lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20200512191747.GF2165@builder.lan>
Date:   Tue, 12 May 2020 12:17:47 -0700
From:   Bjorn Andersson <bjorn.andersson@...aro.org>
To:     Amit Kucheria <amit.kucheria@...aro.org>
Cc:     linux-kernel@...r.kernel.org, linux-arm-msm@...r.kernel.org,
        daniel.lezcano@...aro.org, Andy Gross <agross@...nel.org>,
        Amit Kucheria <amit.kucheria@...durent.com>,
        linux-pm@...r.kernel.org
Subject: Re: [PATCH] drivers: thermal: tsens: Merge tsens-common.c into
 tsens.c

On Wed 29 Apr 11:14 PDT 2020, Amit Kucheria wrote:

> tsens-common.c has outlived its usefuless. It was created expecting lots
> of custom routines per version of the TSENS IP. We haven't needed those,
> there is now only data in the version-specific files.
> 
> Merge the code for tsens-common.c into tsens.c. As a result,
> - Remove any unnecessary forward declarations in tsens.h.
> - Add a Linaro copyright to tsens.c.
> - Fixup the Makefile to remove tsens-common.c.
> - Where it made sense, fix some 80-column alignments in the
>   tsens-common.c code being copied over.
> 
> There is no functional change with this patch.
> 

Reviewed-by: Bjorn Andersson <bjorn.andersson@...aro.org>

Regards,
Bjorn

> Signed-off-by: Amit Kucheria <amit.kucheria@...aro.org>
> ---
>  drivers/thermal/qcom/Makefile       |   4 +-
>  drivers/thermal/qcom/tsens-common.c | 843 ----------------------------
>  drivers/thermal/qcom/tsens.c        | 838 +++++++++++++++++++++++++++
>  drivers/thermal/qcom/tsens.h        |   5 -
>  4 files changed, 840 insertions(+), 850 deletions(-)
>  delete mode 100644 drivers/thermal/qcom/tsens-common.c
> 
> diff --git a/drivers/thermal/qcom/Makefile b/drivers/thermal/qcom/Makefile
> index 7c8dc6e366936..ec86eef7f6a6b 100644
> --- a/drivers/thermal/qcom/Makefile
> +++ b/drivers/thermal/qcom/Makefile
> @@ -1,6 +1,6 @@
>  # SPDX-License-Identifier: GPL-2.0-only
>  obj-$(CONFIG_QCOM_TSENS)	+= qcom_tsens.o
>  
> -qcom_tsens-y			+= tsens.o tsens-common.o tsens-v0_1.o \
> -				   tsens-8960.o tsens-v2.o tsens-v1.o
> +qcom_tsens-y			+= tsens.o tsens-v2.o tsens-v1.o tsens-v0_1.o \
> +				   tsens-8960.o
>  obj-$(CONFIG_QCOM_SPMI_TEMP_ALARM)	+= qcom-spmi-temp-alarm.o
> diff --git a/drivers/thermal/qcom/tsens-common.c b/drivers/thermal/qcom/tsens-common.c
> deleted file mode 100644
> index 172545366636e..0000000000000
> --- a/drivers/thermal/qcom/tsens-common.c
> +++ /dev/null
> @@ -1,843 +0,0 @@
> -// SPDX-License-Identifier: GPL-2.0
> -/*
> - * Copyright (c) 2015, The Linux Foundation. All rights reserved.
> - */
> -
> -#include <linux/debugfs.h>
> -#include <linux/err.h>
> -#include <linux/io.h>
> -#include <linux/nvmem-consumer.h>
> -#include <linux/of_address.h>
> -#include <linux/of_platform.h>
> -#include <linux/platform_device.h>
> -#include <linux/regmap.h>
> -#include "tsens.h"
> -
> -/**
> - * struct tsens_irq_data - IRQ status and temperature violations
> - * @up_viol:        upper threshold violated
> - * @up_thresh:      upper threshold temperature value
> - * @up_irq_mask:    mask register for upper threshold irqs
> - * @up_irq_clear:   clear register for uppper threshold irqs
> - * @low_viol:       lower threshold violated
> - * @low_thresh:     lower threshold temperature value
> - * @low_irq_mask:   mask register for lower threshold irqs
> - * @low_irq_clear:  clear register for lower threshold irqs
> - * @crit_viol:      critical threshold violated
> - * @crit_thresh:    critical threshold temperature value
> - * @crit_irq_mask:  mask register for critical threshold irqs
> - * @crit_irq_clear: clear register for critical threshold irqs
> - *
> - * Structure containing data about temperature threshold settings and
> - * irq status if they were violated.
> - */
> -struct tsens_irq_data {
> -	u32 up_viol;
> -	int up_thresh;
> -	u32 up_irq_mask;
> -	u32 up_irq_clear;
> -	u32 low_viol;
> -	int low_thresh;
> -	u32 low_irq_mask;
> -	u32 low_irq_clear;
> -	u32 crit_viol;
> -	u32 crit_thresh;
> -	u32 crit_irq_mask;
> -	u32 crit_irq_clear;
> -};
> -
> -char *qfprom_read(struct device *dev, const char *cname)
> -{
> -	struct nvmem_cell *cell;
> -	ssize_t data;
> -	char *ret;
> -
> -	cell = nvmem_cell_get(dev, cname);
> -	if (IS_ERR(cell))
> -		return ERR_CAST(cell);
> -
> -	ret = nvmem_cell_read(cell, &data);
> -	nvmem_cell_put(cell);
> -
> -	return ret;
> -}
> -
> -/*
> - * Use this function on devices where slope and offset calculations
> - * depend on calibration data read from qfprom. On others the slope
> - * and offset values are derived from tz->tzp->slope and tz->tzp->offset
> - * resp.
> - */
> -void compute_intercept_slope(struct tsens_priv *priv, u32 *p1,
> -			     u32 *p2, u32 mode)
> -{
> -	int i;
> -	int num, den;
> -
> -	for (i = 0; i < priv->num_sensors; i++) {
> -		dev_dbg(priv->dev,
> -			"%s: sensor%d - data_point1:%#x data_point2:%#x\n",
> -			__func__, i, p1[i], p2[i]);
> -
> -		priv->sensor[i].slope = SLOPE_DEFAULT;
> -		if (mode == TWO_PT_CALIB) {
> -			/*
> -			 * slope (m) = adc_code2 - adc_code1 (y2 - y1)/
> -			 *	temp_120_degc - temp_30_degc (x2 - x1)
> -			 */
> -			num = p2[i] - p1[i];
> -			num *= SLOPE_FACTOR;
> -			den = CAL_DEGC_PT2 - CAL_DEGC_PT1;
> -			priv->sensor[i].slope = num / den;
> -		}
> -
> -		priv->sensor[i].offset = (p1[i] * SLOPE_FACTOR) -
> -				(CAL_DEGC_PT1 *
> -				priv->sensor[i].slope);
> -		dev_dbg(priv->dev, "%s: offset:%d\n", __func__, priv->sensor[i].offset);
> -	}
> -}
> -
> -static inline u32 degc_to_code(int degc, const struct tsens_sensor *s)
> -{
> -	u64 code = div_u64(((u64)degc * s->slope + s->offset), SLOPE_FACTOR);
> -
> -	pr_debug("%s: raw_code: 0x%llx, degc:%d\n", __func__, code, degc);
> -	return clamp_val(code, THRESHOLD_MIN_ADC_CODE, THRESHOLD_MAX_ADC_CODE);
> -}
> -
> -static inline int code_to_degc(u32 adc_code, const struct tsens_sensor *s)
> -{
> -	int degc, num, den;
> -
> -	num = (adc_code * SLOPE_FACTOR) - s->offset;
> -	den = s->slope;
> -
> -	if (num > 0)
> -		degc = num + (den / 2);
> -	else if (num < 0)
> -		degc = num - (den / 2);
> -	else
> -		degc = num;
> -
> -	degc /= den;
> -
> -	return degc;
> -}
> -
> -/**
> - * tsens_hw_to_mC - Return sign-extended temperature in mCelsius.
> - * @s:     Pointer to sensor struct
> - * @field: Index into regmap_field array pointing to temperature data
> - *
> - * This function handles temperature returned in ADC code or deciCelsius
> - * depending on IP version.
> - *
> - * Return: Temperature in milliCelsius on success, a negative errno will
> - * be returned in error cases
> - */
> -static int tsens_hw_to_mC(const struct tsens_sensor *s, int field)
> -{
> -	struct tsens_priv *priv = s->priv;
> -	u32 resolution;
> -	u32 temp = 0;
> -	int ret;
> -
> -	resolution = priv->fields[LAST_TEMP_0].msb -
> -		priv->fields[LAST_TEMP_0].lsb;
> -
> -	ret = regmap_field_read(priv->rf[field], &temp);
> -	if (ret)
> -		return ret;
> -
> -	/* Convert temperature from ADC code to milliCelsius */
> -	if (priv->feat->adc)
> -		return code_to_degc(temp, s) * 1000;
> -
> -	/* deciCelsius -> milliCelsius along with sign extension */
> -	return sign_extend32(temp, resolution) * 100;
> -}
> -
> -/**
> - * tsens_mC_to_hw - Convert temperature to hardware register value
> - * @s: Pointer to sensor struct
> - * @temp: temperature in milliCelsius to be programmed to hardware
> - *
> - * This function outputs the value to be written to hardware in ADC code
> - * or deciCelsius depending on IP version.
> - *
> - * Return: ADC code or temperature in deciCelsius.
> - */
> -static int tsens_mC_to_hw(const struct tsens_sensor *s, int temp)
> -{
> -	struct tsens_priv *priv = s->priv;
> -
> -	/* milliC to adc code */
> -	if (priv->feat->adc)
> -		return degc_to_code(temp / 1000, s);
> -
> -	/* milliC to deciC */
> -	return temp / 100;
> -}
> -
> -static inline enum tsens_ver tsens_version(struct tsens_priv *priv)
> -{
> -	return priv->feat->ver_major;
> -}
> -
> -static void tsens_set_interrupt_v1(struct tsens_priv *priv, u32 hw_id,
> -				   enum tsens_irq_type irq_type, bool enable)
> -{
> -	u32 index = 0;
> -
> -	switch (irq_type) {
> -	case UPPER:
> -		index = UP_INT_CLEAR_0 + hw_id;
> -		break;
> -	case LOWER:
> -		index = LOW_INT_CLEAR_0 + hw_id;
> -		break;
> -	case CRITICAL:
> -		/* No critical interrupts before v2 */
> -		return;
> -	}
> -	regmap_field_write(priv->rf[index], enable ? 0 : 1);
> -}
> -
> -static void tsens_set_interrupt_v2(struct tsens_priv *priv, u32 hw_id,
> -				   enum tsens_irq_type irq_type, bool enable)
> -{
> -	u32 index_mask = 0, index_clear = 0;
> -
> -	/*
> -	 * To enable the interrupt flag for a sensor:
> -	 *    - clear the mask bit
> -	 * To disable the interrupt flag for a sensor:
> -	 *    - Mask further interrupts for this sensor
> -	 *    - Write 1 followed by 0 to clear the interrupt
> -	 */
> -	switch (irq_type) {
> -	case UPPER:
> -		index_mask  = UP_INT_MASK_0 + hw_id;
> -		index_clear = UP_INT_CLEAR_0 + hw_id;
> -		break;
> -	case LOWER:
> -		index_mask  = LOW_INT_MASK_0 + hw_id;
> -		index_clear = LOW_INT_CLEAR_0 + hw_id;
> -		break;
> -	case CRITICAL:
> -		index_mask  = CRIT_INT_MASK_0 + hw_id;
> -		index_clear = CRIT_INT_CLEAR_0 + hw_id;
> -		break;
> -	}
> -
> -	if (enable) {
> -		regmap_field_write(priv->rf[index_mask], 0);
> -	} else {
> -		regmap_field_write(priv->rf[index_mask],  1);
> -		regmap_field_write(priv->rf[index_clear], 1);
> -		regmap_field_write(priv->rf[index_clear], 0);
> -	}
> -}
> -
> -/**
> - * tsens_set_interrupt - Set state of an interrupt
> - * @priv: Pointer to tsens controller private data
> - * @hw_id: Hardware ID aka. sensor number
> - * @irq_type: irq_type from enum tsens_irq_type
> - * @enable: false = disable, true = enable
> - *
> - * Call IP-specific function to set state of an interrupt
> - *
> - * Return: void
> - */
> -static void tsens_set_interrupt(struct tsens_priv *priv, u32 hw_id,
> -				enum tsens_irq_type irq_type, bool enable)
> -{
> -	dev_dbg(priv->dev, "[%u] %s: %s -> %s\n", hw_id, __func__,
> -		irq_type ? ((irq_type == 1) ? "UP" : "CRITICAL") : "LOW",
> -		enable ? "en" : "dis");
> -	if (tsens_version(priv) > VER_1_X)
> -		tsens_set_interrupt_v2(priv, hw_id, irq_type, enable);
> -	else
> -		tsens_set_interrupt_v1(priv, hw_id, irq_type, enable);
> -}
> -
> -/**
> - * tsens_threshold_violated - Check if a sensor temperature violated a preset threshold
> - * @priv: Pointer to tsens controller private data
> - * @hw_id: Hardware ID aka. sensor number
> - * @d: Pointer to irq state data
> - *
> - * Return: 0 if threshold was not violated, 1 if it was violated and negative
> - * errno in case of errors
> - */
> -static int tsens_threshold_violated(struct tsens_priv *priv, u32 hw_id,
> -				    struct tsens_irq_data *d)
> -{
> -	int ret;
> -
> -	ret = regmap_field_read(priv->rf[UPPER_STATUS_0 + hw_id], &d->up_viol);
> -	if (ret)
> -		return ret;
> -	ret = regmap_field_read(priv->rf[LOWER_STATUS_0 + hw_id], &d->low_viol);
> -	if (ret)
> -		return ret;
> -
> -	if (priv->feat->crit_int) {
> -		ret = regmap_field_read(priv->rf[CRITICAL_STATUS_0 + hw_id],
> -					&d->crit_viol);
> -		if (ret)
> -			return ret;
> -	}
> -
> -	if (d->up_viol || d->low_viol || d->crit_viol)
> -		return 1;
> -
> -	return 0;
> -}
> -
> -static int tsens_read_irq_state(struct tsens_priv *priv, u32 hw_id,
> -				const struct tsens_sensor *s,
> -				struct tsens_irq_data *d)
> -{
> -	int ret;
> -
> -	ret = regmap_field_read(priv->rf[UP_INT_CLEAR_0 + hw_id], &d->up_irq_clear);
> -	if (ret)
> -		return ret;
> -	ret = regmap_field_read(priv->rf[LOW_INT_CLEAR_0 + hw_id], &d->low_irq_clear);
> -	if (ret)
> -		return ret;
> -	if (tsens_version(priv) > VER_1_X) {
> -		ret = regmap_field_read(priv->rf[UP_INT_MASK_0 + hw_id], &d->up_irq_mask);
> -		if (ret)
> -			return ret;
> -		ret = regmap_field_read(priv->rf[LOW_INT_MASK_0 + hw_id], &d->low_irq_mask);
> -		if (ret)
> -			return ret;
> -		ret = regmap_field_read(priv->rf[CRIT_INT_CLEAR_0 + hw_id],
> -					&d->crit_irq_clear);
> -		if (ret)
> -			return ret;
> -		ret = regmap_field_read(priv->rf[CRIT_INT_MASK_0 + hw_id],
> -					&d->crit_irq_mask);
> -		if (ret)
> -			return ret;
> -
> -		d->crit_thresh = tsens_hw_to_mC(s, CRIT_THRESH_0 + hw_id);
> -	} else {
> -		/* No mask register on older TSENS */
> -		d->up_irq_mask = 0;
> -		d->low_irq_mask = 0;
> -		d->crit_irq_clear = 0;
> -		d->crit_irq_mask = 0;
> -		d->crit_thresh = 0;
> -	}
> -
> -	d->up_thresh  = tsens_hw_to_mC(s, UP_THRESH_0 + hw_id);
> -	d->low_thresh = tsens_hw_to_mC(s, LOW_THRESH_0 + hw_id);
> -
> -	dev_dbg(priv->dev, "[%u] %s%s: status(%u|%u|%u) | clr(%u|%u|%u) | mask(%u|%u|%u)\n",
> -		hw_id, __func__,
> -		(d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "",
> -		d->low_viol, d->up_viol, d->crit_viol,
> -		d->low_irq_clear, d->up_irq_clear, d->crit_irq_clear,
> -		d->low_irq_mask, d->up_irq_mask, d->crit_irq_mask);
> -	dev_dbg(priv->dev, "[%u] %s%s: thresh: (%d:%d:%d)\n", hw_id, __func__,
> -		(d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "",
> -		d->low_thresh, d->up_thresh, d->crit_thresh);
> -
> -	return 0;
> -}
> -
> -static inline u32 masked_irq(u32 hw_id, u32 mask, enum tsens_ver ver)
> -{
> -	if (ver > VER_1_X)
> -		return mask & (1 << hw_id);
> -
> -	/* v1, v0.1 don't have a irq mask register */
> -	return 0;
> -}
> -
> -/**
> - * tsens_critical_irq_thread() - Threaded handler for critical interrupts
> - * @irq: irq number
> - * @data: tsens controller private data
> - *
> - * Check FSM watchdog bark status and clear if needed.
> - * Check all sensors to find ones that violated their critical threshold limits.
> - * Clear and then re-enable the interrupt.
> - *
> - * The level-triggered interrupt might deassert if the temperature returned to
> - * within the threshold limits by the time the handler got scheduled. We
> - * consider the irq to have been handled in that case.
> - *
> - * Return: IRQ_HANDLED
> - */
> -irqreturn_t tsens_critical_irq_thread(int irq, void *data)
> -{
> -	struct tsens_priv *priv = data;
> -	struct tsens_irq_data d;
> -	int temp, ret, i;
> -	u32 wdog_status, wdog_count;
> -
> -	if (priv->feat->has_watchdog) {
> -		ret = regmap_field_read(priv->rf[WDOG_BARK_STATUS],
> -					&wdog_status);
> -		if (ret)
> -			return ret;
> -
> -		if (wdog_status) {
> -			/* Clear WDOG interrupt */
> -			regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 1);
> -			regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 0);
> -			ret = regmap_field_read(priv->rf[WDOG_BARK_COUNT],
> -						&wdog_count);
> -			if (ret)
> -				return ret;
> -			if (wdog_count)
> -				dev_dbg(priv->dev, "%s: watchdog count: %d\n",
> -					__func__, wdog_count);
> -
> -			/* Fall through to handle critical interrupts if any */
> -		}
> -	}
> -
> -	for (i = 0; i < priv->num_sensors; i++) {
> -		const struct tsens_sensor *s = &priv->sensor[i];
> -		u32 hw_id = s->hw_id;
> -
> -		if (IS_ERR(s->tzd))
> -			continue;
> -		if (!tsens_threshold_violated(priv, hw_id, &d))
> -			continue;
> -		ret = get_temp_tsens_valid(s, &temp);
> -		if (ret) {
> -			dev_err(priv->dev, "[%u] %s: error reading sensor\n",
> -				hw_id, __func__);
> -			continue;
> -		}
> -
> -		tsens_read_irq_state(priv, hw_id, s, &d);
> -		if (d.crit_viol &&
> -		    !masked_irq(hw_id, d.crit_irq_mask, tsens_version(priv))) {
> -			/* Mask critical interrupts, unused on Linux */
> -			tsens_set_interrupt(priv, hw_id, CRITICAL, false);
> -		}
> -	}
> -
> -	return IRQ_HANDLED;
> -}
> -
> -/**
> - * tsens_irq_thread - Threaded interrupt handler for uplow interrupts
> - * @irq: irq number
> - * @data: tsens controller private data
> - *
> - * Check all sensors to find ones that violated their threshold limits. If the
> - * temperature is still outside the limits, call thermal_zone_device_update() to
> - * update the thresholds, else re-enable the interrupts.
> - *
> - * The level-triggered interrupt might deassert if the temperature returned to
> - * within the threshold limits by the time the handler got scheduled. We
> - * consider the irq to have been handled in that case.
> - *
> - * Return: IRQ_HANDLED
> - */
> -irqreturn_t tsens_irq_thread(int irq, void *data)
> -{
> -	struct tsens_priv *priv = data;
> -	struct tsens_irq_data d;
> -	bool enable = true, disable = false;
> -	unsigned long flags;
> -	int temp, ret, i;
> -
> -	for (i = 0; i < priv->num_sensors; i++) {
> -		bool trigger = false;
> -		const struct tsens_sensor *s = &priv->sensor[i];
> -		u32 hw_id = s->hw_id;
> -
> -		if (IS_ERR(s->tzd))
> -			continue;
> -		if (!tsens_threshold_violated(priv, hw_id, &d))
> -			continue;
> -		ret = get_temp_tsens_valid(s, &temp);
> -		if (ret) {
> -			dev_err(priv->dev, "[%u] %s: error reading sensor\n", hw_id, __func__);
> -			continue;
> -		}
> -
> -		spin_lock_irqsave(&priv->ul_lock, flags);
> -
> -		tsens_read_irq_state(priv, hw_id, s, &d);
> -
> -		if (d.up_viol &&
> -		    !masked_irq(hw_id, d.up_irq_mask, tsens_version(priv))) {
> -			tsens_set_interrupt(priv, hw_id, UPPER, disable);
> -			if (d.up_thresh > temp) {
> -				dev_dbg(priv->dev, "[%u] %s: re-arm upper\n",
> -					hw_id, __func__);
> -				tsens_set_interrupt(priv, hw_id, UPPER, enable);
> -			} else {
> -				trigger = true;
> -				/* Keep irq masked */
> -			}
> -		} else if (d.low_viol &&
> -			   !masked_irq(hw_id, d.low_irq_mask, tsens_version(priv))) {
> -			tsens_set_interrupt(priv, hw_id, LOWER, disable);
> -			if (d.low_thresh < temp) {
> -				dev_dbg(priv->dev, "[%u] %s: re-arm low\n",
> -					hw_id, __func__);
> -				tsens_set_interrupt(priv, hw_id, LOWER, enable);
> -			} else {
> -				trigger = true;
> -				/* Keep irq masked */
> -			}
> -		}
> -
> -		spin_unlock_irqrestore(&priv->ul_lock, flags);
> -
> -		if (trigger) {
> -			dev_dbg(priv->dev, "[%u] %s: TZ update trigger (%d mC)\n",
> -				hw_id, __func__, temp);
> -			thermal_zone_device_update(s->tzd,
> -						   THERMAL_EVENT_UNSPECIFIED);
> -		} else {
> -			dev_dbg(priv->dev, "[%u] %s: no violation:  %d\n",
> -				hw_id, __func__, temp);
> -		}
> -	}
> -
> -	return IRQ_HANDLED;
> -}
> -
> -int tsens_set_trips(void *_sensor, int low, int high)
> -{
> -	struct tsens_sensor *s = _sensor;
> -	struct tsens_priv *priv = s->priv;
> -	struct device *dev = priv->dev;
> -	struct tsens_irq_data d;
> -	unsigned long flags;
> -	int high_val, low_val, cl_high, cl_low;
> -	u32 hw_id = s->hw_id;
> -
> -	dev_dbg(dev, "[%u] %s: proposed thresholds: (%d:%d)\n",
> -		hw_id, __func__, low, high);
> -
> -	cl_high = clamp_val(high, -40000, 120000);
> -	cl_low  = clamp_val(low, -40000, 120000);
> -
> -	high_val = tsens_mC_to_hw(s, cl_high);
> -	low_val  = tsens_mC_to_hw(s, cl_low);
> -
> -	spin_lock_irqsave(&priv->ul_lock, flags);
> -
> -	tsens_read_irq_state(priv, hw_id, s, &d);
> -
> -	/* Write the new thresholds and clear the status */
> -	regmap_field_write(priv->rf[LOW_THRESH_0 + hw_id], low_val);
> -	regmap_field_write(priv->rf[UP_THRESH_0 + hw_id], high_val);
> -	tsens_set_interrupt(priv, hw_id, LOWER, true);
> -	tsens_set_interrupt(priv, hw_id, UPPER, true);
> -
> -	spin_unlock_irqrestore(&priv->ul_lock, flags);
> -
> -	dev_dbg(dev, "[%u] %s: (%d:%d)->(%d:%d)\n",
> -		hw_id, __func__, d.low_thresh, d.up_thresh, cl_low, cl_high);
> -
> -	return 0;
> -}
> -
> -int tsens_enable_irq(struct tsens_priv *priv)
> -{
> -	int ret;
> -	int val = tsens_version(priv) > VER_1_X ? 7 : 1;
> -
> -	ret = regmap_field_write(priv->rf[INT_EN], val);
> -	if (ret < 0)
> -		dev_err(priv->dev, "%s: failed to enable interrupts\n", __func__);
> -
> -	return ret;
> -}
> -
> -void tsens_disable_irq(struct tsens_priv *priv)
> -{
> -	regmap_field_write(priv->rf[INT_EN], 0);
> -}
> -
> -int get_temp_tsens_valid(const struct tsens_sensor *s, int *temp)
> -{
> -	struct tsens_priv *priv = s->priv;
> -	int hw_id = s->hw_id;
> -	u32 temp_idx = LAST_TEMP_0 + hw_id;
> -	u32 valid_idx = VALID_0 + hw_id;
> -	u32 valid;
> -	int ret;
> -
> -	ret = regmap_field_read(priv->rf[valid_idx], &valid);
> -	if (ret)
> -		return ret;
> -	while (!valid) {
> -		/* Valid bit is 0 for 6 AHB clock cycles.
> -		 * At 19.2MHz, 1 AHB clock is ~60ns.
> -		 * We should enter this loop very, very rarely.
> -		 */
> -		ndelay(400);
> -		ret = regmap_field_read(priv->rf[valid_idx], &valid);
> -		if (ret)
> -			return ret;
> -	}
> -
> -	/* Valid bit is set, OK to read the temperature */
> -	*temp = tsens_hw_to_mC(s, temp_idx);
> -
> -	return 0;
> -}
> -
> -int get_temp_common(const struct tsens_sensor *s, int *temp)
> -{
> -	struct tsens_priv *priv = s->priv;
> -	int hw_id = s->hw_id;
> -	int last_temp = 0, ret;
> -
> -	ret = regmap_field_read(priv->rf[LAST_TEMP_0 + hw_id], &last_temp);
> -	if (ret)
> -		return ret;
> -
> -	*temp = code_to_degc(last_temp, s) * 1000;
> -
> -	return 0;
> -}
> -
> -#ifdef CONFIG_DEBUG_FS
> -static int dbg_sensors_show(struct seq_file *s, void *data)
> -{
> -	struct platform_device *pdev = s->private;
> -	struct tsens_priv *priv = platform_get_drvdata(pdev);
> -	int i;
> -
> -	seq_printf(s, "max: %2d\nnum: %2d\n\n",
> -		   priv->feat->max_sensors, priv->num_sensors);
> -
> -	seq_puts(s, "      id    slope   offset\n--------------------------\n");
> -	for (i = 0;  i < priv->num_sensors; i++) {
> -		seq_printf(s, "%8d %8d %8d\n", priv->sensor[i].hw_id,
> -			   priv->sensor[i].slope, priv->sensor[i].offset);
> -	}
> -
> -	return 0;
> -}
> -
> -static int dbg_version_show(struct seq_file *s, void *data)
> -{
> -	struct platform_device *pdev = s->private;
> -	struct tsens_priv *priv = platform_get_drvdata(pdev);
> -	u32 maj_ver, min_ver, step_ver;
> -	int ret;
> -
> -	if (tsens_version(priv) > VER_0_1) {
> -		ret = regmap_field_read(priv->rf[VER_MAJOR], &maj_ver);
> -		if (ret)
> -			return ret;
> -		ret = regmap_field_read(priv->rf[VER_MINOR], &min_ver);
> -		if (ret)
> -			return ret;
> -		ret = regmap_field_read(priv->rf[VER_STEP], &step_ver);
> -		if (ret)
> -			return ret;
> -		seq_printf(s, "%d.%d.%d\n", maj_ver, min_ver, step_ver);
> -	} else {
> -		seq_puts(s, "0.1.0\n");
> -	}
> -
> -	return 0;
> -}
> -
> -DEFINE_SHOW_ATTRIBUTE(dbg_version);
> -DEFINE_SHOW_ATTRIBUTE(dbg_sensors);
> -
> -static void tsens_debug_init(struct platform_device *pdev)
> -{
> -	struct tsens_priv *priv = platform_get_drvdata(pdev);
> -	struct dentry *root, *file;
> -
> -	root = debugfs_lookup("tsens", NULL);
> -	if (!root)
> -		priv->debug_root = debugfs_create_dir("tsens", NULL);
> -	else
> -		priv->debug_root = root;
> -
> -	file = debugfs_lookup("version", priv->debug_root);
> -	if (!file)
> -		debugfs_create_file("version", 0444, priv->debug_root,
> -				    pdev, &dbg_version_fops);
> -
> -	/* A directory for each instance of the TSENS IP */
> -	priv->debug = debugfs_create_dir(dev_name(&pdev->dev), priv->debug_root);
> -	debugfs_create_file("sensors", 0444, priv->debug, pdev, &dbg_sensors_fops);
> -}
> -#else
> -static inline void tsens_debug_init(struct platform_device *pdev) {}
> -#endif
> -
> -static const struct regmap_config tsens_config = {
> -	.name		= "tm",
> -	.reg_bits	= 32,
> -	.val_bits	= 32,
> -	.reg_stride	= 4,
> -};
> -
> -static const struct regmap_config tsens_srot_config = {
> -	.name		= "srot",
> -	.reg_bits	= 32,
> -	.val_bits	= 32,
> -	.reg_stride	= 4,
> -};
> -
> -int __init init_common(struct tsens_priv *priv)
> -{
> -	void __iomem *tm_base, *srot_base;
> -	struct device *dev = priv->dev;
> -	u32 ver_minor;
> -	struct resource *res;
> -	u32 enabled;
> -	int ret, i, j;
> -	struct platform_device *op = of_find_device_by_node(priv->dev->of_node);
> -
> -	if (!op)
> -		return -EINVAL;
> -
> -	if (op->num_resources > 1) {
> -		/* DT with separate SROT and TM address space */
> -		priv->tm_offset = 0;
> -		res = platform_get_resource(op, IORESOURCE_MEM, 1);
> -		srot_base = devm_ioremap_resource(dev, res);
> -		if (IS_ERR(srot_base)) {
> -			ret = PTR_ERR(srot_base);
> -			goto err_put_device;
> -		}
> -
> -		priv->srot_map = devm_regmap_init_mmio(dev, srot_base,
> -							&tsens_srot_config);
> -		if (IS_ERR(priv->srot_map)) {
> -			ret = PTR_ERR(priv->srot_map);
> -			goto err_put_device;
> -		}
> -	} else {
> -		/* old DTs where SROT and TM were in a contiguous 2K block */
> -		priv->tm_offset = 0x1000;
> -	}
> -
> -	res = platform_get_resource(op, IORESOURCE_MEM, 0);
> -	tm_base = devm_ioremap_resource(dev, res);
> -	if (IS_ERR(tm_base)) {
> -		ret = PTR_ERR(tm_base);
> -		goto err_put_device;
> -	}
> -
> -	priv->tm_map = devm_regmap_init_mmio(dev, tm_base, &tsens_config);
> -	if (IS_ERR(priv->tm_map)) {
> -		ret = PTR_ERR(priv->tm_map);
> -		goto err_put_device;
> -	}
> -
> -	if (tsens_version(priv) > VER_0_1) {
> -		for (i = VER_MAJOR; i <= VER_STEP; i++) {
> -			priv->rf[i] = devm_regmap_field_alloc(dev, priv->srot_map,
> -							      priv->fields[i]);
> -			if (IS_ERR(priv->rf[i]))
> -				return PTR_ERR(priv->rf[i]);
> -		}
> -		ret = regmap_field_read(priv->rf[VER_MINOR], &ver_minor);
> -		if (ret)
> -			goto err_put_device;
> -	}
> -
> -	priv->rf[TSENS_EN] = devm_regmap_field_alloc(dev, priv->srot_map,
> -						     priv->fields[TSENS_EN]);
> -	if (IS_ERR(priv->rf[TSENS_EN])) {
> -		ret = PTR_ERR(priv->rf[TSENS_EN]);
> -		goto err_put_device;
> -	}
> -	ret = regmap_field_read(priv->rf[TSENS_EN], &enabled);
> -	if (ret)
> -		goto err_put_device;
> -	if (!enabled) {
> -		dev_err(dev, "%s: device not enabled\n", __func__);
> -		ret = -ENODEV;
> -		goto err_put_device;
> -	}
> -
> -	priv->rf[SENSOR_EN] = devm_regmap_field_alloc(dev, priv->srot_map,
> -						      priv->fields[SENSOR_EN]);
> -	if (IS_ERR(priv->rf[SENSOR_EN])) {
> -		ret = PTR_ERR(priv->rf[SENSOR_EN]);
> -		goto err_put_device;
> -	}
> -	priv->rf[INT_EN] = devm_regmap_field_alloc(dev, priv->tm_map,
> -						   priv->fields[INT_EN]);
> -	if (IS_ERR(priv->rf[INT_EN])) {
> -		ret = PTR_ERR(priv->rf[INT_EN]);
> -		goto err_put_device;
> -	}
> -
> -	/* This loop might need changes if enum regfield_ids is reordered */
> -	for (j = LAST_TEMP_0; j <= UP_THRESH_15; j += 16) {
> -		for (i = 0; i < priv->feat->max_sensors; i++) {
> -			int idx = j + i;
> -
> -			priv->rf[idx] = devm_regmap_field_alloc(dev, priv->tm_map,
> -								priv->fields[idx]);
> -			if (IS_ERR(priv->rf[idx])) {
> -				ret = PTR_ERR(priv->rf[idx]);
> -				goto err_put_device;
> -			}
> -		}
> -	}
> -
> -	if (priv->feat->crit_int) {
> -		/* Loop might need changes if enum regfield_ids is reordered */
> -		for (j = CRITICAL_STATUS_0; j <= CRIT_THRESH_15; j += 16) {
> -			for (i = 0; i < priv->feat->max_sensors; i++) {
> -				int idx = j + i;
> -
> -				priv->rf[idx] =
> -					devm_regmap_field_alloc(dev,
> -								priv->tm_map,
> -								priv->fields[idx]);
> -				if (IS_ERR(priv->rf[idx])) {
> -					ret = PTR_ERR(priv->rf[idx]);
> -					goto err_put_device;
> -				}
> -			}
> -		}
> -	}
> -
> -	if (tsens_version(priv) > VER_1_X &&  ver_minor > 2) {
> -		/* Watchdog is present only on v2.3+ */
> -		priv->feat->has_watchdog = 1;
> -		for (i = WDOG_BARK_STATUS; i <= CC_MON_MASK; i++) {
> -			priv->rf[i] = devm_regmap_field_alloc(dev, priv->tm_map,
> -							      priv->fields[i]);
> -			if (IS_ERR(priv->rf[i])) {
> -				ret = PTR_ERR(priv->rf[i]);
> -				goto err_put_device;
> -			}
> -		}
> -		/*
> -		 * Watchdog is already enabled, unmask the bark.
> -		 * Disable cycle completion monitoring
> -		 */
> -		regmap_field_write(priv->rf[WDOG_BARK_MASK], 0);
> -		regmap_field_write(priv->rf[CC_MON_MASK], 1);
> -	}
> -
> -	spin_lock_init(&priv->ul_lock);
> -	tsens_enable_irq(priv);
> -	tsens_debug_init(op);
> -
> -err_put_device:
> -	put_device(&op->dev);
> -	return ret;
> -}
> diff --git a/drivers/thermal/qcom/tsens.c b/drivers/thermal/qcom/tsens.c
> index 2f77d235cf735..8d3e94d2a9ed4 100644
> --- a/drivers/thermal/qcom/tsens.c
> +++ b/drivers/thermal/qcom/tsens.c
> @@ -1,19 +1,857 @@
>  // SPDX-License-Identifier: GPL-2.0
>  /*
>   * Copyright (c) 2015, The Linux Foundation. All rights reserved.
> + * Copyright (c) 2019, 2020, Linaro Ltd.
>   */
>  
>  #include <linux/debugfs.h>
>  #include <linux/err.h>
> +#include <linux/io.h>
>  #include <linux/module.h>
> +#include <linux/nvmem-consumer.h>
>  #include <linux/of.h>
> +#include <linux/of_address.h>
>  #include <linux/of_platform.h>
>  #include <linux/platform_device.h>
>  #include <linux/pm.h>
> +#include <linux/regmap.h>
>  #include <linux/slab.h>
>  #include <linux/thermal.h>
>  #include "tsens.h"
>  
> +/**
> + * struct tsens_irq_data - IRQ status and temperature violations
> + * @up_viol:        upper threshold violated
> + * @up_thresh:      upper threshold temperature value
> + * @up_irq_mask:    mask register for upper threshold irqs
> + * @up_irq_clear:   clear register for uppper threshold irqs
> + * @low_viol:       lower threshold violated
> + * @low_thresh:     lower threshold temperature value
> + * @low_irq_mask:   mask register for lower threshold irqs
> + * @low_irq_clear:  clear register for lower threshold irqs
> + * @crit_viol:      critical threshold violated
> + * @crit_thresh:    critical threshold temperature value
> + * @crit_irq_mask:  mask register for critical threshold irqs
> + * @crit_irq_clear: clear register for critical threshold irqs
> + *
> + * Structure containing data about temperature threshold settings and
> + * irq status if they were violated.
> + */
> +struct tsens_irq_data {
> +	u32 up_viol;
> +	int up_thresh;
> +	u32 up_irq_mask;
> +	u32 up_irq_clear;
> +	u32 low_viol;
> +	int low_thresh;
> +	u32 low_irq_mask;
> +	u32 low_irq_clear;
> +	u32 crit_viol;
> +	u32 crit_thresh;
> +	u32 crit_irq_mask;
> +	u32 crit_irq_clear;
> +};
> +
> +char *qfprom_read(struct device *dev, const char *cname)
> +{
> +	struct nvmem_cell *cell;
> +	ssize_t data;
> +	char *ret;
> +
> +	cell = nvmem_cell_get(dev, cname);
> +	if (IS_ERR(cell))
> +		return ERR_CAST(cell);
> +
> +	ret = nvmem_cell_read(cell, &data);
> +	nvmem_cell_put(cell);
> +
> +	return ret;
> +}
> +
> +/*
> + * Use this function on devices where slope and offset calculations
> + * depend on calibration data read from qfprom. On others the slope
> + * and offset values are derived from tz->tzp->slope and tz->tzp->offset
> + * resp.
> + */
> +void compute_intercept_slope(struct tsens_priv *priv, u32 *p1,
> +			     u32 *p2, u32 mode)
> +{
> +	int i;
> +	int num, den;
> +
> +	for (i = 0; i < priv->num_sensors; i++) {
> +		dev_dbg(priv->dev,
> +			"%s: sensor%d - data_point1:%#x data_point2:%#x\n",
> +			__func__, i, p1[i], p2[i]);
> +
> +		priv->sensor[i].slope = SLOPE_DEFAULT;
> +		if (mode == TWO_PT_CALIB) {
> +			/*
> +			 * slope (m) = adc_code2 - adc_code1 (y2 - y1)/
> +			 *	temp_120_degc - temp_30_degc (x2 - x1)
> +			 */
> +			num = p2[i] - p1[i];
> +			num *= SLOPE_FACTOR;
> +			den = CAL_DEGC_PT2 - CAL_DEGC_PT1;
> +			priv->sensor[i].slope = num / den;
> +		}
> +
> +		priv->sensor[i].offset = (p1[i] * SLOPE_FACTOR) -
> +				(CAL_DEGC_PT1 *
> +				priv->sensor[i].slope);
> +		dev_dbg(priv->dev, "%s: offset:%d\n", __func__,
> +			priv->sensor[i].offset);
> +	}
> +}
> +
> +static inline u32 degc_to_code(int degc, const struct tsens_sensor *s)
> +{
> +	u64 code = div_u64(((u64)degc * s->slope + s->offset), SLOPE_FACTOR);
> +
> +	pr_debug("%s: raw_code: 0x%llx, degc:%d\n", __func__, code, degc);
> +	return clamp_val(code, THRESHOLD_MIN_ADC_CODE, THRESHOLD_MAX_ADC_CODE);
> +}
> +
> +static inline int code_to_degc(u32 adc_code, const struct tsens_sensor *s)
> +{
> +	int degc, num, den;
> +
> +	num = (adc_code * SLOPE_FACTOR) - s->offset;
> +	den = s->slope;
> +
> +	if (num > 0)
> +		degc = num + (den / 2);
> +	else if (num < 0)
> +		degc = num - (den / 2);
> +	else
> +		degc = num;
> +
> +	degc /= den;
> +
> +	return degc;
> +}
> +
> +/**
> + * tsens_hw_to_mC - Return sign-extended temperature in mCelsius.
> + * @s:     Pointer to sensor struct
> + * @field: Index into regmap_field array pointing to temperature data
> + *
> + * This function handles temperature returned in ADC code or deciCelsius
> + * depending on IP version.
> + *
> + * Return: Temperature in milliCelsius on success, a negative errno will
> + * be returned in error cases
> + */
> +static int tsens_hw_to_mC(const struct tsens_sensor *s, int field)
> +{
> +	struct tsens_priv *priv = s->priv;
> +	u32 resolution;
> +	u32 temp = 0;
> +	int ret;
> +
> +	resolution = priv->fields[LAST_TEMP_0].msb -
> +		priv->fields[LAST_TEMP_0].lsb;
> +
> +	ret = regmap_field_read(priv->rf[field], &temp);
> +	if (ret)
> +		return ret;
> +
> +	/* Convert temperature from ADC code to milliCelsius */
> +	if (priv->feat->adc)
> +		return code_to_degc(temp, s) * 1000;
> +
> +	/* deciCelsius -> milliCelsius along with sign extension */
> +	return sign_extend32(temp, resolution) * 100;
> +}
> +
> +/**
> + * tsens_mC_to_hw - Convert temperature to hardware register value
> + * @s: Pointer to sensor struct
> + * @temp: temperature in milliCelsius to be programmed to hardware
> + *
> + * This function outputs the value to be written to hardware in ADC code
> + * or deciCelsius depending on IP version.
> + *
> + * Return: ADC code or temperature in deciCelsius.
> + */
> +static int tsens_mC_to_hw(const struct tsens_sensor *s, int temp)
> +{
> +	struct tsens_priv *priv = s->priv;
> +
> +	/* milliC to adc code */
> +	if (priv->feat->adc)
> +		return degc_to_code(temp / 1000, s);
> +
> +	/* milliC to deciC */
> +	return temp / 100;
> +}
> +
> +static inline enum tsens_ver tsens_version(struct tsens_priv *priv)
> +{
> +	return priv->feat->ver_major;
> +}
> +
> +static void tsens_set_interrupt_v1(struct tsens_priv *priv, u32 hw_id,
> +				   enum tsens_irq_type irq_type, bool enable)
> +{
> +	u32 index = 0;
> +
> +	switch (irq_type) {
> +	case UPPER:
> +		index = UP_INT_CLEAR_0 + hw_id;
> +		break;
> +	case LOWER:
> +		index = LOW_INT_CLEAR_0 + hw_id;
> +		break;
> +	case CRITICAL:
> +		/* No critical interrupts before v2 */
> +		return;
> +	}
> +	regmap_field_write(priv->rf[index], enable ? 0 : 1);
> +}
> +
> +static void tsens_set_interrupt_v2(struct tsens_priv *priv, u32 hw_id,
> +				   enum tsens_irq_type irq_type, bool enable)
> +{
> +	u32 index_mask = 0, index_clear = 0;
> +
> +	/*
> +	 * To enable the interrupt flag for a sensor:
> +	 *    - clear the mask bit
> +	 * To disable the interrupt flag for a sensor:
> +	 *    - Mask further interrupts for this sensor
> +	 *    - Write 1 followed by 0 to clear the interrupt
> +	 */
> +	switch (irq_type) {
> +	case UPPER:
> +		index_mask  = UP_INT_MASK_0 + hw_id;
> +		index_clear = UP_INT_CLEAR_0 + hw_id;
> +		break;
> +	case LOWER:
> +		index_mask  = LOW_INT_MASK_0 + hw_id;
> +		index_clear = LOW_INT_CLEAR_0 + hw_id;
> +		break;
> +	case CRITICAL:
> +		index_mask  = CRIT_INT_MASK_0 + hw_id;
> +		index_clear = CRIT_INT_CLEAR_0 + hw_id;
> +		break;
> +	}
> +
> +	if (enable) {
> +		regmap_field_write(priv->rf[index_mask], 0);
> +	} else {
> +		regmap_field_write(priv->rf[index_mask],  1);
> +		regmap_field_write(priv->rf[index_clear], 1);
> +		regmap_field_write(priv->rf[index_clear], 0);
> +	}
> +}
> +
> +/**
> + * tsens_set_interrupt - Set state of an interrupt
> + * @priv: Pointer to tsens controller private data
> + * @hw_id: Hardware ID aka. sensor number
> + * @irq_type: irq_type from enum tsens_irq_type
> + * @enable: false = disable, true = enable
> + *
> + * Call IP-specific function to set state of an interrupt
> + *
> + * Return: void
> + */
> +static void tsens_set_interrupt(struct tsens_priv *priv, u32 hw_id,
> +				enum tsens_irq_type irq_type, bool enable)
> +{
> +	dev_dbg(priv->dev, "[%u] %s: %s -> %s\n", hw_id, __func__,
> +		irq_type ? ((irq_type == 1) ? "UP" : "CRITICAL") : "LOW",
> +		enable ? "en" : "dis");
> +	if (tsens_version(priv) > VER_1_X)
> +		tsens_set_interrupt_v2(priv, hw_id, irq_type, enable);
> +	else
> +		tsens_set_interrupt_v1(priv, hw_id, irq_type, enable);
> +}
> +
> +/**
> + * tsens_threshold_violated - Check if a sensor temperature violated a preset threshold
> + * @priv: Pointer to tsens controller private data
> + * @hw_id: Hardware ID aka. sensor number
> + * @d: Pointer to irq state data
> + *
> + * Return: 0 if threshold was not violated, 1 if it was violated and negative
> + * errno in case of errors
> + */
> +static int tsens_threshold_violated(struct tsens_priv *priv, u32 hw_id,
> +				    struct tsens_irq_data *d)
> +{
> +	int ret;
> +
> +	ret = regmap_field_read(priv->rf[UPPER_STATUS_0 + hw_id], &d->up_viol);
> +	if (ret)
> +		return ret;
> +	ret = regmap_field_read(priv->rf[LOWER_STATUS_0 + hw_id], &d->low_viol);
> +	if (ret)
> +		return ret;
> +
> +	if (priv->feat->crit_int) {
> +		ret = regmap_field_read(priv->rf[CRITICAL_STATUS_0 + hw_id],
> +					&d->crit_viol);
> +		if (ret)
> +			return ret;
> +	}
> +
> +	if (d->up_viol || d->low_viol || d->crit_viol)
> +		return 1;
> +
> +	return 0;
> +}
> +
> +static int tsens_read_irq_state(struct tsens_priv *priv, u32 hw_id,
> +				const struct tsens_sensor *s,
> +				struct tsens_irq_data *d)
> +{
> +	int ret;
> +
> +	ret = regmap_field_read(priv->rf[UP_INT_CLEAR_0 + hw_id], &d->up_irq_clear);
> +	if (ret)
> +		return ret;
> +	ret = regmap_field_read(priv->rf[LOW_INT_CLEAR_0 + hw_id], &d->low_irq_clear);
> +	if (ret)
> +		return ret;
> +	if (tsens_version(priv) > VER_1_X) {
> +		ret = regmap_field_read(priv->rf[UP_INT_MASK_0 + hw_id], &d->up_irq_mask);
> +		if (ret)
> +			return ret;
> +		ret = regmap_field_read(priv->rf[LOW_INT_MASK_0 + hw_id], &d->low_irq_mask);
> +		if (ret)
> +			return ret;
> +		ret = regmap_field_read(priv->rf[CRIT_INT_CLEAR_0 + hw_id],
> +					&d->crit_irq_clear);
> +		if (ret)
> +			return ret;
> +		ret = regmap_field_read(priv->rf[CRIT_INT_MASK_0 + hw_id],
> +					&d->crit_irq_mask);
> +		if (ret)
> +			return ret;
> +
> +		d->crit_thresh = tsens_hw_to_mC(s, CRIT_THRESH_0 + hw_id);
> +	} else {
> +		/* No mask register on older TSENS */
> +		d->up_irq_mask = 0;
> +		d->low_irq_mask = 0;
> +		d->crit_irq_clear = 0;
> +		d->crit_irq_mask = 0;
> +		d->crit_thresh = 0;
> +	}
> +
> +	d->up_thresh  = tsens_hw_to_mC(s, UP_THRESH_0 + hw_id);
> +	d->low_thresh = tsens_hw_to_mC(s, LOW_THRESH_0 + hw_id);
> +
> +	dev_dbg(priv->dev, "[%u] %s%s: status(%u|%u|%u) | clr(%u|%u|%u) | mask(%u|%u|%u)\n",
> +		hw_id, __func__,
> +		(d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "",
> +		d->low_viol, d->up_viol, d->crit_viol,
> +		d->low_irq_clear, d->up_irq_clear, d->crit_irq_clear,
> +		d->low_irq_mask, d->up_irq_mask, d->crit_irq_mask);
> +	dev_dbg(priv->dev, "[%u] %s%s: thresh: (%d:%d:%d)\n", hw_id, __func__,
> +		(d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "",
> +		d->low_thresh, d->up_thresh, d->crit_thresh);
> +
> +	return 0;
> +}
> +
> +static inline u32 masked_irq(u32 hw_id, u32 mask, enum tsens_ver ver)
> +{
> +	if (ver > VER_1_X)
> +		return mask & (1 << hw_id);
> +
> +	/* v1, v0.1 don't have a irq mask register */
> +	return 0;
> +}
> +
> +/**
> + * tsens_critical_irq_thread() - Threaded handler for critical interrupts
> + * @irq: irq number
> + * @data: tsens controller private data
> + *
> + * Check FSM watchdog bark status and clear if needed.
> + * Check all sensors to find ones that violated their critical threshold limits.
> + * Clear and then re-enable the interrupt.
> + *
> + * The level-triggered interrupt might deassert if the temperature returned to
> + * within the threshold limits by the time the handler got scheduled. We
> + * consider the irq to have been handled in that case.
> + *
> + * Return: IRQ_HANDLED
> + */
> +irqreturn_t tsens_critical_irq_thread(int irq, void *data)
> +{
> +	struct tsens_priv *priv = data;
> +	struct tsens_irq_data d;
> +	int temp, ret, i;
> +	u32 wdog_status, wdog_count;
> +
> +	if (priv->feat->has_watchdog) {
> +		ret = regmap_field_read(priv->rf[WDOG_BARK_STATUS],
> +					&wdog_status);
> +		if (ret)
> +			return ret;
> +
> +		if (wdog_status) {
> +			/* Clear WDOG interrupt */
> +			regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 1);
> +			regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 0);
> +			ret = regmap_field_read(priv->rf[WDOG_BARK_COUNT],
> +						&wdog_count);
> +			if (ret)
> +				return ret;
> +			if (wdog_count)
> +				dev_dbg(priv->dev, "%s: watchdog count: %d\n",
> +					__func__, wdog_count);
> +
> +			/* Fall through to handle critical interrupts if any */
> +		}
> +	}
> +
> +	for (i = 0; i < priv->num_sensors; i++) {
> +		const struct tsens_sensor *s = &priv->sensor[i];
> +		u32 hw_id = s->hw_id;
> +
> +		if (IS_ERR(s->tzd))
> +			continue;
> +		if (!tsens_threshold_violated(priv, hw_id, &d))
> +			continue;
> +		ret = get_temp_tsens_valid(s, &temp);
> +		if (ret) {
> +			dev_err(priv->dev, "[%u] %s: error reading sensor\n",
> +				hw_id, __func__);
> +			continue;
> +		}
> +
> +		tsens_read_irq_state(priv, hw_id, s, &d);
> +		if (d.crit_viol &&
> +		    !masked_irq(hw_id, d.crit_irq_mask, tsens_version(priv))) {
> +			/* Mask critical interrupts, unused on Linux */
> +			tsens_set_interrupt(priv, hw_id, CRITICAL, false);
> +		}
> +	}
> +
> +	return IRQ_HANDLED;
> +}
> +
> +/**
> + * tsens_irq_thread - Threaded interrupt handler for uplow interrupts
> + * @irq: irq number
> + * @data: tsens controller private data
> + *
> + * Check all sensors to find ones that violated their threshold limits. If the
> + * temperature is still outside the limits, call thermal_zone_device_update() to
> + * update the thresholds, else re-enable the interrupts.
> + *
> + * The level-triggered interrupt might deassert if the temperature returned to
> + * within the threshold limits by the time the handler got scheduled. We
> + * consider the irq to have been handled in that case.
> + *
> + * Return: IRQ_HANDLED
> + */
> +irqreturn_t tsens_irq_thread(int irq, void *data)
> +{
> +	struct tsens_priv *priv = data;
> +	struct tsens_irq_data d;
> +	bool enable = true, disable = false;
> +	unsigned long flags;
> +	int temp, ret, i;
> +
> +	for (i = 0; i < priv->num_sensors; i++) {
> +		bool trigger = false;
> +		const struct tsens_sensor *s = &priv->sensor[i];
> +		u32 hw_id = s->hw_id;
> +
> +		if (IS_ERR(s->tzd))
> +			continue;
> +		if (!tsens_threshold_violated(priv, hw_id, &d))
> +			continue;
> +		ret = get_temp_tsens_valid(s, &temp);
> +		if (ret) {
> +			dev_err(priv->dev, "[%u] %s: error reading sensor\n",
> +				hw_id, __func__);
> +			continue;
> +		}
> +
> +		spin_lock_irqsave(&priv->ul_lock, flags);
> +
> +		tsens_read_irq_state(priv, hw_id, s, &d);
> +
> +		if (d.up_viol &&
> +		    !masked_irq(hw_id, d.up_irq_mask, tsens_version(priv))) {
> +			tsens_set_interrupt(priv, hw_id, UPPER, disable);
> +			if (d.up_thresh > temp) {
> +				dev_dbg(priv->dev, "[%u] %s: re-arm upper\n",
> +					hw_id, __func__);
> +				tsens_set_interrupt(priv, hw_id, UPPER, enable);
> +			} else {
> +				trigger = true;
> +				/* Keep irq masked */
> +			}
> +		} else if (d.low_viol &&
> +			   !masked_irq(hw_id, d.low_irq_mask, tsens_version(priv))) {
> +			tsens_set_interrupt(priv, hw_id, LOWER, disable);
> +			if (d.low_thresh < temp) {
> +				dev_dbg(priv->dev, "[%u] %s: re-arm low\n",
> +					hw_id, __func__);
> +				tsens_set_interrupt(priv, hw_id, LOWER, enable);
> +			} else {
> +				trigger = true;
> +				/* Keep irq masked */
> +			}
> +		}
> +
> +		spin_unlock_irqrestore(&priv->ul_lock, flags);
> +
> +		if (trigger) {
> +			dev_dbg(priv->dev, "[%u] %s: TZ update trigger (%d mC)\n",
> +				hw_id, __func__, temp);
> +			thermal_zone_device_update(s->tzd,
> +						   THERMAL_EVENT_UNSPECIFIED);
> +		} else {
> +			dev_dbg(priv->dev, "[%u] %s: no violation:  %d\n",
> +				hw_id, __func__, temp);
> +		}
> +	}
> +
> +	return IRQ_HANDLED;
> +}
> +
> +int tsens_set_trips(void *_sensor, int low, int high)
> +{
> +	struct tsens_sensor *s = _sensor;
> +	struct tsens_priv *priv = s->priv;
> +	struct device *dev = priv->dev;
> +	struct tsens_irq_data d;
> +	unsigned long flags;
> +	int high_val, low_val, cl_high, cl_low;
> +	u32 hw_id = s->hw_id;
> +
> +	dev_dbg(dev, "[%u] %s: proposed thresholds: (%d:%d)\n",
> +		hw_id, __func__, low, high);
> +
> +	cl_high = clamp_val(high, -40000, 120000);
> +	cl_low  = clamp_val(low, -40000, 120000);
> +
> +	high_val = tsens_mC_to_hw(s, cl_high);
> +	low_val  = tsens_mC_to_hw(s, cl_low);
> +
> +	spin_lock_irqsave(&priv->ul_lock, flags);
> +
> +	tsens_read_irq_state(priv, hw_id, s, &d);
> +
> +	/* Write the new thresholds and clear the status */
> +	regmap_field_write(priv->rf[LOW_THRESH_0 + hw_id], low_val);
> +	regmap_field_write(priv->rf[UP_THRESH_0 + hw_id], high_val);
> +	tsens_set_interrupt(priv, hw_id, LOWER, true);
> +	tsens_set_interrupt(priv, hw_id, UPPER, true);
> +
> +	spin_unlock_irqrestore(&priv->ul_lock, flags);
> +
> +	dev_dbg(dev, "[%u] %s: (%d:%d)->(%d:%d)\n",
> +		hw_id, __func__, d.low_thresh, d.up_thresh, cl_low, cl_high);
> +
> +	return 0;
> +}
> +
> +int tsens_enable_irq(struct tsens_priv *priv)
> +{
> +	int ret;
> +	int val = tsens_version(priv) > VER_1_X ? 7 : 1;
> +
> +	ret = regmap_field_write(priv->rf[INT_EN], val);
> +	if (ret < 0)
> +		dev_err(priv->dev, "%s: failed to enable interrupts\n",
> +			__func__);
> +
> +	return ret;
> +}
> +
> +void tsens_disable_irq(struct tsens_priv *priv)
> +{
> +	regmap_field_write(priv->rf[INT_EN], 0);
> +}
> +
> +int get_temp_tsens_valid(const struct tsens_sensor *s, int *temp)
> +{
> +	struct tsens_priv *priv = s->priv;
> +	int hw_id = s->hw_id;
> +	u32 temp_idx = LAST_TEMP_0 + hw_id;
> +	u32 valid_idx = VALID_0 + hw_id;
> +	u32 valid;
> +	int ret;
> +
> +	ret = regmap_field_read(priv->rf[valid_idx], &valid);
> +	if (ret)
> +		return ret;
> +	while (!valid) {
> +		/* Valid bit is 0 for 6 AHB clock cycles.
> +		 * At 19.2MHz, 1 AHB clock is ~60ns.
> +		 * We should enter this loop very, very rarely.
> +		 */
> +		ndelay(400);
> +		ret = regmap_field_read(priv->rf[valid_idx], &valid);
> +		if (ret)
> +			return ret;
> +	}
> +
> +	/* Valid bit is set, OK to read the temperature */
> +	*temp = tsens_hw_to_mC(s, temp_idx);
> +
> +	return 0;
> +}
> +
> +int get_temp_common(const struct tsens_sensor *s, int *temp)
> +{
> +	struct tsens_priv *priv = s->priv;
> +	int hw_id = s->hw_id;
> +	int last_temp = 0, ret;
> +
> +	ret = regmap_field_read(priv->rf[LAST_TEMP_0 + hw_id], &last_temp);
> +	if (ret)
> +		return ret;
> +
> +	*temp = code_to_degc(last_temp, s) * 1000;
> +
> +	return 0;
> +}
> +
> +#ifdef CONFIG_DEBUG_FS
> +static int dbg_sensors_show(struct seq_file *s, void *data)
> +{
> +	struct platform_device *pdev = s->private;
> +	struct tsens_priv *priv = platform_get_drvdata(pdev);
> +	int i;
> +
> +	seq_printf(s, "max: %2d\nnum: %2d\n\n",
> +		   priv->feat->max_sensors, priv->num_sensors);
> +
> +	seq_puts(s, "      id    slope   offset\n--------------------------\n");
> +	for (i = 0;  i < priv->num_sensors; i++) {
> +		seq_printf(s, "%8d %8d %8d\n", priv->sensor[i].hw_id,
> +			   priv->sensor[i].slope, priv->sensor[i].offset);
> +	}
> +
> +	return 0;
> +}
> +
> +static int dbg_version_show(struct seq_file *s, void *data)
> +{
> +	struct platform_device *pdev = s->private;
> +	struct tsens_priv *priv = platform_get_drvdata(pdev);
> +	u32 maj_ver, min_ver, step_ver;
> +	int ret;
> +
> +	if (tsens_version(priv) > VER_0_1) {
> +		ret = regmap_field_read(priv->rf[VER_MAJOR], &maj_ver);
> +		if (ret)
> +			return ret;
> +		ret = regmap_field_read(priv->rf[VER_MINOR], &min_ver);
> +		if (ret)
> +			return ret;
> +		ret = regmap_field_read(priv->rf[VER_STEP], &step_ver);
> +		if (ret)
> +			return ret;
> +		seq_printf(s, "%d.%d.%d\n", maj_ver, min_ver, step_ver);
> +	} else {
> +		seq_puts(s, "0.1.0\n");
> +	}
> +
> +	return 0;
> +}
> +
> +DEFINE_SHOW_ATTRIBUTE(dbg_version);
> +DEFINE_SHOW_ATTRIBUTE(dbg_sensors);
> +
> +static void tsens_debug_init(struct platform_device *pdev)
> +{
> +	struct tsens_priv *priv = platform_get_drvdata(pdev);
> +	struct dentry *root, *file;
> +
> +	root = debugfs_lookup("tsens", NULL);
> +	if (!root)
> +		priv->debug_root = debugfs_create_dir("tsens", NULL);
> +	else
> +		priv->debug_root = root;
> +
> +	file = debugfs_lookup("version", priv->debug_root);
> +	if (!file)
> +		debugfs_create_file("version", 0444, priv->debug_root,
> +				    pdev, &dbg_version_fops);
> +
> +	/* A directory for each instance of the TSENS IP */
> +	priv->debug = debugfs_create_dir(dev_name(&pdev->dev), priv->debug_root);
> +	debugfs_create_file("sensors", 0444, priv->debug, pdev, &dbg_sensors_fops);
> +}
> +#else
> +static inline void tsens_debug_init(struct platform_device *pdev) {}
> +#endif
> +
> +static const struct regmap_config tsens_config = {
> +	.name		= "tm",
> +	.reg_bits	= 32,
> +	.val_bits	= 32,
> +	.reg_stride	= 4,
> +};
> +
> +static const struct regmap_config tsens_srot_config = {
> +	.name		= "srot",
> +	.reg_bits	= 32,
> +	.val_bits	= 32,
> +	.reg_stride	= 4,
> +};
> +
> +int __init init_common(struct tsens_priv *priv)
> +{
> +	void __iomem *tm_base, *srot_base;
> +	struct device *dev = priv->dev;
> +	u32 ver_minor;
> +	struct resource *res;
> +	u32 enabled;
> +	int ret, i, j;
> +	struct platform_device *op = of_find_device_by_node(priv->dev->of_node);
> +
> +	if (!op)
> +		return -EINVAL;
> +
> +	if (op->num_resources > 1) {
> +		/* DT with separate SROT and TM address space */
> +		priv->tm_offset = 0;
> +		res = platform_get_resource(op, IORESOURCE_MEM, 1);
> +		srot_base = devm_ioremap_resource(dev, res);
> +		if (IS_ERR(srot_base)) {
> +			ret = PTR_ERR(srot_base);
> +			goto err_put_device;
> +		}
> +
> +		priv->srot_map = devm_regmap_init_mmio(dev, srot_base,
> +						       &tsens_srot_config);
> +		if (IS_ERR(priv->srot_map)) {
> +			ret = PTR_ERR(priv->srot_map);
> +			goto err_put_device;
> +		}
> +	} else {
> +		/* old DTs where SROT and TM were in a contiguous 2K block */
> +		priv->tm_offset = 0x1000;
> +	}
> +
> +	res = platform_get_resource(op, IORESOURCE_MEM, 0);
> +	tm_base = devm_ioremap_resource(dev, res);
> +	if (IS_ERR(tm_base)) {
> +		ret = PTR_ERR(tm_base);
> +		goto err_put_device;
> +	}
> +
> +	priv->tm_map = devm_regmap_init_mmio(dev, tm_base, &tsens_config);
> +	if (IS_ERR(priv->tm_map)) {
> +		ret = PTR_ERR(priv->tm_map);
> +		goto err_put_device;
> +	}
> +
> +	if (tsens_version(priv) > VER_0_1) {
> +		for (i = VER_MAJOR; i <= VER_STEP; i++) {
> +			priv->rf[i] = devm_regmap_field_alloc(dev, priv->srot_map,
> +							      priv->fields[i]);
> +			if (IS_ERR(priv->rf[i]))
> +				return PTR_ERR(priv->rf[i]);
> +		}
> +		ret = regmap_field_read(priv->rf[VER_MINOR], &ver_minor);
> +		if (ret)
> +			goto err_put_device;
> +	}
> +
> +	priv->rf[TSENS_EN] = devm_regmap_field_alloc(dev, priv->srot_map,
> +						     priv->fields[TSENS_EN]);
> +	if (IS_ERR(priv->rf[TSENS_EN])) {
> +		ret = PTR_ERR(priv->rf[TSENS_EN]);
> +		goto err_put_device;
> +	}
> +	ret = regmap_field_read(priv->rf[TSENS_EN], &enabled);
> +	if (ret)
> +		goto err_put_device;
> +	if (!enabled) {
> +		dev_err(dev, "%s: device not enabled\n", __func__);
> +		ret = -ENODEV;
> +		goto err_put_device;
> +	}
> +
> +	priv->rf[SENSOR_EN] = devm_regmap_field_alloc(dev, priv->srot_map,
> +						      priv->fields[SENSOR_EN]);
> +	if (IS_ERR(priv->rf[SENSOR_EN])) {
> +		ret = PTR_ERR(priv->rf[SENSOR_EN]);
> +		goto err_put_device;
> +	}
> +	priv->rf[INT_EN] = devm_regmap_field_alloc(dev, priv->tm_map,
> +						   priv->fields[INT_EN]);
> +	if (IS_ERR(priv->rf[INT_EN])) {
> +		ret = PTR_ERR(priv->rf[INT_EN]);
> +		goto err_put_device;
> +	}
> +
> +	/* This loop might need changes if enum regfield_ids is reordered */
> +	for (j = LAST_TEMP_0; j <= UP_THRESH_15; j += 16) {
> +		for (i = 0; i < priv->feat->max_sensors; i++) {
> +			int idx = j + i;
> +
> +			priv->rf[idx] = devm_regmap_field_alloc(dev,
> +								priv->tm_map,
> +								priv->fields[idx]);
> +			if (IS_ERR(priv->rf[idx])) {
> +				ret = PTR_ERR(priv->rf[idx]);
> +				goto err_put_device;
> +			}
> +		}
> +	}
> +
> +	if (priv->feat->crit_int) {
> +		/* Loop might need changes if enum regfield_ids is reordered */
> +		for (j = CRITICAL_STATUS_0; j <= CRIT_THRESH_15; j += 16) {
> +			for (i = 0; i < priv->feat->max_sensors; i++) {
> +				int idx = j + i;
> +
> +				priv->rf[idx] =
> +					devm_regmap_field_alloc(dev,
> +								priv->tm_map,
> +								priv->fields[idx]);
> +				if (IS_ERR(priv->rf[idx])) {
> +					ret = PTR_ERR(priv->rf[idx]);
> +					goto err_put_device;
> +				}
> +			}
> +		}
> +	}
> +
> +	if (tsens_version(priv) > VER_1_X &&  ver_minor > 2) {
> +		/* Watchdog is present only on v2.3+ */
> +		priv->feat->has_watchdog = 1;
> +		for (i = WDOG_BARK_STATUS; i <= CC_MON_MASK; i++) {
> +			priv->rf[i] = devm_regmap_field_alloc(dev, priv->tm_map,
> +							      priv->fields[i]);
> +			if (IS_ERR(priv->rf[i])) {
> +				ret = PTR_ERR(priv->rf[i]);
> +				goto err_put_device;
> +			}
> +		}
> +		/*
> +		 * Watchdog is already enabled, unmask the bark.
> +		 * Disable cycle completion monitoring
> +		 */
> +		regmap_field_write(priv->rf[WDOG_BARK_MASK], 0);
> +		regmap_field_write(priv->rf[CC_MON_MASK], 1);
> +	}
> +
> +	spin_lock_init(&priv->ul_lock);
> +	tsens_enable_irq(priv);
> +	tsens_debug_init(op);
> +
> +err_put_device:
> +	put_device(&op->dev);
> +	return ret;
> +}
> +
>  static int tsens_get_temp(void *data, int *temp)
>  {
>  	struct tsens_sensor *s = data;
> diff --git a/drivers/thermal/qcom/tsens.h b/drivers/thermal/qcom/tsens.h
> index 502acf0e68285..59d01162c66af 100644
> --- a/drivers/thermal/qcom/tsens.h
> +++ b/drivers/thermal/qcom/tsens.h
> @@ -580,11 +580,6 @@ void compute_intercept_slope(struct tsens_priv *priv, u32 *pt1, u32 *pt2, u32 mo
>  int init_common(struct tsens_priv *priv);
>  int get_temp_tsens_valid(const struct tsens_sensor *s, int *temp);
>  int get_temp_common(const struct tsens_sensor *s, int *temp);
> -int tsens_enable_irq(struct tsens_priv *priv);
> -void tsens_disable_irq(struct tsens_priv *priv);
> -int tsens_set_trips(void *_sensor, int low, int high);
> -irqreturn_t tsens_irq_thread(int irq, void *data);
> -irqreturn_t tsens_critical_irq_thread(int irq, void *data);
>  
>  /* TSENS target */
>  extern struct tsens_plat_data data_8960;
> -- 
> 2.20.1
> 

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ