lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite for Android: free password hash cracker in your pocket
[<prev] [next>] [thread-next>] [day] [month] [year] [list]
Message-Id: <20200519201912.1564477-1-bigeasy@linutronix.de>
Date:   Tue, 19 May 2020 22:19:04 +0200
From:   Sebastian Andrzej Siewior <bigeasy@...utronix.de>
To:     linux-kernel@...r.kernel.org
Cc:     Peter Zijlstra <peterz@...radead.org>,
        Ingo Molnar <mingo@...nel.org>,
        Steven Rostedt <rostedt@...dmis.org>,
        Will Deacon <will@...nel.org>,
        Thomas Gleixner <tglx@...utronix.de>,
        "Paul E . McKenney" <paulmck@...nel.org>,
        Linus Torvalds <torvalds@...ux-foundation.org>
Subject: [PATCH 0/8] Introduce local_lock()

preempt_disable() and local_irq_disable/save() are in principle per CPU big
kernel locks. This has several downsides:

  - The protection scope is unknown

  - Violation of protection rules is hard to detect by instrumentation

  - For PREEMPT_RT such sections, unless in low level critical code, can
    violate the preemptability constraints.

To address this PREEMPT_RT introduced the concept of local_locks which are
strictly per CPU.

The lock operations map to preempt_disable(), local_irq_disable/save() and
the enabling counterparts on non RT enabled kernels.

If lockdep is enabled local locks gain a lock map which tracks the usage
context. This will catch cases where an area is protected by
preempt_disable() but the access also happens from interrupt context. local
locks have identified quite a few such issues over the years, the most
recent example is:

  b7d5dc21072cd ("random: add a spinlock_t to struct batched_entropy")

Aside of the lockdep coverage this also improves code readability as it
precisely annotates the protection scope.

PREEMPT_RT substitutes these local locks with 'sleeping' spinlocks to
protect such sections while maintaining preemtability and CPU locality.

The following series introduces the infrastructure including
documentation and provides a couple of examples how they are used to
adjust code to be RT ready.

Sebastian


Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ