[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20200512191747.GF2165@builder.lan>
Date: Tue, 12 May 2020 12:17:47 -0700
From: Bjorn Andersson <bjorn.andersson@...aro.org>
To: Amit Kucheria <amit.kucheria@...aro.org>
Cc: linux-kernel@...r.kernel.org, linux-arm-msm@...r.kernel.org,
daniel.lezcano@...aro.org, Andy Gross <agross@...nel.org>,
Amit Kucheria <amit.kucheria@...durent.com>,
linux-pm@...r.kernel.org
Subject: Re: [PATCH] drivers: thermal: tsens: Merge tsens-common.c into
tsens.c
On Wed 29 Apr 11:14 PDT 2020, Amit Kucheria wrote:
> tsens-common.c has outlived its usefuless. It was created expecting lots
> of custom routines per version of the TSENS IP. We haven't needed those,
> there is now only data in the version-specific files.
>
> Merge the code for tsens-common.c into tsens.c. As a result,
> - Remove any unnecessary forward declarations in tsens.h.
> - Add a Linaro copyright to tsens.c.
> - Fixup the Makefile to remove tsens-common.c.
> - Where it made sense, fix some 80-column alignments in the
> tsens-common.c code being copied over.
>
> There is no functional change with this patch.
>
Reviewed-by: Bjorn Andersson <bjorn.andersson@...aro.org>
Regards,
Bjorn
> Signed-off-by: Amit Kucheria <amit.kucheria@...aro.org>
> ---
> drivers/thermal/qcom/Makefile | 4 +-
> drivers/thermal/qcom/tsens-common.c | 843 ----------------------------
> drivers/thermal/qcom/tsens.c | 838 +++++++++++++++++++++++++++
> drivers/thermal/qcom/tsens.h | 5 -
> 4 files changed, 840 insertions(+), 850 deletions(-)
> delete mode 100644 drivers/thermal/qcom/tsens-common.c
>
> diff --git a/drivers/thermal/qcom/Makefile b/drivers/thermal/qcom/Makefile
> index 7c8dc6e366936..ec86eef7f6a6b 100644
> --- a/drivers/thermal/qcom/Makefile
> +++ b/drivers/thermal/qcom/Makefile
> @@ -1,6 +1,6 @@
> # SPDX-License-Identifier: GPL-2.0-only
> obj-$(CONFIG_QCOM_TSENS) += qcom_tsens.o
>
> -qcom_tsens-y += tsens.o tsens-common.o tsens-v0_1.o \
> - tsens-8960.o tsens-v2.o tsens-v1.o
> +qcom_tsens-y += tsens.o tsens-v2.o tsens-v1.o tsens-v0_1.o \
> + tsens-8960.o
> obj-$(CONFIG_QCOM_SPMI_TEMP_ALARM) += qcom-spmi-temp-alarm.o
> diff --git a/drivers/thermal/qcom/tsens-common.c b/drivers/thermal/qcom/tsens-common.c
> deleted file mode 100644
> index 172545366636e..0000000000000
> --- a/drivers/thermal/qcom/tsens-common.c
> +++ /dev/null
> @@ -1,843 +0,0 @@
> -// SPDX-License-Identifier: GPL-2.0
> -/*
> - * Copyright (c) 2015, The Linux Foundation. All rights reserved.
> - */
> -
> -#include <linux/debugfs.h>
> -#include <linux/err.h>
> -#include <linux/io.h>
> -#include <linux/nvmem-consumer.h>
> -#include <linux/of_address.h>
> -#include <linux/of_platform.h>
> -#include <linux/platform_device.h>
> -#include <linux/regmap.h>
> -#include "tsens.h"
> -
> -/**
> - * struct tsens_irq_data - IRQ status and temperature violations
> - * @up_viol: upper threshold violated
> - * @up_thresh: upper threshold temperature value
> - * @up_irq_mask: mask register for upper threshold irqs
> - * @up_irq_clear: clear register for uppper threshold irqs
> - * @low_viol: lower threshold violated
> - * @low_thresh: lower threshold temperature value
> - * @low_irq_mask: mask register for lower threshold irqs
> - * @low_irq_clear: clear register for lower threshold irqs
> - * @crit_viol: critical threshold violated
> - * @crit_thresh: critical threshold temperature value
> - * @crit_irq_mask: mask register for critical threshold irqs
> - * @crit_irq_clear: clear register for critical threshold irqs
> - *
> - * Structure containing data about temperature threshold settings and
> - * irq status if they were violated.
> - */
> -struct tsens_irq_data {
> - u32 up_viol;
> - int up_thresh;
> - u32 up_irq_mask;
> - u32 up_irq_clear;
> - u32 low_viol;
> - int low_thresh;
> - u32 low_irq_mask;
> - u32 low_irq_clear;
> - u32 crit_viol;
> - u32 crit_thresh;
> - u32 crit_irq_mask;
> - u32 crit_irq_clear;
> -};
> -
> -char *qfprom_read(struct device *dev, const char *cname)
> -{
> - struct nvmem_cell *cell;
> - ssize_t data;
> - char *ret;
> -
> - cell = nvmem_cell_get(dev, cname);
> - if (IS_ERR(cell))
> - return ERR_CAST(cell);
> -
> - ret = nvmem_cell_read(cell, &data);
> - nvmem_cell_put(cell);
> -
> - return ret;
> -}
> -
> -/*
> - * Use this function on devices where slope and offset calculations
> - * depend on calibration data read from qfprom. On others the slope
> - * and offset values are derived from tz->tzp->slope and tz->tzp->offset
> - * resp.
> - */
> -void compute_intercept_slope(struct tsens_priv *priv, u32 *p1,
> - u32 *p2, u32 mode)
> -{
> - int i;
> - int num, den;
> -
> - for (i = 0; i < priv->num_sensors; i++) {
> - dev_dbg(priv->dev,
> - "%s: sensor%d - data_point1:%#x data_point2:%#x\n",
> - __func__, i, p1[i], p2[i]);
> -
> - priv->sensor[i].slope = SLOPE_DEFAULT;
> - if (mode == TWO_PT_CALIB) {
> - /*
> - * slope (m) = adc_code2 - adc_code1 (y2 - y1)/
> - * temp_120_degc - temp_30_degc (x2 - x1)
> - */
> - num = p2[i] - p1[i];
> - num *= SLOPE_FACTOR;
> - den = CAL_DEGC_PT2 - CAL_DEGC_PT1;
> - priv->sensor[i].slope = num / den;
> - }
> -
> - priv->sensor[i].offset = (p1[i] * SLOPE_FACTOR) -
> - (CAL_DEGC_PT1 *
> - priv->sensor[i].slope);
> - dev_dbg(priv->dev, "%s: offset:%d\n", __func__, priv->sensor[i].offset);
> - }
> -}
> -
> -static inline u32 degc_to_code(int degc, const struct tsens_sensor *s)
> -{
> - u64 code = div_u64(((u64)degc * s->slope + s->offset), SLOPE_FACTOR);
> -
> - pr_debug("%s: raw_code: 0x%llx, degc:%d\n", __func__, code, degc);
> - return clamp_val(code, THRESHOLD_MIN_ADC_CODE, THRESHOLD_MAX_ADC_CODE);
> -}
> -
> -static inline int code_to_degc(u32 adc_code, const struct tsens_sensor *s)
> -{
> - int degc, num, den;
> -
> - num = (adc_code * SLOPE_FACTOR) - s->offset;
> - den = s->slope;
> -
> - if (num > 0)
> - degc = num + (den / 2);
> - else if (num < 0)
> - degc = num - (den / 2);
> - else
> - degc = num;
> -
> - degc /= den;
> -
> - return degc;
> -}
> -
> -/**
> - * tsens_hw_to_mC - Return sign-extended temperature in mCelsius.
> - * @s: Pointer to sensor struct
> - * @field: Index into regmap_field array pointing to temperature data
> - *
> - * This function handles temperature returned in ADC code or deciCelsius
> - * depending on IP version.
> - *
> - * Return: Temperature in milliCelsius on success, a negative errno will
> - * be returned in error cases
> - */
> -static int tsens_hw_to_mC(const struct tsens_sensor *s, int field)
> -{
> - struct tsens_priv *priv = s->priv;
> - u32 resolution;
> - u32 temp = 0;
> - int ret;
> -
> - resolution = priv->fields[LAST_TEMP_0].msb -
> - priv->fields[LAST_TEMP_0].lsb;
> -
> - ret = regmap_field_read(priv->rf[field], &temp);
> - if (ret)
> - return ret;
> -
> - /* Convert temperature from ADC code to milliCelsius */
> - if (priv->feat->adc)
> - return code_to_degc(temp, s) * 1000;
> -
> - /* deciCelsius -> milliCelsius along with sign extension */
> - return sign_extend32(temp, resolution) * 100;
> -}
> -
> -/**
> - * tsens_mC_to_hw - Convert temperature to hardware register value
> - * @s: Pointer to sensor struct
> - * @temp: temperature in milliCelsius to be programmed to hardware
> - *
> - * This function outputs the value to be written to hardware in ADC code
> - * or deciCelsius depending on IP version.
> - *
> - * Return: ADC code or temperature in deciCelsius.
> - */
> -static int tsens_mC_to_hw(const struct tsens_sensor *s, int temp)
> -{
> - struct tsens_priv *priv = s->priv;
> -
> - /* milliC to adc code */
> - if (priv->feat->adc)
> - return degc_to_code(temp / 1000, s);
> -
> - /* milliC to deciC */
> - return temp / 100;
> -}
> -
> -static inline enum tsens_ver tsens_version(struct tsens_priv *priv)
> -{
> - return priv->feat->ver_major;
> -}
> -
> -static void tsens_set_interrupt_v1(struct tsens_priv *priv, u32 hw_id,
> - enum tsens_irq_type irq_type, bool enable)
> -{
> - u32 index = 0;
> -
> - switch (irq_type) {
> - case UPPER:
> - index = UP_INT_CLEAR_0 + hw_id;
> - break;
> - case LOWER:
> - index = LOW_INT_CLEAR_0 + hw_id;
> - break;
> - case CRITICAL:
> - /* No critical interrupts before v2 */
> - return;
> - }
> - regmap_field_write(priv->rf[index], enable ? 0 : 1);
> -}
> -
> -static void tsens_set_interrupt_v2(struct tsens_priv *priv, u32 hw_id,
> - enum tsens_irq_type irq_type, bool enable)
> -{
> - u32 index_mask = 0, index_clear = 0;
> -
> - /*
> - * To enable the interrupt flag for a sensor:
> - * - clear the mask bit
> - * To disable the interrupt flag for a sensor:
> - * - Mask further interrupts for this sensor
> - * - Write 1 followed by 0 to clear the interrupt
> - */
> - switch (irq_type) {
> - case UPPER:
> - index_mask = UP_INT_MASK_0 + hw_id;
> - index_clear = UP_INT_CLEAR_0 + hw_id;
> - break;
> - case LOWER:
> - index_mask = LOW_INT_MASK_0 + hw_id;
> - index_clear = LOW_INT_CLEAR_0 + hw_id;
> - break;
> - case CRITICAL:
> - index_mask = CRIT_INT_MASK_0 + hw_id;
> - index_clear = CRIT_INT_CLEAR_0 + hw_id;
> - break;
> - }
> -
> - if (enable) {
> - regmap_field_write(priv->rf[index_mask], 0);
> - } else {
> - regmap_field_write(priv->rf[index_mask], 1);
> - regmap_field_write(priv->rf[index_clear], 1);
> - regmap_field_write(priv->rf[index_clear], 0);
> - }
> -}
> -
> -/**
> - * tsens_set_interrupt - Set state of an interrupt
> - * @priv: Pointer to tsens controller private data
> - * @hw_id: Hardware ID aka. sensor number
> - * @irq_type: irq_type from enum tsens_irq_type
> - * @enable: false = disable, true = enable
> - *
> - * Call IP-specific function to set state of an interrupt
> - *
> - * Return: void
> - */
> -static void tsens_set_interrupt(struct tsens_priv *priv, u32 hw_id,
> - enum tsens_irq_type irq_type, bool enable)
> -{
> - dev_dbg(priv->dev, "[%u] %s: %s -> %s\n", hw_id, __func__,
> - irq_type ? ((irq_type == 1) ? "UP" : "CRITICAL") : "LOW",
> - enable ? "en" : "dis");
> - if (tsens_version(priv) > VER_1_X)
> - tsens_set_interrupt_v2(priv, hw_id, irq_type, enable);
> - else
> - tsens_set_interrupt_v1(priv, hw_id, irq_type, enable);
> -}
> -
> -/**
> - * tsens_threshold_violated - Check if a sensor temperature violated a preset threshold
> - * @priv: Pointer to tsens controller private data
> - * @hw_id: Hardware ID aka. sensor number
> - * @d: Pointer to irq state data
> - *
> - * Return: 0 if threshold was not violated, 1 if it was violated and negative
> - * errno in case of errors
> - */
> -static int tsens_threshold_violated(struct tsens_priv *priv, u32 hw_id,
> - struct tsens_irq_data *d)
> -{
> - int ret;
> -
> - ret = regmap_field_read(priv->rf[UPPER_STATUS_0 + hw_id], &d->up_viol);
> - if (ret)
> - return ret;
> - ret = regmap_field_read(priv->rf[LOWER_STATUS_0 + hw_id], &d->low_viol);
> - if (ret)
> - return ret;
> -
> - if (priv->feat->crit_int) {
> - ret = regmap_field_read(priv->rf[CRITICAL_STATUS_0 + hw_id],
> - &d->crit_viol);
> - if (ret)
> - return ret;
> - }
> -
> - if (d->up_viol || d->low_viol || d->crit_viol)
> - return 1;
> -
> - return 0;
> -}
> -
> -static int tsens_read_irq_state(struct tsens_priv *priv, u32 hw_id,
> - const struct tsens_sensor *s,
> - struct tsens_irq_data *d)
> -{
> - int ret;
> -
> - ret = regmap_field_read(priv->rf[UP_INT_CLEAR_0 + hw_id], &d->up_irq_clear);
> - if (ret)
> - return ret;
> - ret = regmap_field_read(priv->rf[LOW_INT_CLEAR_0 + hw_id], &d->low_irq_clear);
> - if (ret)
> - return ret;
> - if (tsens_version(priv) > VER_1_X) {
> - ret = regmap_field_read(priv->rf[UP_INT_MASK_0 + hw_id], &d->up_irq_mask);
> - if (ret)
> - return ret;
> - ret = regmap_field_read(priv->rf[LOW_INT_MASK_0 + hw_id], &d->low_irq_mask);
> - if (ret)
> - return ret;
> - ret = regmap_field_read(priv->rf[CRIT_INT_CLEAR_0 + hw_id],
> - &d->crit_irq_clear);
> - if (ret)
> - return ret;
> - ret = regmap_field_read(priv->rf[CRIT_INT_MASK_0 + hw_id],
> - &d->crit_irq_mask);
> - if (ret)
> - return ret;
> -
> - d->crit_thresh = tsens_hw_to_mC(s, CRIT_THRESH_0 + hw_id);
> - } else {
> - /* No mask register on older TSENS */
> - d->up_irq_mask = 0;
> - d->low_irq_mask = 0;
> - d->crit_irq_clear = 0;
> - d->crit_irq_mask = 0;
> - d->crit_thresh = 0;
> - }
> -
> - d->up_thresh = tsens_hw_to_mC(s, UP_THRESH_0 + hw_id);
> - d->low_thresh = tsens_hw_to_mC(s, LOW_THRESH_0 + hw_id);
> -
> - dev_dbg(priv->dev, "[%u] %s%s: status(%u|%u|%u) | clr(%u|%u|%u) | mask(%u|%u|%u)\n",
> - hw_id, __func__,
> - (d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "",
> - d->low_viol, d->up_viol, d->crit_viol,
> - d->low_irq_clear, d->up_irq_clear, d->crit_irq_clear,
> - d->low_irq_mask, d->up_irq_mask, d->crit_irq_mask);
> - dev_dbg(priv->dev, "[%u] %s%s: thresh: (%d:%d:%d)\n", hw_id, __func__,
> - (d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "",
> - d->low_thresh, d->up_thresh, d->crit_thresh);
> -
> - return 0;
> -}
> -
> -static inline u32 masked_irq(u32 hw_id, u32 mask, enum tsens_ver ver)
> -{
> - if (ver > VER_1_X)
> - return mask & (1 << hw_id);
> -
> - /* v1, v0.1 don't have a irq mask register */
> - return 0;
> -}
> -
> -/**
> - * tsens_critical_irq_thread() - Threaded handler for critical interrupts
> - * @irq: irq number
> - * @data: tsens controller private data
> - *
> - * Check FSM watchdog bark status and clear if needed.
> - * Check all sensors to find ones that violated their critical threshold limits.
> - * Clear and then re-enable the interrupt.
> - *
> - * The level-triggered interrupt might deassert if the temperature returned to
> - * within the threshold limits by the time the handler got scheduled. We
> - * consider the irq to have been handled in that case.
> - *
> - * Return: IRQ_HANDLED
> - */
> -irqreturn_t tsens_critical_irq_thread(int irq, void *data)
> -{
> - struct tsens_priv *priv = data;
> - struct tsens_irq_data d;
> - int temp, ret, i;
> - u32 wdog_status, wdog_count;
> -
> - if (priv->feat->has_watchdog) {
> - ret = regmap_field_read(priv->rf[WDOG_BARK_STATUS],
> - &wdog_status);
> - if (ret)
> - return ret;
> -
> - if (wdog_status) {
> - /* Clear WDOG interrupt */
> - regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 1);
> - regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 0);
> - ret = regmap_field_read(priv->rf[WDOG_BARK_COUNT],
> - &wdog_count);
> - if (ret)
> - return ret;
> - if (wdog_count)
> - dev_dbg(priv->dev, "%s: watchdog count: %d\n",
> - __func__, wdog_count);
> -
> - /* Fall through to handle critical interrupts if any */
> - }
> - }
> -
> - for (i = 0; i < priv->num_sensors; i++) {
> - const struct tsens_sensor *s = &priv->sensor[i];
> - u32 hw_id = s->hw_id;
> -
> - if (IS_ERR(s->tzd))
> - continue;
> - if (!tsens_threshold_violated(priv, hw_id, &d))
> - continue;
> - ret = get_temp_tsens_valid(s, &temp);
> - if (ret) {
> - dev_err(priv->dev, "[%u] %s: error reading sensor\n",
> - hw_id, __func__);
> - continue;
> - }
> -
> - tsens_read_irq_state(priv, hw_id, s, &d);
> - if (d.crit_viol &&
> - !masked_irq(hw_id, d.crit_irq_mask, tsens_version(priv))) {
> - /* Mask critical interrupts, unused on Linux */
> - tsens_set_interrupt(priv, hw_id, CRITICAL, false);
> - }
> - }
> -
> - return IRQ_HANDLED;
> -}
> -
> -/**
> - * tsens_irq_thread - Threaded interrupt handler for uplow interrupts
> - * @irq: irq number
> - * @data: tsens controller private data
> - *
> - * Check all sensors to find ones that violated their threshold limits. If the
> - * temperature is still outside the limits, call thermal_zone_device_update() to
> - * update the thresholds, else re-enable the interrupts.
> - *
> - * The level-triggered interrupt might deassert if the temperature returned to
> - * within the threshold limits by the time the handler got scheduled. We
> - * consider the irq to have been handled in that case.
> - *
> - * Return: IRQ_HANDLED
> - */
> -irqreturn_t tsens_irq_thread(int irq, void *data)
> -{
> - struct tsens_priv *priv = data;
> - struct tsens_irq_data d;
> - bool enable = true, disable = false;
> - unsigned long flags;
> - int temp, ret, i;
> -
> - for (i = 0; i < priv->num_sensors; i++) {
> - bool trigger = false;
> - const struct tsens_sensor *s = &priv->sensor[i];
> - u32 hw_id = s->hw_id;
> -
> - if (IS_ERR(s->tzd))
> - continue;
> - if (!tsens_threshold_violated(priv, hw_id, &d))
> - continue;
> - ret = get_temp_tsens_valid(s, &temp);
> - if (ret) {
> - dev_err(priv->dev, "[%u] %s: error reading sensor\n", hw_id, __func__);
> - continue;
> - }
> -
> - spin_lock_irqsave(&priv->ul_lock, flags);
> -
> - tsens_read_irq_state(priv, hw_id, s, &d);
> -
> - if (d.up_viol &&
> - !masked_irq(hw_id, d.up_irq_mask, tsens_version(priv))) {
> - tsens_set_interrupt(priv, hw_id, UPPER, disable);
> - if (d.up_thresh > temp) {
> - dev_dbg(priv->dev, "[%u] %s: re-arm upper\n",
> - hw_id, __func__);
> - tsens_set_interrupt(priv, hw_id, UPPER, enable);
> - } else {
> - trigger = true;
> - /* Keep irq masked */
> - }
> - } else if (d.low_viol &&
> - !masked_irq(hw_id, d.low_irq_mask, tsens_version(priv))) {
> - tsens_set_interrupt(priv, hw_id, LOWER, disable);
> - if (d.low_thresh < temp) {
> - dev_dbg(priv->dev, "[%u] %s: re-arm low\n",
> - hw_id, __func__);
> - tsens_set_interrupt(priv, hw_id, LOWER, enable);
> - } else {
> - trigger = true;
> - /* Keep irq masked */
> - }
> - }
> -
> - spin_unlock_irqrestore(&priv->ul_lock, flags);
> -
> - if (trigger) {
> - dev_dbg(priv->dev, "[%u] %s: TZ update trigger (%d mC)\n",
> - hw_id, __func__, temp);
> - thermal_zone_device_update(s->tzd,
> - THERMAL_EVENT_UNSPECIFIED);
> - } else {
> - dev_dbg(priv->dev, "[%u] %s: no violation: %d\n",
> - hw_id, __func__, temp);
> - }
> - }
> -
> - return IRQ_HANDLED;
> -}
> -
> -int tsens_set_trips(void *_sensor, int low, int high)
> -{
> - struct tsens_sensor *s = _sensor;
> - struct tsens_priv *priv = s->priv;
> - struct device *dev = priv->dev;
> - struct tsens_irq_data d;
> - unsigned long flags;
> - int high_val, low_val, cl_high, cl_low;
> - u32 hw_id = s->hw_id;
> -
> - dev_dbg(dev, "[%u] %s: proposed thresholds: (%d:%d)\n",
> - hw_id, __func__, low, high);
> -
> - cl_high = clamp_val(high, -40000, 120000);
> - cl_low = clamp_val(low, -40000, 120000);
> -
> - high_val = tsens_mC_to_hw(s, cl_high);
> - low_val = tsens_mC_to_hw(s, cl_low);
> -
> - spin_lock_irqsave(&priv->ul_lock, flags);
> -
> - tsens_read_irq_state(priv, hw_id, s, &d);
> -
> - /* Write the new thresholds and clear the status */
> - regmap_field_write(priv->rf[LOW_THRESH_0 + hw_id], low_val);
> - regmap_field_write(priv->rf[UP_THRESH_0 + hw_id], high_val);
> - tsens_set_interrupt(priv, hw_id, LOWER, true);
> - tsens_set_interrupt(priv, hw_id, UPPER, true);
> -
> - spin_unlock_irqrestore(&priv->ul_lock, flags);
> -
> - dev_dbg(dev, "[%u] %s: (%d:%d)->(%d:%d)\n",
> - hw_id, __func__, d.low_thresh, d.up_thresh, cl_low, cl_high);
> -
> - return 0;
> -}
> -
> -int tsens_enable_irq(struct tsens_priv *priv)
> -{
> - int ret;
> - int val = tsens_version(priv) > VER_1_X ? 7 : 1;
> -
> - ret = regmap_field_write(priv->rf[INT_EN], val);
> - if (ret < 0)
> - dev_err(priv->dev, "%s: failed to enable interrupts\n", __func__);
> -
> - return ret;
> -}
> -
> -void tsens_disable_irq(struct tsens_priv *priv)
> -{
> - regmap_field_write(priv->rf[INT_EN], 0);
> -}
> -
> -int get_temp_tsens_valid(const struct tsens_sensor *s, int *temp)
> -{
> - struct tsens_priv *priv = s->priv;
> - int hw_id = s->hw_id;
> - u32 temp_idx = LAST_TEMP_0 + hw_id;
> - u32 valid_idx = VALID_0 + hw_id;
> - u32 valid;
> - int ret;
> -
> - ret = regmap_field_read(priv->rf[valid_idx], &valid);
> - if (ret)
> - return ret;
> - while (!valid) {
> - /* Valid bit is 0 for 6 AHB clock cycles.
> - * At 19.2MHz, 1 AHB clock is ~60ns.
> - * We should enter this loop very, very rarely.
> - */
> - ndelay(400);
> - ret = regmap_field_read(priv->rf[valid_idx], &valid);
> - if (ret)
> - return ret;
> - }
> -
> - /* Valid bit is set, OK to read the temperature */
> - *temp = tsens_hw_to_mC(s, temp_idx);
> -
> - return 0;
> -}
> -
> -int get_temp_common(const struct tsens_sensor *s, int *temp)
> -{
> - struct tsens_priv *priv = s->priv;
> - int hw_id = s->hw_id;
> - int last_temp = 0, ret;
> -
> - ret = regmap_field_read(priv->rf[LAST_TEMP_0 + hw_id], &last_temp);
> - if (ret)
> - return ret;
> -
> - *temp = code_to_degc(last_temp, s) * 1000;
> -
> - return 0;
> -}
> -
> -#ifdef CONFIG_DEBUG_FS
> -static int dbg_sensors_show(struct seq_file *s, void *data)
> -{
> - struct platform_device *pdev = s->private;
> - struct tsens_priv *priv = platform_get_drvdata(pdev);
> - int i;
> -
> - seq_printf(s, "max: %2d\nnum: %2d\n\n",
> - priv->feat->max_sensors, priv->num_sensors);
> -
> - seq_puts(s, " id slope offset\n--------------------------\n");
> - for (i = 0; i < priv->num_sensors; i++) {
> - seq_printf(s, "%8d %8d %8d\n", priv->sensor[i].hw_id,
> - priv->sensor[i].slope, priv->sensor[i].offset);
> - }
> -
> - return 0;
> -}
> -
> -static int dbg_version_show(struct seq_file *s, void *data)
> -{
> - struct platform_device *pdev = s->private;
> - struct tsens_priv *priv = platform_get_drvdata(pdev);
> - u32 maj_ver, min_ver, step_ver;
> - int ret;
> -
> - if (tsens_version(priv) > VER_0_1) {
> - ret = regmap_field_read(priv->rf[VER_MAJOR], &maj_ver);
> - if (ret)
> - return ret;
> - ret = regmap_field_read(priv->rf[VER_MINOR], &min_ver);
> - if (ret)
> - return ret;
> - ret = regmap_field_read(priv->rf[VER_STEP], &step_ver);
> - if (ret)
> - return ret;
> - seq_printf(s, "%d.%d.%d\n", maj_ver, min_ver, step_ver);
> - } else {
> - seq_puts(s, "0.1.0\n");
> - }
> -
> - return 0;
> -}
> -
> -DEFINE_SHOW_ATTRIBUTE(dbg_version);
> -DEFINE_SHOW_ATTRIBUTE(dbg_sensors);
> -
> -static void tsens_debug_init(struct platform_device *pdev)
> -{
> - struct tsens_priv *priv = platform_get_drvdata(pdev);
> - struct dentry *root, *file;
> -
> - root = debugfs_lookup("tsens", NULL);
> - if (!root)
> - priv->debug_root = debugfs_create_dir("tsens", NULL);
> - else
> - priv->debug_root = root;
> -
> - file = debugfs_lookup("version", priv->debug_root);
> - if (!file)
> - debugfs_create_file("version", 0444, priv->debug_root,
> - pdev, &dbg_version_fops);
> -
> - /* A directory for each instance of the TSENS IP */
> - priv->debug = debugfs_create_dir(dev_name(&pdev->dev), priv->debug_root);
> - debugfs_create_file("sensors", 0444, priv->debug, pdev, &dbg_sensors_fops);
> -}
> -#else
> -static inline void tsens_debug_init(struct platform_device *pdev) {}
> -#endif
> -
> -static const struct regmap_config tsens_config = {
> - .name = "tm",
> - .reg_bits = 32,
> - .val_bits = 32,
> - .reg_stride = 4,
> -};
> -
> -static const struct regmap_config tsens_srot_config = {
> - .name = "srot",
> - .reg_bits = 32,
> - .val_bits = 32,
> - .reg_stride = 4,
> -};
> -
> -int __init init_common(struct tsens_priv *priv)
> -{
> - void __iomem *tm_base, *srot_base;
> - struct device *dev = priv->dev;
> - u32 ver_minor;
> - struct resource *res;
> - u32 enabled;
> - int ret, i, j;
> - struct platform_device *op = of_find_device_by_node(priv->dev->of_node);
> -
> - if (!op)
> - return -EINVAL;
> -
> - if (op->num_resources > 1) {
> - /* DT with separate SROT and TM address space */
> - priv->tm_offset = 0;
> - res = platform_get_resource(op, IORESOURCE_MEM, 1);
> - srot_base = devm_ioremap_resource(dev, res);
> - if (IS_ERR(srot_base)) {
> - ret = PTR_ERR(srot_base);
> - goto err_put_device;
> - }
> -
> - priv->srot_map = devm_regmap_init_mmio(dev, srot_base,
> - &tsens_srot_config);
> - if (IS_ERR(priv->srot_map)) {
> - ret = PTR_ERR(priv->srot_map);
> - goto err_put_device;
> - }
> - } else {
> - /* old DTs where SROT and TM were in a contiguous 2K block */
> - priv->tm_offset = 0x1000;
> - }
> -
> - res = platform_get_resource(op, IORESOURCE_MEM, 0);
> - tm_base = devm_ioremap_resource(dev, res);
> - if (IS_ERR(tm_base)) {
> - ret = PTR_ERR(tm_base);
> - goto err_put_device;
> - }
> -
> - priv->tm_map = devm_regmap_init_mmio(dev, tm_base, &tsens_config);
> - if (IS_ERR(priv->tm_map)) {
> - ret = PTR_ERR(priv->tm_map);
> - goto err_put_device;
> - }
> -
> - if (tsens_version(priv) > VER_0_1) {
> - for (i = VER_MAJOR; i <= VER_STEP; i++) {
> - priv->rf[i] = devm_regmap_field_alloc(dev, priv->srot_map,
> - priv->fields[i]);
> - if (IS_ERR(priv->rf[i]))
> - return PTR_ERR(priv->rf[i]);
> - }
> - ret = regmap_field_read(priv->rf[VER_MINOR], &ver_minor);
> - if (ret)
> - goto err_put_device;
> - }
> -
> - priv->rf[TSENS_EN] = devm_regmap_field_alloc(dev, priv->srot_map,
> - priv->fields[TSENS_EN]);
> - if (IS_ERR(priv->rf[TSENS_EN])) {
> - ret = PTR_ERR(priv->rf[TSENS_EN]);
> - goto err_put_device;
> - }
> - ret = regmap_field_read(priv->rf[TSENS_EN], &enabled);
> - if (ret)
> - goto err_put_device;
> - if (!enabled) {
> - dev_err(dev, "%s: device not enabled\n", __func__);
> - ret = -ENODEV;
> - goto err_put_device;
> - }
> -
> - priv->rf[SENSOR_EN] = devm_regmap_field_alloc(dev, priv->srot_map,
> - priv->fields[SENSOR_EN]);
> - if (IS_ERR(priv->rf[SENSOR_EN])) {
> - ret = PTR_ERR(priv->rf[SENSOR_EN]);
> - goto err_put_device;
> - }
> - priv->rf[INT_EN] = devm_regmap_field_alloc(dev, priv->tm_map,
> - priv->fields[INT_EN]);
> - if (IS_ERR(priv->rf[INT_EN])) {
> - ret = PTR_ERR(priv->rf[INT_EN]);
> - goto err_put_device;
> - }
> -
> - /* This loop might need changes if enum regfield_ids is reordered */
> - for (j = LAST_TEMP_0; j <= UP_THRESH_15; j += 16) {
> - for (i = 0; i < priv->feat->max_sensors; i++) {
> - int idx = j + i;
> -
> - priv->rf[idx] = devm_regmap_field_alloc(dev, priv->tm_map,
> - priv->fields[idx]);
> - if (IS_ERR(priv->rf[idx])) {
> - ret = PTR_ERR(priv->rf[idx]);
> - goto err_put_device;
> - }
> - }
> - }
> -
> - if (priv->feat->crit_int) {
> - /* Loop might need changes if enum regfield_ids is reordered */
> - for (j = CRITICAL_STATUS_0; j <= CRIT_THRESH_15; j += 16) {
> - for (i = 0; i < priv->feat->max_sensors; i++) {
> - int idx = j + i;
> -
> - priv->rf[idx] =
> - devm_regmap_field_alloc(dev,
> - priv->tm_map,
> - priv->fields[idx]);
> - if (IS_ERR(priv->rf[idx])) {
> - ret = PTR_ERR(priv->rf[idx]);
> - goto err_put_device;
> - }
> - }
> - }
> - }
> -
> - if (tsens_version(priv) > VER_1_X && ver_minor > 2) {
> - /* Watchdog is present only on v2.3+ */
> - priv->feat->has_watchdog = 1;
> - for (i = WDOG_BARK_STATUS; i <= CC_MON_MASK; i++) {
> - priv->rf[i] = devm_regmap_field_alloc(dev, priv->tm_map,
> - priv->fields[i]);
> - if (IS_ERR(priv->rf[i])) {
> - ret = PTR_ERR(priv->rf[i]);
> - goto err_put_device;
> - }
> - }
> - /*
> - * Watchdog is already enabled, unmask the bark.
> - * Disable cycle completion monitoring
> - */
> - regmap_field_write(priv->rf[WDOG_BARK_MASK], 0);
> - regmap_field_write(priv->rf[CC_MON_MASK], 1);
> - }
> -
> - spin_lock_init(&priv->ul_lock);
> - tsens_enable_irq(priv);
> - tsens_debug_init(op);
> -
> -err_put_device:
> - put_device(&op->dev);
> - return ret;
> -}
> diff --git a/drivers/thermal/qcom/tsens.c b/drivers/thermal/qcom/tsens.c
> index 2f77d235cf735..8d3e94d2a9ed4 100644
> --- a/drivers/thermal/qcom/tsens.c
> +++ b/drivers/thermal/qcom/tsens.c
> @@ -1,19 +1,857 @@
> // SPDX-License-Identifier: GPL-2.0
> /*
> * Copyright (c) 2015, The Linux Foundation. All rights reserved.
> + * Copyright (c) 2019, 2020, Linaro Ltd.
> */
>
> #include <linux/debugfs.h>
> #include <linux/err.h>
> +#include <linux/io.h>
> #include <linux/module.h>
> +#include <linux/nvmem-consumer.h>
> #include <linux/of.h>
> +#include <linux/of_address.h>
> #include <linux/of_platform.h>
> #include <linux/platform_device.h>
> #include <linux/pm.h>
> +#include <linux/regmap.h>
> #include <linux/slab.h>
> #include <linux/thermal.h>
> #include "tsens.h"
>
> +/**
> + * struct tsens_irq_data - IRQ status and temperature violations
> + * @up_viol: upper threshold violated
> + * @up_thresh: upper threshold temperature value
> + * @up_irq_mask: mask register for upper threshold irqs
> + * @up_irq_clear: clear register for uppper threshold irqs
> + * @low_viol: lower threshold violated
> + * @low_thresh: lower threshold temperature value
> + * @low_irq_mask: mask register for lower threshold irqs
> + * @low_irq_clear: clear register for lower threshold irqs
> + * @crit_viol: critical threshold violated
> + * @crit_thresh: critical threshold temperature value
> + * @crit_irq_mask: mask register for critical threshold irqs
> + * @crit_irq_clear: clear register for critical threshold irqs
> + *
> + * Structure containing data about temperature threshold settings and
> + * irq status if they were violated.
> + */
> +struct tsens_irq_data {
> + u32 up_viol;
> + int up_thresh;
> + u32 up_irq_mask;
> + u32 up_irq_clear;
> + u32 low_viol;
> + int low_thresh;
> + u32 low_irq_mask;
> + u32 low_irq_clear;
> + u32 crit_viol;
> + u32 crit_thresh;
> + u32 crit_irq_mask;
> + u32 crit_irq_clear;
> +};
> +
> +char *qfprom_read(struct device *dev, const char *cname)
> +{
> + struct nvmem_cell *cell;
> + ssize_t data;
> + char *ret;
> +
> + cell = nvmem_cell_get(dev, cname);
> + if (IS_ERR(cell))
> + return ERR_CAST(cell);
> +
> + ret = nvmem_cell_read(cell, &data);
> + nvmem_cell_put(cell);
> +
> + return ret;
> +}
> +
> +/*
> + * Use this function on devices where slope and offset calculations
> + * depend on calibration data read from qfprom. On others the slope
> + * and offset values are derived from tz->tzp->slope and tz->tzp->offset
> + * resp.
> + */
> +void compute_intercept_slope(struct tsens_priv *priv, u32 *p1,
> + u32 *p2, u32 mode)
> +{
> + int i;
> + int num, den;
> +
> + for (i = 0; i < priv->num_sensors; i++) {
> + dev_dbg(priv->dev,
> + "%s: sensor%d - data_point1:%#x data_point2:%#x\n",
> + __func__, i, p1[i], p2[i]);
> +
> + priv->sensor[i].slope = SLOPE_DEFAULT;
> + if (mode == TWO_PT_CALIB) {
> + /*
> + * slope (m) = adc_code2 - adc_code1 (y2 - y1)/
> + * temp_120_degc - temp_30_degc (x2 - x1)
> + */
> + num = p2[i] - p1[i];
> + num *= SLOPE_FACTOR;
> + den = CAL_DEGC_PT2 - CAL_DEGC_PT1;
> + priv->sensor[i].slope = num / den;
> + }
> +
> + priv->sensor[i].offset = (p1[i] * SLOPE_FACTOR) -
> + (CAL_DEGC_PT1 *
> + priv->sensor[i].slope);
> + dev_dbg(priv->dev, "%s: offset:%d\n", __func__,
> + priv->sensor[i].offset);
> + }
> +}
> +
> +static inline u32 degc_to_code(int degc, const struct tsens_sensor *s)
> +{
> + u64 code = div_u64(((u64)degc * s->slope + s->offset), SLOPE_FACTOR);
> +
> + pr_debug("%s: raw_code: 0x%llx, degc:%d\n", __func__, code, degc);
> + return clamp_val(code, THRESHOLD_MIN_ADC_CODE, THRESHOLD_MAX_ADC_CODE);
> +}
> +
> +static inline int code_to_degc(u32 adc_code, const struct tsens_sensor *s)
> +{
> + int degc, num, den;
> +
> + num = (adc_code * SLOPE_FACTOR) - s->offset;
> + den = s->slope;
> +
> + if (num > 0)
> + degc = num + (den / 2);
> + else if (num < 0)
> + degc = num - (den / 2);
> + else
> + degc = num;
> +
> + degc /= den;
> +
> + return degc;
> +}
> +
> +/**
> + * tsens_hw_to_mC - Return sign-extended temperature in mCelsius.
> + * @s: Pointer to sensor struct
> + * @field: Index into regmap_field array pointing to temperature data
> + *
> + * This function handles temperature returned in ADC code or deciCelsius
> + * depending on IP version.
> + *
> + * Return: Temperature in milliCelsius on success, a negative errno will
> + * be returned in error cases
> + */
> +static int tsens_hw_to_mC(const struct tsens_sensor *s, int field)
> +{
> + struct tsens_priv *priv = s->priv;
> + u32 resolution;
> + u32 temp = 0;
> + int ret;
> +
> + resolution = priv->fields[LAST_TEMP_0].msb -
> + priv->fields[LAST_TEMP_0].lsb;
> +
> + ret = regmap_field_read(priv->rf[field], &temp);
> + if (ret)
> + return ret;
> +
> + /* Convert temperature from ADC code to milliCelsius */
> + if (priv->feat->adc)
> + return code_to_degc(temp, s) * 1000;
> +
> + /* deciCelsius -> milliCelsius along with sign extension */
> + return sign_extend32(temp, resolution) * 100;
> +}
> +
> +/**
> + * tsens_mC_to_hw - Convert temperature to hardware register value
> + * @s: Pointer to sensor struct
> + * @temp: temperature in milliCelsius to be programmed to hardware
> + *
> + * This function outputs the value to be written to hardware in ADC code
> + * or deciCelsius depending on IP version.
> + *
> + * Return: ADC code or temperature in deciCelsius.
> + */
> +static int tsens_mC_to_hw(const struct tsens_sensor *s, int temp)
> +{
> + struct tsens_priv *priv = s->priv;
> +
> + /* milliC to adc code */
> + if (priv->feat->adc)
> + return degc_to_code(temp / 1000, s);
> +
> + /* milliC to deciC */
> + return temp / 100;
> +}
> +
> +static inline enum tsens_ver tsens_version(struct tsens_priv *priv)
> +{
> + return priv->feat->ver_major;
> +}
> +
> +static void tsens_set_interrupt_v1(struct tsens_priv *priv, u32 hw_id,
> + enum tsens_irq_type irq_type, bool enable)
> +{
> + u32 index = 0;
> +
> + switch (irq_type) {
> + case UPPER:
> + index = UP_INT_CLEAR_0 + hw_id;
> + break;
> + case LOWER:
> + index = LOW_INT_CLEAR_0 + hw_id;
> + break;
> + case CRITICAL:
> + /* No critical interrupts before v2 */
> + return;
> + }
> + regmap_field_write(priv->rf[index], enable ? 0 : 1);
> +}
> +
> +static void tsens_set_interrupt_v2(struct tsens_priv *priv, u32 hw_id,
> + enum tsens_irq_type irq_type, bool enable)
> +{
> + u32 index_mask = 0, index_clear = 0;
> +
> + /*
> + * To enable the interrupt flag for a sensor:
> + * - clear the mask bit
> + * To disable the interrupt flag for a sensor:
> + * - Mask further interrupts for this sensor
> + * - Write 1 followed by 0 to clear the interrupt
> + */
> + switch (irq_type) {
> + case UPPER:
> + index_mask = UP_INT_MASK_0 + hw_id;
> + index_clear = UP_INT_CLEAR_0 + hw_id;
> + break;
> + case LOWER:
> + index_mask = LOW_INT_MASK_0 + hw_id;
> + index_clear = LOW_INT_CLEAR_0 + hw_id;
> + break;
> + case CRITICAL:
> + index_mask = CRIT_INT_MASK_0 + hw_id;
> + index_clear = CRIT_INT_CLEAR_0 + hw_id;
> + break;
> + }
> +
> + if (enable) {
> + regmap_field_write(priv->rf[index_mask], 0);
> + } else {
> + regmap_field_write(priv->rf[index_mask], 1);
> + regmap_field_write(priv->rf[index_clear], 1);
> + regmap_field_write(priv->rf[index_clear], 0);
> + }
> +}
> +
> +/**
> + * tsens_set_interrupt - Set state of an interrupt
> + * @priv: Pointer to tsens controller private data
> + * @hw_id: Hardware ID aka. sensor number
> + * @irq_type: irq_type from enum tsens_irq_type
> + * @enable: false = disable, true = enable
> + *
> + * Call IP-specific function to set state of an interrupt
> + *
> + * Return: void
> + */
> +static void tsens_set_interrupt(struct tsens_priv *priv, u32 hw_id,
> + enum tsens_irq_type irq_type, bool enable)
> +{
> + dev_dbg(priv->dev, "[%u] %s: %s -> %s\n", hw_id, __func__,
> + irq_type ? ((irq_type == 1) ? "UP" : "CRITICAL") : "LOW",
> + enable ? "en" : "dis");
> + if (tsens_version(priv) > VER_1_X)
> + tsens_set_interrupt_v2(priv, hw_id, irq_type, enable);
> + else
> + tsens_set_interrupt_v1(priv, hw_id, irq_type, enable);
> +}
> +
> +/**
> + * tsens_threshold_violated - Check if a sensor temperature violated a preset threshold
> + * @priv: Pointer to tsens controller private data
> + * @hw_id: Hardware ID aka. sensor number
> + * @d: Pointer to irq state data
> + *
> + * Return: 0 if threshold was not violated, 1 if it was violated and negative
> + * errno in case of errors
> + */
> +static int tsens_threshold_violated(struct tsens_priv *priv, u32 hw_id,
> + struct tsens_irq_data *d)
> +{
> + int ret;
> +
> + ret = regmap_field_read(priv->rf[UPPER_STATUS_0 + hw_id], &d->up_viol);
> + if (ret)
> + return ret;
> + ret = regmap_field_read(priv->rf[LOWER_STATUS_0 + hw_id], &d->low_viol);
> + if (ret)
> + return ret;
> +
> + if (priv->feat->crit_int) {
> + ret = regmap_field_read(priv->rf[CRITICAL_STATUS_0 + hw_id],
> + &d->crit_viol);
> + if (ret)
> + return ret;
> + }
> +
> + if (d->up_viol || d->low_viol || d->crit_viol)
> + return 1;
> +
> + return 0;
> +}
> +
> +static int tsens_read_irq_state(struct tsens_priv *priv, u32 hw_id,
> + const struct tsens_sensor *s,
> + struct tsens_irq_data *d)
> +{
> + int ret;
> +
> + ret = regmap_field_read(priv->rf[UP_INT_CLEAR_0 + hw_id], &d->up_irq_clear);
> + if (ret)
> + return ret;
> + ret = regmap_field_read(priv->rf[LOW_INT_CLEAR_0 + hw_id], &d->low_irq_clear);
> + if (ret)
> + return ret;
> + if (tsens_version(priv) > VER_1_X) {
> + ret = regmap_field_read(priv->rf[UP_INT_MASK_0 + hw_id], &d->up_irq_mask);
> + if (ret)
> + return ret;
> + ret = regmap_field_read(priv->rf[LOW_INT_MASK_0 + hw_id], &d->low_irq_mask);
> + if (ret)
> + return ret;
> + ret = regmap_field_read(priv->rf[CRIT_INT_CLEAR_0 + hw_id],
> + &d->crit_irq_clear);
> + if (ret)
> + return ret;
> + ret = regmap_field_read(priv->rf[CRIT_INT_MASK_0 + hw_id],
> + &d->crit_irq_mask);
> + if (ret)
> + return ret;
> +
> + d->crit_thresh = tsens_hw_to_mC(s, CRIT_THRESH_0 + hw_id);
> + } else {
> + /* No mask register on older TSENS */
> + d->up_irq_mask = 0;
> + d->low_irq_mask = 0;
> + d->crit_irq_clear = 0;
> + d->crit_irq_mask = 0;
> + d->crit_thresh = 0;
> + }
> +
> + d->up_thresh = tsens_hw_to_mC(s, UP_THRESH_0 + hw_id);
> + d->low_thresh = tsens_hw_to_mC(s, LOW_THRESH_0 + hw_id);
> +
> + dev_dbg(priv->dev, "[%u] %s%s: status(%u|%u|%u) | clr(%u|%u|%u) | mask(%u|%u|%u)\n",
> + hw_id, __func__,
> + (d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "",
> + d->low_viol, d->up_viol, d->crit_viol,
> + d->low_irq_clear, d->up_irq_clear, d->crit_irq_clear,
> + d->low_irq_mask, d->up_irq_mask, d->crit_irq_mask);
> + dev_dbg(priv->dev, "[%u] %s%s: thresh: (%d:%d:%d)\n", hw_id, __func__,
> + (d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "",
> + d->low_thresh, d->up_thresh, d->crit_thresh);
> +
> + return 0;
> +}
> +
> +static inline u32 masked_irq(u32 hw_id, u32 mask, enum tsens_ver ver)
> +{
> + if (ver > VER_1_X)
> + return mask & (1 << hw_id);
> +
> + /* v1, v0.1 don't have a irq mask register */
> + return 0;
> +}
> +
> +/**
> + * tsens_critical_irq_thread() - Threaded handler for critical interrupts
> + * @irq: irq number
> + * @data: tsens controller private data
> + *
> + * Check FSM watchdog bark status and clear if needed.
> + * Check all sensors to find ones that violated their critical threshold limits.
> + * Clear and then re-enable the interrupt.
> + *
> + * The level-triggered interrupt might deassert if the temperature returned to
> + * within the threshold limits by the time the handler got scheduled. We
> + * consider the irq to have been handled in that case.
> + *
> + * Return: IRQ_HANDLED
> + */
> +irqreturn_t tsens_critical_irq_thread(int irq, void *data)
> +{
> + struct tsens_priv *priv = data;
> + struct tsens_irq_data d;
> + int temp, ret, i;
> + u32 wdog_status, wdog_count;
> +
> + if (priv->feat->has_watchdog) {
> + ret = regmap_field_read(priv->rf[WDOG_BARK_STATUS],
> + &wdog_status);
> + if (ret)
> + return ret;
> +
> + if (wdog_status) {
> + /* Clear WDOG interrupt */
> + regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 1);
> + regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 0);
> + ret = regmap_field_read(priv->rf[WDOG_BARK_COUNT],
> + &wdog_count);
> + if (ret)
> + return ret;
> + if (wdog_count)
> + dev_dbg(priv->dev, "%s: watchdog count: %d\n",
> + __func__, wdog_count);
> +
> + /* Fall through to handle critical interrupts if any */
> + }
> + }
> +
> + for (i = 0; i < priv->num_sensors; i++) {
> + const struct tsens_sensor *s = &priv->sensor[i];
> + u32 hw_id = s->hw_id;
> +
> + if (IS_ERR(s->tzd))
> + continue;
> + if (!tsens_threshold_violated(priv, hw_id, &d))
> + continue;
> + ret = get_temp_tsens_valid(s, &temp);
> + if (ret) {
> + dev_err(priv->dev, "[%u] %s: error reading sensor\n",
> + hw_id, __func__);
> + continue;
> + }
> +
> + tsens_read_irq_state(priv, hw_id, s, &d);
> + if (d.crit_viol &&
> + !masked_irq(hw_id, d.crit_irq_mask, tsens_version(priv))) {
> + /* Mask critical interrupts, unused on Linux */
> + tsens_set_interrupt(priv, hw_id, CRITICAL, false);
> + }
> + }
> +
> + return IRQ_HANDLED;
> +}
> +
> +/**
> + * tsens_irq_thread - Threaded interrupt handler for uplow interrupts
> + * @irq: irq number
> + * @data: tsens controller private data
> + *
> + * Check all sensors to find ones that violated their threshold limits. If the
> + * temperature is still outside the limits, call thermal_zone_device_update() to
> + * update the thresholds, else re-enable the interrupts.
> + *
> + * The level-triggered interrupt might deassert if the temperature returned to
> + * within the threshold limits by the time the handler got scheduled. We
> + * consider the irq to have been handled in that case.
> + *
> + * Return: IRQ_HANDLED
> + */
> +irqreturn_t tsens_irq_thread(int irq, void *data)
> +{
> + struct tsens_priv *priv = data;
> + struct tsens_irq_data d;
> + bool enable = true, disable = false;
> + unsigned long flags;
> + int temp, ret, i;
> +
> + for (i = 0; i < priv->num_sensors; i++) {
> + bool trigger = false;
> + const struct tsens_sensor *s = &priv->sensor[i];
> + u32 hw_id = s->hw_id;
> +
> + if (IS_ERR(s->tzd))
> + continue;
> + if (!tsens_threshold_violated(priv, hw_id, &d))
> + continue;
> + ret = get_temp_tsens_valid(s, &temp);
> + if (ret) {
> + dev_err(priv->dev, "[%u] %s: error reading sensor\n",
> + hw_id, __func__);
> + continue;
> + }
> +
> + spin_lock_irqsave(&priv->ul_lock, flags);
> +
> + tsens_read_irq_state(priv, hw_id, s, &d);
> +
> + if (d.up_viol &&
> + !masked_irq(hw_id, d.up_irq_mask, tsens_version(priv))) {
> + tsens_set_interrupt(priv, hw_id, UPPER, disable);
> + if (d.up_thresh > temp) {
> + dev_dbg(priv->dev, "[%u] %s: re-arm upper\n",
> + hw_id, __func__);
> + tsens_set_interrupt(priv, hw_id, UPPER, enable);
> + } else {
> + trigger = true;
> + /* Keep irq masked */
> + }
> + } else if (d.low_viol &&
> + !masked_irq(hw_id, d.low_irq_mask, tsens_version(priv))) {
> + tsens_set_interrupt(priv, hw_id, LOWER, disable);
> + if (d.low_thresh < temp) {
> + dev_dbg(priv->dev, "[%u] %s: re-arm low\n",
> + hw_id, __func__);
> + tsens_set_interrupt(priv, hw_id, LOWER, enable);
> + } else {
> + trigger = true;
> + /* Keep irq masked */
> + }
> + }
> +
> + spin_unlock_irqrestore(&priv->ul_lock, flags);
> +
> + if (trigger) {
> + dev_dbg(priv->dev, "[%u] %s: TZ update trigger (%d mC)\n",
> + hw_id, __func__, temp);
> + thermal_zone_device_update(s->tzd,
> + THERMAL_EVENT_UNSPECIFIED);
> + } else {
> + dev_dbg(priv->dev, "[%u] %s: no violation: %d\n",
> + hw_id, __func__, temp);
> + }
> + }
> +
> + return IRQ_HANDLED;
> +}
> +
> +int tsens_set_trips(void *_sensor, int low, int high)
> +{
> + struct tsens_sensor *s = _sensor;
> + struct tsens_priv *priv = s->priv;
> + struct device *dev = priv->dev;
> + struct tsens_irq_data d;
> + unsigned long flags;
> + int high_val, low_val, cl_high, cl_low;
> + u32 hw_id = s->hw_id;
> +
> + dev_dbg(dev, "[%u] %s: proposed thresholds: (%d:%d)\n",
> + hw_id, __func__, low, high);
> +
> + cl_high = clamp_val(high, -40000, 120000);
> + cl_low = clamp_val(low, -40000, 120000);
> +
> + high_val = tsens_mC_to_hw(s, cl_high);
> + low_val = tsens_mC_to_hw(s, cl_low);
> +
> + spin_lock_irqsave(&priv->ul_lock, flags);
> +
> + tsens_read_irq_state(priv, hw_id, s, &d);
> +
> + /* Write the new thresholds and clear the status */
> + regmap_field_write(priv->rf[LOW_THRESH_0 + hw_id], low_val);
> + regmap_field_write(priv->rf[UP_THRESH_0 + hw_id], high_val);
> + tsens_set_interrupt(priv, hw_id, LOWER, true);
> + tsens_set_interrupt(priv, hw_id, UPPER, true);
> +
> + spin_unlock_irqrestore(&priv->ul_lock, flags);
> +
> + dev_dbg(dev, "[%u] %s: (%d:%d)->(%d:%d)\n",
> + hw_id, __func__, d.low_thresh, d.up_thresh, cl_low, cl_high);
> +
> + return 0;
> +}
> +
> +int tsens_enable_irq(struct tsens_priv *priv)
> +{
> + int ret;
> + int val = tsens_version(priv) > VER_1_X ? 7 : 1;
> +
> + ret = regmap_field_write(priv->rf[INT_EN], val);
> + if (ret < 0)
> + dev_err(priv->dev, "%s: failed to enable interrupts\n",
> + __func__);
> +
> + return ret;
> +}
> +
> +void tsens_disable_irq(struct tsens_priv *priv)
> +{
> + regmap_field_write(priv->rf[INT_EN], 0);
> +}
> +
> +int get_temp_tsens_valid(const struct tsens_sensor *s, int *temp)
> +{
> + struct tsens_priv *priv = s->priv;
> + int hw_id = s->hw_id;
> + u32 temp_idx = LAST_TEMP_0 + hw_id;
> + u32 valid_idx = VALID_0 + hw_id;
> + u32 valid;
> + int ret;
> +
> + ret = regmap_field_read(priv->rf[valid_idx], &valid);
> + if (ret)
> + return ret;
> + while (!valid) {
> + /* Valid bit is 0 for 6 AHB clock cycles.
> + * At 19.2MHz, 1 AHB clock is ~60ns.
> + * We should enter this loop very, very rarely.
> + */
> + ndelay(400);
> + ret = regmap_field_read(priv->rf[valid_idx], &valid);
> + if (ret)
> + return ret;
> + }
> +
> + /* Valid bit is set, OK to read the temperature */
> + *temp = tsens_hw_to_mC(s, temp_idx);
> +
> + return 0;
> +}
> +
> +int get_temp_common(const struct tsens_sensor *s, int *temp)
> +{
> + struct tsens_priv *priv = s->priv;
> + int hw_id = s->hw_id;
> + int last_temp = 0, ret;
> +
> + ret = regmap_field_read(priv->rf[LAST_TEMP_0 + hw_id], &last_temp);
> + if (ret)
> + return ret;
> +
> + *temp = code_to_degc(last_temp, s) * 1000;
> +
> + return 0;
> +}
> +
> +#ifdef CONFIG_DEBUG_FS
> +static int dbg_sensors_show(struct seq_file *s, void *data)
> +{
> + struct platform_device *pdev = s->private;
> + struct tsens_priv *priv = platform_get_drvdata(pdev);
> + int i;
> +
> + seq_printf(s, "max: %2d\nnum: %2d\n\n",
> + priv->feat->max_sensors, priv->num_sensors);
> +
> + seq_puts(s, " id slope offset\n--------------------------\n");
> + for (i = 0; i < priv->num_sensors; i++) {
> + seq_printf(s, "%8d %8d %8d\n", priv->sensor[i].hw_id,
> + priv->sensor[i].slope, priv->sensor[i].offset);
> + }
> +
> + return 0;
> +}
> +
> +static int dbg_version_show(struct seq_file *s, void *data)
> +{
> + struct platform_device *pdev = s->private;
> + struct tsens_priv *priv = platform_get_drvdata(pdev);
> + u32 maj_ver, min_ver, step_ver;
> + int ret;
> +
> + if (tsens_version(priv) > VER_0_1) {
> + ret = regmap_field_read(priv->rf[VER_MAJOR], &maj_ver);
> + if (ret)
> + return ret;
> + ret = regmap_field_read(priv->rf[VER_MINOR], &min_ver);
> + if (ret)
> + return ret;
> + ret = regmap_field_read(priv->rf[VER_STEP], &step_ver);
> + if (ret)
> + return ret;
> + seq_printf(s, "%d.%d.%d\n", maj_ver, min_ver, step_ver);
> + } else {
> + seq_puts(s, "0.1.0\n");
> + }
> +
> + return 0;
> +}
> +
> +DEFINE_SHOW_ATTRIBUTE(dbg_version);
> +DEFINE_SHOW_ATTRIBUTE(dbg_sensors);
> +
> +static void tsens_debug_init(struct platform_device *pdev)
> +{
> + struct tsens_priv *priv = platform_get_drvdata(pdev);
> + struct dentry *root, *file;
> +
> + root = debugfs_lookup("tsens", NULL);
> + if (!root)
> + priv->debug_root = debugfs_create_dir("tsens", NULL);
> + else
> + priv->debug_root = root;
> +
> + file = debugfs_lookup("version", priv->debug_root);
> + if (!file)
> + debugfs_create_file("version", 0444, priv->debug_root,
> + pdev, &dbg_version_fops);
> +
> + /* A directory for each instance of the TSENS IP */
> + priv->debug = debugfs_create_dir(dev_name(&pdev->dev), priv->debug_root);
> + debugfs_create_file("sensors", 0444, priv->debug, pdev, &dbg_sensors_fops);
> +}
> +#else
> +static inline void tsens_debug_init(struct platform_device *pdev) {}
> +#endif
> +
> +static const struct regmap_config tsens_config = {
> + .name = "tm",
> + .reg_bits = 32,
> + .val_bits = 32,
> + .reg_stride = 4,
> +};
> +
> +static const struct regmap_config tsens_srot_config = {
> + .name = "srot",
> + .reg_bits = 32,
> + .val_bits = 32,
> + .reg_stride = 4,
> +};
> +
> +int __init init_common(struct tsens_priv *priv)
> +{
> + void __iomem *tm_base, *srot_base;
> + struct device *dev = priv->dev;
> + u32 ver_minor;
> + struct resource *res;
> + u32 enabled;
> + int ret, i, j;
> + struct platform_device *op = of_find_device_by_node(priv->dev->of_node);
> +
> + if (!op)
> + return -EINVAL;
> +
> + if (op->num_resources > 1) {
> + /* DT with separate SROT and TM address space */
> + priv->tm_offset = 0;
> + res = platform_get_resource(op, IORESOURCE_MEM, 1);
> + srot_base = devm_ioremap_resource(dev, res);
> + if (IS_ERR(srot_base)) {
> + ret = PTR_ERR(srot_base);
> + goto err_put_device;
> + }
> +
> + priv->srot_map = devm_regmap_init_mmio(dev, srot_base,
> + &tsens_srot_config);
> + if (IS_ERR(priv->srot_map)) {
> + ret = PTR_ERR(priv->srot_map);
> + goto err_put_device;
> + }
> + } else {
> + /* old DTs where SROT and TM were in a contiguous 2K block */
> + priv->tm_offset = 0x1000;
> + }
> +
> + res = platform_get_resource(op, IORESOURCE_MEM, 0);
> + tm_base = devm_ioremap_resource(dev, res);
> + if (IS_ERR(tm_base)) {
> + ret = PTR_ERR(tm_base);
> + goto err_put_device;
> + }
> +
> + priv->tm_map = devm_regmap_init_mmio(dev, tm_base, &tsens_config);
> + if (IS_ERR(priv->tm_map)) {
> + ret = PTR_ERR(priv->tm_map);
> + goto err_put_device;
> + }
> +
> + if (tsens_version(priv) > VER_0_1) {
> + for (i = VER_MAJOR; i <= VER_STEP; i++) {
> + priv->rf[i] = devm_regmap_field_alloc(dev, priv->srot_map,
> + priv->fields[i]);
> + if (IS_ERR(priv->rf[i]))
> + return PTR_ERR(priv->rf[i]);
> + }
> + ret = regmap_field_read(priv->rf[VER_MINOR], &ver_minor);
> + if (ret)
> + goto err_put_device;
> + }
> +
> + priv->rf[TSENS_EN] = devm_regmap_field_alloc(dev, priv->srot_map,
> + priv->fields[TSENS_EN]);
> + if (IS_ERR(priv->rf[TSENS_EN])) {
> + ret = PTR_ERR(priv->rf[TSENS_EN]);
> + goto err_put_device;
> + }
> + ret = regmap_field_read(priv->rf[TSENS_EN], &enabled);
> + if (ret)
> + goto err_put_device;
> + if (!enabled) {
> + dev_err(dev, "%s: device not enabled\n", __func__);
> + ret = -ENODEV;
> + goto err_put_device;
> + }
> +
> + priv->rf[SENSOR_EN] = devm_regmap_field_alloc(dev, priv->srot_map,
> + priv->fields[SENSOR_EN]);
> + if (IS_ERR(priv->rf[SENSOR_EN])) {
> + ret = PTR_ERR(priv->rf[SENSOR_EN]);
> + goto err_put_device;
> + }
> + priv->rf[INT_EN] = devm_regmap_field_alloc(dev, priv->tm_map,
> + priv->fields[INT_EN]);
> + if (IS_ERR(priv->rf[INT_EN])) {
> + ret = PTR_ERR(priv->rf[INT_EN]);
> + goto err_put_device;
> + }
> +
> + /* This loop might need changes if enum regfield_ids is reordered */
> + for (j = LAST_TEMP_0; j <= UP_THRESH_15; j += 16) {
> + for (i = 0; i < priv->feat->max_sensors; i++) {
> + int idx = j + i;
> +
> + priv->rf[idx] = devm_regmap_field_alloc(dev,
> + priv->tm_map,
> + priv->fields[idx]);
> + if (IS_ERR(priv->rf[idx])) {
> + ret = PTR_ERR(priv->rf[idx]);
> + goto err_put_device;
> + }
> + }
> + }
> +
> + if (priv->feat->crit_int) {
> + /* Loop might need changes if enum regfield_ids is reordered */
> + for (j = CRITICAL_STATUS_0; j <= CRIT_THRESH_15; j += 16) {
> + for (i = 0; i < priv->feat->max_sensors; i++) {
> + int idx = j + i;
> +
> + priv->rf[idx] =
> + devm_regmap_field_alloc(dev,
> + priv->tm_map,
> + priv->fields[idx]);
> + if (IS_ERR(priv->rf[idx])) {
> + ret = PTR_ERR(priv->rf[idx]);
> + goto err_put_device;
> + }
> + }
> + }
> + }
> +
> + if (tsens_version(priv) > VER_1_X && ver_minor > 2) {
> + /* Watchdog is present only on v2.3+ */
> + priv->feat->has_watchdog = 1;
> + for (i = WDOG_BARK_STATUS; i <= CC_MON_MASK; i++) {
> + priv->rf[i] = devm_regmap_field_alloc(dev, priv->tm_map,
> + priv->fields[i]);
> + if (IS_ERR(priv->rf[i])) {
> + ret = PTR_ERR(priv->rf[i]);
> + goto err_put_device;
> + }
> + }
> + /*
> + * Watchdog is already enabled, unmask the bark.
> + * Disable cycle completion monitoring
> + */
> + regmap_field_write(priv->rf[WDOG_BARK_MASK], 0);
> + regmap_field_write(priv->rf[CC_MON_MASK], 1);
> + }
> +
> + spin_lock_init(&priv->ul_lock);
> + tsens_enable_irq(priv);
> + tsens_debug_init(op);
> +
> +err_put_device:
> + put_device(&op->dev);
> + return ret;
> +}
> +
> static int tsens_get_temp(void *data, int *temp)
> {
> struct tsens_sensor *s = data;
> diff --git a/drivers/thermal/qcom/tsens.h b/drivers/thermal/qcom/tsens.h
> index 502acf0e68285..59d01162c66af 100644
> --- a/drivers/thermal/qcom/tsens.h
> +++ b/drivers/thermal/qcom/tsens.h
> @@ -580,11 +580,6 @@ void compute_intercept_slope(struct tsens_priv *priv, u32 *pt1, u32 *pt2, u32 mo
> int init_common(struct tsens_priv *priv);
> int get_temp_tsens_valid(const struct tsens_sensor *s, int *temp);
> int get_temp_common(const struct tsens_sensor *s, int *temp);
> -int tsens_enable_irq(struct tsens_priv *priv);
> -void tsens_disable_irq(struct tsens_priv *priv);
> -int tsens_set_trips(void *_sensor, int low, int high);
> -irqreturn_t tsens_irq_thread(int irq, void *data);
> -irqreturn_t tsens_critical_irq_thread(int irq, void *data);
>
> /* TSENS target */
> extern struct tsens_plat_data data_8960;
> --
> 2.20.1
>
Powered by blists - more mailing lists