[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <20200601011645.794040-4-jarkko.sakkinen@linux.intel.com>
Date: Mon, 1 Jun 2020 04:16:27 +0300
From: Jarkko Sakkinen <jarkko.sakkinen@...ux.intel.com>
To: linux-kernel@...r.kernel.org, x86@...nel.org,
linux-sgx@...r.kernel.org
Cc: Sean Christopherson <sean.j.christopherson@...el.com>,
Jethro Beekman <jethro@...tanix.com>,
Jarkko Sakkinen <jarkko.sakkinen@...ux.intel.com>,
akpm@...ux-foundation.org, andriy.shevchenko@...ux.intel.com,
asapek@...gle.com, bp@...en8.de, cedric.xing@...el.com,
chenalexchen@...gle.com, conradparker@...gle.com,
cyhanish@...gle.com, dave.hansen@...el.com, haitao.huang@...el.com,
josh@...htriplett.org, kai.huang@...el.com, kai.svahn@...el.com,
kmoy@...gle.com, ludloff@...gle.com, luto@...nel.org,
nhorman@...hat.com, npmccallum@...hat.com, puiterwijk@...hat.com,
rientjes@...gle.com, tglx@...utronix.de, yaozhangx@...gle.com
Subject: [PATCH v31 03/21] x86/mm: x86/sgx: Signal SIGSEGV with PF_SGX
From: Sean Christopherson <sean.j.christopherson@...el.com>
Include SGX bit to the PF error codes and throw SIGSEGV with PF_SGX when
a #PF with SGX set happens.
CPU throws a #PF with the SGX bit in the event of Enclave Page Cache Map
(EPCM) conflict. The EPCM is a CPU-internal table, which describes the
properties for a enclave page. Enclaves are measured and signed software
entities, which SGX hosts. [1]
Although the primary purpose of the EPCM conflict checks is to prevent
malicious accesses to an enclave, an illegit access can happen also for
legit reasons.
All SGX reserved memory, including EPCM is encrypted with a transient
key that does not survive from the power transition. Throwing a SIGSEGV
allows user space software react when this happens (e.g. rec-create the
enclave, which was invalidated).
[1] Intel SDM: 36.5.1 Enclave Page Cache Map (EPCM)
Acked-by: Jethro Beekman <jethro@...tanix.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@...el.com>
Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@...ux.intel.com>
---
arch/x86/include/asm/traps.h | 1 +
arch/x86/mm/fault.c | 13 +++++++++++++
2 files changed, 14 insertions(+)
diff --git a/arch/x86/include/asm/traps.h b/arch/x86/include/asm/traps.h
index c26a7e1d8a2c..07dd9f74d65a 100644
--- a/arch/x86/include/asm/traps.h
+++ b/arch/x86/include/asm/traps.h
@@ -171,5 +171,6 @@ enum x86_pf_error_code {
X86_PF_RSVD = 1 << 3,
X86_PF_INSTR = 1 << 4,
X86_PF_PK = 1 << 5,
+ X86_PF_SGX = 1 << 15,
};
#endif /* _ASM_X86_TRAPS_H */
diff --git a/arch/x86/mm/fault.c b/arch/x86/mm/fault.c
index a51df516b87b..16c53c874bb9 100644
--- a/arch/x86/mm/fault.c
+++ b/arch/x86/mm/fault.c
@@ -1201,6 +1201,19 @@ access_error(unsigned long error_code, struct vm_area_struct *vma)
if (error_code & X86_PF_PK)
return 1;
+ /*
+ * Access is blocked by the Enclave Page Cache Map (EPCM), i.e. the
+ * access is allowed by the PTE but not the EPCM. This usually happens
+ * when the EPCM is yanked out from under us, e.g. by hardware after a
+ * suspend/resume cycle. In any case, software, i.e. the kernel, can't
+ * fix the source of the fault as the EPCM can't be directly modified by
+ * software. Handle the fault as an access error in order to signal
+ * userspace so that userspace can rebuild their enclave(s), even though
+ * userspace may not have actually violated access permissions.
+ */
+ if (unlikely(error_code & X86_PF_SGX))
+ return 1;
+
/*
* Make sure to check the VMA so that we do not perform
* faults just to hit a X86_PF_PK as soon as we fill in a
--
2.25.1
Powered by blists - more mailing lists