROADCAST,MULTICAST,UP,LOWER_UP>
+ eth5 DOWN 02:00:00:00:02:06 <BROADCAST,MULTICAST>
+
+
+5. Show Neighbor Entries for a VRF
+
+ To list neighbor entries associated with devices enslaved to a VRF device
+ add the master option to the ip command::
+
+ $ ip [-6] neigh show vrf NAME
+ $ ip [-6] neigh show master NAME
+
+ For example::
+
+ $ ip neigh show vrf red
+ 10.2.1.254 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
+ 10.2.2.254 dev eth2 lladdr 5e:54:01:6a:ee:80 REACHABLE
+
+ $ ip -6 neigh show vrf red
+ 2002:1::64 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
+
+
+6. Show Addresses for a VRF
+
+ To show addresses for interfaces associated with a VRF add the master
+ option to the ip command::
+
+ $ ip addr show vrf NAME
+ $ ip addr show master NAME
+
+ For example::
+
+ $ ip addr show vrf red
+ 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
+ link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
+ inet 10.2.1.2/24 brd 10.2.1.255 scope global eth1
+ valid_lft forever preferred_lft forever
+ inet6 2002:1::2/120 scope global
+ valid_lft forever preferred_lft forever
+ inet6 fe80::ff:fe00:202/64 scope link
+ valid_lft forever preferred_lft forever
+ 4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
+ link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
+ inet 10.2.2.2/24 brd 10.2.2.255 scope global eth2
+ valid_lft forever preferred_lft forever
+ inet6 2002:2::2/120 scope global
+ valid_lft forever preferred_lft forever
+ inet6 fe80::ff:fe00:203/64 scope link
+ valid_lft forever preferred_lft forever
+ 7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN group default qlen 1000
+ link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
+
+ Or in brief format::
+
+ $ ip -br addr show vrf red
+ eth1 UP 10.2.1.2/24 2002:1::2/120 fe80::ff:fe00:202/64
+ eth2 UP 10.2.2.2/24 2002:2::2/120 fe80::ff:fe00:203/64
+ eth5 DOWN
+
+
+7. Show Routes for a VRF
+
+ To show routes for a VRF use the ip command to display the table associated
+ with the VRF device::
+
+ $ ip [-6] route show vrf NAME
+ $ ip [-6] route show table ID
+
+ For example::
+
+ $ ip route show vrf red
+ unreachable default metric 4278198272
+ broadcast 10.2.1.0 dev eth1 proto kernel scope link src 10.2.1.2
+ 10.2.1.0/24 dev eth1 proto kernel scope link src 10.2.1.2
+ local 10.2.1.2 dev eth1 proto kernel scope host src 10.2.1.2
+ broadcast 10.2.1.255 dev eth1 proto kernel scope link src 10.2.1.2
+ broadcast 10.2.2.0 dev eth2 proto kernel scope link src 10.2.2.2
+ 10.2.2.0/24 dev eth2 proto kernel scope link src 10.2.2.2
+ local 10.2.2.2 dev eth2 proto kernel scope host src 10.2.2.2
+ broadcast 10.2.2.255 dev eth2 proto kernel scope link src 10.2.2.2
+
+ $ ip -6 route show vrf red
+ local 2002:1:: dev lo proto none metric 0 pref medium
+ local 2002:1::2 dev lo proto none metric 0 pref medium
+ 2002:1::/120 dev eth1 proto kernel metric 256 pref medium
+ local 2002:2:: dev lo proto none metric 0 pref medium
+ local 2002:2::2 dev lo proto none metric 0 pref medium
+ 2002:2::/120 dev eth2 proto kernel metric 256 pref medium
+ local fe80:: dev lo proto none metric 0 pref medium
+ local fe80:: dev lo proto none metric 0 pref medium
+ local fe80::ff:fe00:202 dev lo proto none metric 0 pref medium
+ local fe80::ff:fe00:203 dev lo proto none metric 0 pref medium
+ fe80::/64 dev eth1 proto kernel metric 256 pref medium
+ fe80::/64 dev eth2 proto kernel metric 256 pref medium
+ ff00::/8 dev red metric 256 pref medium
+ ff00::/8 dev eth1 metric 256 pref medium
+ ff00::/8 dev eth2 metric 256 pref medium
+ unreachable default dev lo metric 4278198272 error -101 pref medium
+
+8. Route Lookup for a VRF
+
+ A test route lookup can be done for a VRF::
+
+ $ ip [-6] route get vrf NAME ADDRESS
+ $ ip [-6] route get oif NAME ADDRESS
+
+ For example::
+
+ $ ip route get 10.2.1.40 vrf red
+ 10.2.1.40 dev eth1 table red src 10.2.1.2
+ cache
+
+ $ ip -6 route get 2002:1::32 vrf red
+ 2002:1::32 from :: dev eth1 table red proto kernel src 2002:1::2 metric 256 pref medium
+
+
+9. Removing Network Interface from a VRF
+
+ Network interfaces are removed from a VRF by breaking the enslavement to
+ the VRF device::
+
+ $ ip link set dev NAME nomaster
+
+ Connected routes are moved back to the default table and local entries are
+ moved to the local table.
+
+ For example::
+
+ $ ip link set dev eth0 nomaster
+
+--------------------------------------------------------------------------------
+
+Commands used in this example::
+
+ cat >> /etc/iproute2/rt_tables.d/vrf.conf <<EOF
+ 1 mgmt
+ 10 red
+ 66 blue
+ 81 green
+ EOF
+
+ function vrf_create
+ {
+ VRF=$1
+ TBID=$2
+
+ # create VRF device
+ ip link add ${VRF} type vrf table ${TBID}
+
+ if [ "${VRF}" != "mgmt" ]; then
+ ip route add table ${TBID} unreachable default metric 4278198272
+ fi
+ ip link set dev ${VRF} up
+ }
+
+ vrf_create mgmt 1
+ ip link set dev eth0 master mgmt
+
+ vrf_create red 10
+ ip link set dev eth1 master red
+ ip link set dev eth2 master red
+ ip link set dev eth5 master red
+
+ vrf_create blue 66
+ ip link set dev eth3 master blue
+
+ vrf_create green 81
+ ip link set dev eth4 master green
+
+
+ Interface addresses from /etc/network/interfaces:
+ auto eth0
+ iface eth0 inet static
+ address 10.0.0.2
+ netmask 255.255.255.0
+ gateway 10.0.0.254
+
+ iface eth0 inet6 static
+ address 2000:1::2
+ netmask 120
+
+ auto eth1
+ iface eth1 inet static
+ address 10.2.1.2
+ netmask 255.255.255.0
+
+ iface eth1 inet6 static
+ address 2002:1::2
+ netmask 120
+
+ auto eth2
+ iface eth2 inet static
+ address 10.2.2.2
+ netmask 255.255.255.0
+
+ iface eth2 inet6 static
+ address 2002:2::2
+ netmask 120
+
+ auto eth3
+ iface eth3 inet static
+ address 10.2.3.2
+ netmask 255.255.255.0
+
+ iface eth3 inet6 static
+ address 2002:3::2
+ netmask 120
+
+ auto eth4
+ iface eth4 inet static
+ address 10.2.4.2
+ netmask 255.255.255.0
+
+ iface eth4 inet6 static
+ address 2002:4::2
+ netmask 120
diff --git a/Documentation/networking/vrf.txt b/Documentation/networking/vrf.txt
deleted file mode 100644
index a5f103b083a0..000000000000
--- a/Documentation/networking/vrf.txt
+++ /dev/null
@@ -1,418 +0,0 @@
-Virtual Routing and Forwarding (VRF)
-====================================
-The VRF device combined with ip rules provides the ability to create virtual
-routing and forwarding domains (aka VRFs, VRF-lite to be specific) in the
-Linux network stack. One use case is the multi-tenancy problem where each
-tenant has their own unique routing tables and in the very least need
-different default gateways.
-
-Processes can be "VRF aware" by binding a socket to the VRF device. Packets
-through the socket then use the routing table associated with the VRF
-device. An important feature of the VRF device implementation is that it
-impacts only Layer 3 and above so L2 tools (e.g., LLDP) are not affected
-(ie., they do not need to be run in each VRF). The design also allows
-the use of higher priority ip rules (Policy Based Routing, PBR) to take
-precedence over the VRF device rules directing specific traffic as desired.
-
-In addition, VRF devices allow VRFs to be nested within namespaces. For
-example network namespaces provide separation of network interfaces at the
-device layer, VLANs on the interfaces within a namespace provide L2 separation
-and then VRF devices provide L3 separation.
-
-Design
-------
-A VRF device is created with an associated route table. Network interfaces
-are then enslaved to a VRF device:
-
- +-----------------------------+
- | vrf-blue | ===> route table 10
- +-----------------------------+
- | | |
- +------+ +------+ +-------------+
- | eth1 | | eth2 | ... | bond1 |
- +------+ +------+ +-------------+
- | |
- +------+ +------+
- | eth8 | | eth9 |
- +------+ +------+
-
-Packets received on an enslaved device and are switched to the VRF device
-in the IPv4 and IPv6 processing stacks giving the impression that packets
-flow through the VRF device. Similarly on egress routing rules are used to
-send packets to the VRF device driver before getting sent out the actual
-interface. This allows tcpdump on a VRF device to capture all packets into
-and out of the VRF as a whole.[1] Similarly, netfilter[2] and tc rules can be
-applied using the VRF device to specify rules that apply to the VRF domain
-as a whole.
-
-[1] Packets in the forwarded state do not flow through the device, so those
- packets are not seen by tcpdump. Will revisit this limitation in a
- future release.
-
-[2] Iptables on ingress supports PREROUTING with skb->dev set to the real
- ingress device and both INPUT and PREROUTING rules with skb->dev set to
- the VRF device. For egress POSTROUTING and OUTPUT rules can be written
- using either the VRF device or real egress device.
-
-Setup
------
-1. VRF device is created with an association to a FIB table.
- e.g, ip link add vrf-blue type vrf table 10
- ip link set dev vrf-blue up
-
-2. An l3mdev FIB rule directs lookups to the table associated with the device.
- A single l3mdev rule is sufficient for all VRFs. The VRF device adds the
- l3mdev rule for IPv4 and IPv6 when the first device is created with a
- default preference of 1000. Users may delete the rule if desired and add
- with a different priority or install per-VRF rules.
-
- Prior to the v4.8 kernel iif and oif rules are needed for each VRF device:
- ip ru add oif vrf-blue table 10
- ip ru add iif vrf-blue table 10
-
-3. Set the default route for the table (and hence default route for the VRF).
- ip route add table 10 unreachable default metric 4278198272
-
- This high metric value ensures that the default unreachable route can
- be overridden by a routing protocol suite. FRRouting interprets
- kernel metrics as a combined admin distance (upper byte) and priority
- (lower 3 bytes). Thus the above metric translates to [255/8192].
-
-4. Enslave L3 interfaces to a VRF device.
- ip link set dev eth1 master vrf-blue
-
- Local and connected routes for enslaved devices are automatically moved to
- the table associated with VRF device. Any additional routes depending on
- the enslaved device are dropped and will need to be reinserted to the VRF
- FIB table following the enslavement.
-
- The IPv6 sysctl option keep_addr_on_down can be enabled to keep IPv6 global
- addresses as VRF enslavement changes.
- sysctl -w net.ipv6.conf.all.keep_addr_on_down=1
-
-5. Additional VRF routes are added to associated table.
- ip route add table 10 ...
-
-
-Applications
-------------
-Applications that are to work within a VRF need to bind their socket to the
-VRF device:
-
- setsockopt(sd, SOL_SOCKET, SO_BINDTODEVICE, dev, strlen(dev)+1);
-
-or to specify the output device using cmsg and IP_PKTINFO.
-
-By default the scope of the port bindings for unbound sockets is
-limited to the default VRF. That is, it will not be matched by packets
-arriving on interfaces enslaved to an l3mdev and processes may bind to
-the same port if they bind to an l3mdev.
-
-TCP & UDP services running in the default VRF context (ie., not bound
-to any VRF device) can work across all VRF domains by enabling the
-tcp_l3mdev_accept and udp_l3mdev_accept sysctl options:
-
- sysctl -w net.ipv4.tcp_l3mdev_accept=1
- sysctl -w net.ipv4.udp_l3mdev_accept=1
-
-These options are disabled by default so that a socket in a VRF is only
-selected for packets in that VRF. There is a similar option for RAW
-sockets, which is enabled by default for reasons of backwards compatibility.
-This is so as to specify the output device with cmsg and IP_PKTINFO, but
-using a socket not bound to the corresponding VRF. This allows e.g. older ping
-implementations to be run with specifying the device but without executing it
-in the VRF. This option can be disabled so that packets received in a VRF
-context are only handled by a raw socket bound to the VRF, and packets in the
-default VRF are only handled by a socket not bound to any VRF:
-
- sysctl -w net.ipv4.raw_l3mdev_accept=0
-
-netfilter rules on the VRF device can be used to limit access to services
-running in the default VRF context as well.
-
-################################################################################
-
-Using iproute2 for VRFs
-=======================
-iproute2 supports the vrf keyword as of v4.7. For backwards compatibility this
-section lists both commands where appropriate -- with the vrf keyword and the
-older form without it.
-
-1. Create a VRF
-
- To instantiate a VRF device and associate it with a table:
- $ ip link add dev NAME type vrf table ID
-
- As of v4.8 the kernel supports the l3mdev FIB rule where a single rule
- covers all VRFs. The l3mdev rule is created for IPv4 and IPv6 on first
- device create.
-
-2. List VRFs
-
- To list VRFs that have been created:
- $ ip [-d] link show type vrf
- NOTE: The -d option is needed to show the table id
-
- For example:
- $ ip -d link show type vrf
- 11: mgmt: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
- link/ether 72:b3:ba:91:e2:24 brd ff:ff:ff:ff:ff:ff promiscuity 0
- vrf table 1 addrgenmode eui64
- 12: red: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
- link/ether b6:6f:6e:f6:da:73 brd ff:ff:ff:ff:ff:ff promiscuity 0
- vrf table 10 addrgenmode eui64
- 13: blue: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
- link/ether 36:62:e8:7d:bb:8c brd ff:ff:ff:ff:ff:ff promiscuity 0
- vrf table 66 addrgenmode eui64
- 14: green: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
- link/ether e6:28:b8:63:70:bb brd ff:ff:ff:ff:ff:ff promiscuity 0
- vrf table 81 addrgenmode eui64
-
-
- Or in brief output:
-
- $ ip -br link show type vrf
- mgmt UP 72:b3:ba:91:e2:24 <NOARP,MASTER,UP,LOWER_UP>
- red UP b6:6f:6e:f6:da:73 <NOARP,MASTER,UP,LOWER_UP>
- blue UP 36:62:e8:7d:bb:8c <NOARP,MASTER,UP,LOWER_UP>
- green UP e6:28:b8:63:70:bb <NOARP,MASTER,UP,LOWER_UP>
-
-
-3. Assign a Network Interface to a VRF
-
- Network interfaces are assigned to a VRF by enslaving the netdevice to a
- VRF device:
- $ ip link set dev NAME master NAME
-
- On enslavement connected and local routes are automatically moved to the
- table associated with the VRF device.
-
- For example:
- $ ip link set dev eth0 master mgmt
-
-
-4. Show Devices Assigned to a VRF
-
- To show devices that have been assigned to a specific VRF add the master
- option to the ip command:
- $ ip link show vrf NAME
- $ ip link show master NAME
-
- For example:
- $ ip link show vrf red
- 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
- link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
- 4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
- link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
- 7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN mode DEFAULT group default qlen 1000
- link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
-
-
- Or using the brief output:
- $ ip -br link show vrf red
- eth1 UP 02:00:00:00:02:02 <BROADCAST,MULTICAST,UP,LOWER_UP>
- eth2 UP 02:00:00:00:02:03 <BROADCAST,MULTICAST,UP,LOWER_UP>
- eth5 DOWN 02:00:00:00:02:06 <BROADCAST,MULTICAST>
-
-
-5. Show Neighbor Entries for a VRF
-
- To list neighbor entries associated with devices enslaved to a VRF device
- add the master option to the ip command:
- $ ip [-6] neigh show vrf NAME
- $ ip [-6] neigh show master NAME
-
- For example:
- $ ip neigh show vrf red
- 10.2.1.254 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
- 10.2.2.254 dev eth2 lladdr 5e:54:01:6a:ee:80 REACHABLE
-
- $ ip -6 neigh show vrf red
- 2002:1::64 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
-
-
-6. Show Addresses for a VRF
-
- To show addresses for interfaces associated with a VRF add the master
- option to the ip command:
- $ ip addr show vrf NAME
- $ ip addr show master NAME
-
- For example:
- $ ip addr show vrf red
- 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
- link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
- inet 10.2.1.2/24 brd 10.2.1.255 scope global eth1
- valid_lft forever preferred_lft forever
- inet6 2002:1::2/120 scope global
- valid_lft forever preferred_lft forever
- inet6 fe80::ff:fe00:202/64 scope link
- valid_lft forever preferred_lft forever
- 4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
- link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
- inet 10.2.2.2/24 brd 10.2.2.255 scope global eth2
- valid_lft forever preferred_lft forever
- inet6 2002:2::2/120 scope global
- valid_lft forever preferred_lft forever
- inet6 fe80::ff:fe00:203/64 scope link
- valid_lft forever preferred_lft forever
- 7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN group default qlen 1000
- link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
-
- Or in brief format:
- $ ip -br addr show vrf red
- eth1 UP 10.2.1.2/24 2002:1::2/120 fe80::ff:fe00:202/64
- eth2 UP 10.2.2.2/24 2002:2::2/120 fe80::ff:fe00:203/64
- eth5 DOWN
-
-
-7. Show Routes for a VRF
-
- To show routes for a VRF use the ip command to display the table associated
- with the VRF device:
- $ ip [-6] route show vrf NAME
- $ ip [-6] route show table ID
-
- For example:
- $ ip route show vrf red
- unreachable default metric 4278198272
- broadcast 10.2.1.0 dev eth1 proto kernel scope link src 10.2.1.2
- 10.2.1.0/24 dev eth1 proto kernel scope link src 10.2.1.2
- local 10.2.1.2 dev eth1 proto kernel scope host src 10.2.1.2
- broadcast 10.2.1.255 dev eth1 proto kernel scope link src 10.2.1.2
- broadcast 10.2.2.0 dev eth2 proto kernel scope link src 10.2.2.2
- 10.2.2.0/24 dev eth2 proto kernel scope link src 10.2.2.2
- local 10.2.2.2 dev eth2 proto kernel scope host src 10.2.2.2
- broadcast 10.2.2.255 dev eth2 proto kernel scope link src 10.2.2.2
-
- $ ip -6 route show vrf red
- local 2002:1:: dev lo proto none metric 0 pref medium
- local 2002:1::2 dev lo proto none metric 0 pref medium
- 2002:1::/120 dev eth1 proto kernel metric 256 pref medium
- local 2002:2:: dev lo proto none metric 0 pref medium
- local 2002:2::2 dev lo proto none metric 0 pref medium
- 2002:2::/120 dev eth2 proto kernel metric 256 pref medium
- local fe80:: dev lo proto none metric 0 pref medium
- local fe80:: dev lo proto none metric 0 pref medium
- local fe80::ff:fe00:202 dev lo proto none metric 0 pref medium
- local fe80::ff:fe00:203 dev lo proto none metric 0 pref medium
- fe80::/64 dev eth1 proto kernel metric 256 pref medium
- fe80::/64 dev eth2 proto kernel metric 256 pref medium
- ff00::/8 dev red metric 256 pref medium
- ff00::/8 dev eth1 metric 256 pref medium
- ff00::/8 dev eth2 metric 256 pref medium
- unreachable default dev lo metric 4278198272 error -101 pref medium
-
-8. Route Lookup for a VRF
-
- A test route lookup can be done for a VRF:
- $ ip [-6] route get vrf NAME ADDRESS
- $ ip [-6] route get oif NAME ADDRESS
-
- For example:
- $ ip route get 10.2.1.40 vrf red
- 10.2.1.40 dev eth1 table red src 10.2.1.2
- cache
-
- $ ip -6 route get 2002:1::32 vrf red
- 2002:1::32 from :: dev eth1 table red proto kernel src 2002:1::2 metric 256 pref medium
-
-
-9. Removing Network Interface from a VRF
-
- Network interfaces are removed from a VRF by breaking the enslavement to
- the VRF device:
- $ ip link set dev NAME nomaster
-
- Connected routes are moved back to the default table and local entries are
- moved to the local table.
-
- For example:
- $ ip link set dev eth0 nomaster
-
---------------------------------------------------------------------------------
-
-Commands used in this example:
-
-cat >> /etc/iproute2/rt_tables.d/vrf.conf <<EOF
-1 mgmt
-10 red
-66 blue
-81 green
-EOF
-
-function vrf_create
-{
- VRF=$1
- TBID=$2
-
- # create VRF device
- ip link add ${VRF} type vrf table ${TBID}
-
- if [ "${VRF}" != "mgmt" ]; then
- ip route add table ${TBID} unreachable default metric 4278198272
- fi
- ip link set dev ${VRF} up
-}
-
-vrf_create mgmt 1
-ip link set dev eth0 master mgmt
-
-vrf_create red 10
-ip link set dev eth1 master red
-ip link set dev eth2 master red
-ip link set dev eth5 master red
-
-vrf_create blue 66
-ip link set dev eth3 master blue
-
-vrf_create green 81
-ip link set dev eth4 master green
-
-
-Interface addresses from /etc/network/interfaces:
-auto eth0
-iface eth0 inet static
- address 10.0.0.2
- netmask 255.255.255.0
- gateway 10.0.0.254
-
-iface eth0 inet6 static
- address 2000:1::2
- netmask 120
-
-auto eth1
-iface eth1 inet static
- address 10.2.1.2
- netmask 255.255.255.0
-
-iface eth1 inet6 static
- address 2002:1::2
- netmask 120
-
-auto eth2
-iface eth2 inet static
- address 10.2.2.2
- netmask 255.255.255.0
-
-iface eth2 inet6 static
- address 2002:2::2
- netmask 120
-
-auto eth3
-iface eth3 inet static
- address 10.2.3.2
- netmask 255.255.255.0
-
-iface eth3 inet6 static
- address 2002:3::2
- netmask 120
-
-auto eth4
-iface eth4 inet static
- address 10.2.4.2
- netmask 255.255.255.0
-
-iface eth4 inet6 static
- address 2002:4::2
- netmask 120
diff --git a/MAINTAINERS b/MAINTAINERS
index 35bd81b436e1..469e6c3149fe 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -18152,7 +18152,7 @@ M: David Ahern <dsahern@...nel.org>
M: Shrijeet Mukherjee <shrijeet@...il.com>
L: netdev@...r.kernel.org
S: Maintained
-F: Documentation/networking/vrf.txt
+F: Documentation/networking/vrf.rst
F: drivers/net/vrf.c
VSPRINTF
--
2.25.4
Powered by blists - more mailing lists