[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20200609143811.GF23752@linux-b0ei>
Date: Tue, 9 Jun 2020 16:38:11 +0200
From: Petr Mladek <pmladek@...e.com>
To: John Ogness <john.ogness@...utronix.de>
Cc: Peter Zijlstra <peterz@...radead.org>,
Sergey Senozhatsky <sergey.senozhatsky.work@...il.com>,
Sergey Senozhatsky <sergey.senozhatsky@...il.com>,
Steven Rostedt <rostedt@...dmis.org>,
Linus Torvalds <torvalds@...ux-foundation.org>,
Greg Kroah-Hartman <gregkh@...uxfoundation.org>,
Andrea Parri <parri.andrea@...il.com>,
Thomas Gleixner <tglx@...utronix.de>,
kexec@...ts.infradead.org, linux-kernel@...r.kernel.org
Subject: data_ring head_lpos and tail_lpos synchronization: was [PATCH v2
2/3] printk: add lockless buffer
On Fri 2020-05-01 11:46:09, John Ogness wrote:
> Introduce a multi-reader multi-writer lockless ringbuffer for storing
> the kernel log messages. Readers and writers may use their API from
> any context (including scheduler and NMI). This ringbuffer will make
> it possible to decouple printk() callers from any context, locking,
> or console constraints. It also makes it possible for readers to have
> full access to the ringbuffer contents at any time and context (for
> example from any panic situation).
>
> --- /dev/null
> +++ b/kernel/printk/printk_ringbuffer.c
> +/*
> + * Advance the data ring tail to at least @lpos. This function puts
> + * descriptors into the reusable state if the tail is pushed beyond
> + * their associated data block.
> + */
> +static bool data_push_tail(struct printk_ringbuffer *rb,
> + struct prb_data_ring *data_ring,
> + unsigned long lpos)
> +{
> + unsigned long tail_lpos;
> + unsigned long next_lpos;
> +
> + /* If @lpos is not valid, there is nothing to do. */
> + if (lpos == INVALID_LPOS)
> + return true;
> +
> + tail_lpos = atomic_long_read(&data_ring->tail_lpos);
Hmm, I wonder whether data_ring->tail_lpos and data_ring->head_lpos
are synchronized enough between each other.
I feel that there should be read barrier here. But it seems that more
barriers are missing. For example, let's have:
CPU0 CPU1
data_alloc()
begin_lpos = atomic_read(data_ring->head_lpos);
data_alloc()
data_push_tail()
cmpxchg(data_ring->tail_lpos);
// A: no barrier
cmpxchg(data_ring->head_lpos);
data_push_tail()
// B: no barrier
tail_lpos = atomic_read(data_ring->tail_lpos);
Problem 1:
CPU0 might see random ordering of data_ring->tail_lpos and
head_lpos values modified by CPU1. There are missing both
write and read barriers.
Problem 2:
There might be still a chance because CPU0 does:
if (!data_make_reusable())
smp_rmb()
tail_lpos = atomic_read(data_ring->tail_lpos);
But CPU0 might still see old data_ring->tail because CPU1 did not
do write barrier.
My proposal:
1. There should be full memory barrier on the location A before
updating data_ring->head_lpos. It will be the same as the full
barriers needed before updating data_ring->tail_lpos.
data_ring->tail_lpos might have been pushed by another CPU.
We need to make sure that all CPUs see all needed changes
before we data_alloc() pushes head_lpos.
2. There should be read memory barrier in the location B.
It is not strictly necessary because data_push_tail() tries
to re-read data_ring->tail_lpos after a read barrier. But
the re-read is just a fallback.
The read barrier before the first read should be there to
keep "clean" design ;-) Or there should be at least some
comment about why the barrier is not there.
Best Regards,
Petr
> +
> + do {
> + /* Done, if the tail lpos is already at or beyond @lpos. */
> + if ((lpos - tail_lpos) - 1 >= DATA_SIZE(data_ring))
> + break;
> +
> + /*
> + * Make all descriptors reusable that are associated with
> + * data blocks before @lpos.
> + */
> + if (!data_make_reusable(rb, data_ring, tail_lpos, lpos,
> + &next_lpos)) {
> + /*
> + * Guarantee the descriptor state loaded in
> + * data_make_reusable() is performed before reloading
> + * the tail lpos. The failed data_make_reusable() may
> + * be due to a newly recycled descriptor causing
> + * the tail lpos to have been previously pushed. This
> + * pairs with desc_reserve:D.
> + *
> + * Memory barrier involvement:
> + *
> + * If data_make_reusable:D reads from desc_reserve:G,
> + * then data_push_tail:B reads from data_push_tail:D.
> + *
> + * Relies on:
> + *
> + * MB from data_push_tail:D to desc_reserve:G
> + * matching
> + * RMB from data_make_reusable:D to data_push_tail:B
> + *
> + * Note: data_push_tail:D and desc_reserve:G can be
> + * different CPUs. However, the desc_reserve:G
> + * CPU (which performs the full memory barrier)
> + * must have previously seen data_push_tail:D.
> + */
> + smp_rmb(); /* LMM(data_push_tail:A) */
> +
> + next_lpos = atomic_long_read(&data_ring->tail_lpos
> + ); /* LMM(data_push_tail:B) */
> + if (next_lpos == tail_lpos)
> + return false;
> +
> + /* Another task pushed the tail. Try again. */
> + tail_lpos = next_lpos;
> + continue;
> + }
> +
> + /*
> + * Guarantee any descriptor states that have transitioned to
> + * reusable are stored before pushing the tail lpos. This
> + * allows readers to identify if data has expired while
> + * reading the descriptor. This pairs with desc_read:D.
> + */
> + smp_mb(); /* LMM(data_push_tail:C) */
> +
> + } while (!atomic_long_try_cmpxchg_relaxed(&data_ring->tail_lpos,
> + &tail_lpos, next_lpos)); /* LMM(data_push_tail:D) */
> +
> + return true;
> +}
> +
> +/*
> + * Allocate a new data block, invalidating the oldest data block(s)
> + * if necessary. This function also associates the data block with
> + * a specified descriptor.
> + */
> +static char *data_alloc(struct printk_ringbuffer *rb,
> + struct prb_data_ring *data_ring, unsigned long size,
> + struct prb_data_blk_lpos *blk_lpos, unsigned long id)
> +{
> + struct prb_data_block *blk;
> + unsigned long begin_lpos;
> + unsigned long next_lpos;
> +
> + if (!data_ring->data || size == 0) {
> + /* Specify a data-less block. */
> + blk_lpos->begin = INVALID_LPOS;
> + blk_lpos->next = INVALID_LPOS;
> + return NULL;
> + }
> +
> + size = to_blk_size(size);
> +
> + begin_lpos = atomic_long_read(&data_ring->head_lpos);
> +
> + do {
> + next_lpos = get_next_lpos(data_ring, begin_lpos, size);
> +
> + if (!data_push_tail(rb, data_ring,
> + next_lpos - DATA_SIZE(data_ring))) {
> + /* Failed to allocate, specify a data-less block. */
> + blk_lpos->begin = INVALID_LPOS;
> + blk_lpos->next = INVALID_LPOS;
> + return NULL;
> + }
> + } while (!atomic_long_try_cmpxchg_relaxed(&data_ring->head_lpos,
> + &begin_lpos, next_lpos));
> +
> + /*
> + * Guarantee any updated tail lpos is stored before setting the new
> + * block ID. This allows block IDs to be trusted based on the tail
> + * lpos. A full memory barrier is needed since another task may
> + * have updated the tail lpos. This pairs with data_make_reusable:B.
> + */
> + smp_mb(); /* LMM(data_alloc:A) */
> +
> + blk = to_block(data_ring, begin_lpos);
> + WRITE_ONCE(blk->id, id); /* LMM(data_alloc:B) */
> +
> + if (DATA_WRAPS(data_ring, begin_lpos) !=
> + DATA_WRAPS(data_ring, next_lpos)) {
> + /* Wrapping data blocks store their data at the beginning. */
> + blk = to_block(data_ring, 0);
> +
> + /*
> + * Store the ID on the wrapped block for consistency.
> + * The printk_ringbuffer does not actually use it.
> + */
> + blk->id = id;
> + }
> +
> + blk_lpos->begin = begin_lpos;
> + blk_lpos->next = next_lpos;
> +
> + return &blk->data[0];
> +}
Powered by blists - more mailing lists