lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20200521211520.sqkwg4qbvx4oviob@ca-dmjordan1.us.oracle.com>
Date:   Thu, 21 May 2020 17:15:20 -0400
From:   Daniel Jordan <daniel.m.jordan@...cle.com>
To:     Alexander Duyck <alexander.duyck@...il.com>
Cc:     Daniel Jordan <daniel.m.jordan@...cle.com>,
        Andrew Morton <akpm@...ux-foundation.org>,
        Herbert Xu <herbert@...dor.apana.org.au>,
        Steffen Klassert <steffen.klassert@...unet.com>,
        Alex Williamson <alex.williamson@...hat.com>,
        Alexander Duyck <alexander.h.duyck@...ux.intel.com>,
        Dan Williams <dan.j.williams@...el.com>,
        Dave Hansen <dave.hansen@...ux.intel.com>,
        David Hildenbrand <david@...hat.com>,
        Jason Gunthorpe <jgg@...pe.ca>,
        Jonathan Corbet <corbet@....net>,
        Josh Triplett <josh@...htriplett.org>,
        Kirill Tkhai <ktkhai@...tuozzo.com>,
        Michal Hocko <mhocko@...nel.org>, Pavel Machek <pavel@....cz>,
        Pavel Tatashin <pasha.tatashin@...een.com>,
        Peter Zijlstra <peterz@...radead.org>,
        Randy Dunlap <rdunlap@...radead.org>,
        Robert Elliott <elliott@....com>,
        Shile Zhang <shile.zhang@...ux.alibaba.com>,
        Steven Sistare <steven.sistare@...cle.com>,
        Tejun Heo <tj@...nel.org>, Zi Yan <ziy@...dia.com>,
        linux-crypto@...r.kernel.org, linux-mm <linux-mm@...ck.org>,
        LKML <linux-kernel@...r.kernel.org>, linux-s390@...r.kernel.org,
        "open list:LINUX FOR POWERPC (32-BIT AND 64-BIT)" 
        <linuxppc-dev@...ts.ozlabs.org>
Subject: Re: [PATCH v2 5/7] mm: parallelize deferred_init_memmap()

On Thu, May 21, 2020 at 09:46:35AM -0700, Alexander Duyck wrote:
> It is more about not bothering with the extra tracking. We don't
> really need it and having it doesn't really add much in the way of
> value.

Yeah, it can probably go.

> > > > @@ -1863,11 +1892,32 @@ static int __init deferred_init_memmap(void *data)
> > > >                 goto zone_empty;
> > > >
> > > >         /*
> > > > -        * Initialize and free pages in MAX_ORDER sized increments so
> > > > -        * that we can avoid introducing any issues with the buddy
> > > > -        * allocator.
> > > > +        * More CPUs always led to greater speedups on tested systems, up to
> > > > +        * all the nodes' CPUs.  Use all since the system is otherwise idle now.
> > > >          */
> > > > +       max_threads = max(cpumask_weight(cpumask), 1u);
> > > > +
> > > >         while (spfn < epfn) {
> > > > +               epfn_align = ALIGN_DOWN(epfn, PAGES_PER_SECTION);
> > > > +
> > > > +               if (IS_ALIGNED(spfn, PAGES_PER_SECTION) &&
> > > > +                   epfn_align - spfn >= PAGES_PER_SECTION) {
> > > > +                       struct definit_args arg = { zone, ATOMIC_LONG_INIT(0) };
> > > > +                       struct padata_mt_job job = {
> > > > +                               .thread_fn   = deferred_init_memmap_chunk,
> > > > +                               .fn_arg      = &arg,
> > > > +                               .start       = spfn,
> > > > +                               .size        = epfn_align - spfn,
> > > > +                               .align       = PAGES_PER_SECTION,
> > > > +                               .min_chunk   = PAGES_PER_SECTION,
> > > > +                               .max_threads = max_threads,
> > > > +                       };
> > > > +
> > > > +                       padata_do_multithreaded(&job);
> > > > +                       nr_pages += atomic_long_read(&arg.nr_pages);
> > > > +                       spfn = epfn_align;
> > > > +               }
> > > > +
> > > >                 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
> > > >                 cond_resched();
> > > >         }
> > >
> > > This doesn't look right. You are basically adding threads in addition
> > > to calls to deferred_init_maxorder.
> >
> > The deferred_init_maxorder call is there to do the remaining, non-section
> > aligned part of a range.  It doesn't have to be done this way.
> 
> It is also doing the advancing though isn't it?

Yes.  Not sure what you're getting at.  There's the 'spfn = epfn_align' before
so nothing is skipped.  It's true that the nonaligned part is done outside of
padata when it could be done by a thread that'd otherwise be waiting or idle,
which should be addressed in the next version.

> I think I resolved this with the fix for it I described in the other
> email. We just need to swap out spfn for epfn and make sure we align
> spfn with epfn_align. Then I think that takes care of possible skips.

Right, though your fix looks a lot like deferred_init_mem_pfn_range_in_zone().
Seems better to just use that and not repeat ourselves.  Lame that it's
starting at the beginning of the ranges every time, maybe it could be
generalized somehow, but I think it should be fast enough.

> > We could use deferred_init_mem_pfn_range_in_zone() instead of the for_each
> > loop.
> >
> > What I was trying to avoid by aligning down is creating a discontiguous pfn
> > range that get passed to padata.  We already discussed how those are handled
> > by the zone iterator in the thread function, but job->size can be exaggerated
> > to include parts of the range that are never touched.  Thinking more about it
> > though, it's a small fraction of the total work and shouldn't matter.
> 
> So the problem with aligning down is that you are going to be slowed
> up as you have to go single threaded to initialize whatever remains.
> So worst case scenario is that you have a section aligned block and
> you will process all but 1 section in parallel, and then have to
> process the remaining section one max order block at a time.

Yes, aligning up is better.

> > > This should accomplish the same thing, but much more efficiently.
> >
> > Well, more cleanly.  I'll give it a try.
> 
> I agree I am not sure if it will make a big difference on x86, however
> the more ranges you have to process the faster this approach should be
> as it stays parallel the entire time rather than having to drop out
> and process the last section one max order block at a time.

Right.

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ