[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <CALvZod7Cejryb6Pkh8Pktnv68MKm=OTUKbMe1Q0BjZgK1Q1RTw@mail.gmail.com>
Date: Thu, 16 Jul 2020 17:46:54 -0700
From: Shakeel Butt <shakeelb@...gle.com>
To: SeongJae Park <sjpark@...zon.com>
Cc: Andrew Morton <akpm@...ux-foundation.org>,
SeongJae Park <sjpark@...zon.de>, Jonathan.Cameron@...wei.com,
Andrea Arcangeli <aarcange@...hat.com>, acme@...nel.org,
alexander.shishkin@...ux.intel.com, amit@...nel.org,
benh@...nel.crashing.org, brendan.d.gregg@...il.com,
Brendan Higgins <brendanhiggins@...gle.com>,
Qian Cai <cai@....pw>,
Colin Ian King <colin.king@...onical.com>,
Jonathan Corbet <corbet@....net>,
David Hildenbrand <david@...hat.com>, dwmw@...zon.com,
foersleo@...zon.de, Ian Rogers <irogers@...gle.com>,
jolsa@...hat.com, "Kirill A. Shutemov" <kirill@...temov.name>,
mark.rutland@....com, Mel Gorman <mgorman@...e.de>,
Minchan Kim <minchan@...nel.org>,
Ingo Molnar <mingo@...hat.com>, namhyung@...nel.org,
"Peter Zijlstra (Intel)" <peterz@...radead.org>,
Randy Dunlap <rdunlap@...radead.org>,
Rik van Riel <riel@...riel.com>,
David Rientjes <rientjes@...gle.com>,
Steven Rostedt <rostedt@...dmis.org>, rppt@...nel.org,
sblbir@...zon.com, shuah@...nel.org, sj38.park@...il.com,
snu@...zon.de, Vlastimil Babka <vbabka@...e.cz>,
Vladimir Davydov <vdavydov.dev@...il.com>,
Yang Shi <yang.shi@...ux.alibaba.com>,
Huang Ying <ying.huang@...el.com>, linux-damon@...zon.com,
Linux MM <linux-mm@...ck.org>, linux-doc@...r.kernel.org,
LKML <linux-kernel@...r.kernel.org>
Subject: Re: [PATCH v18 06/14] mm/damon: Implement callbacks for the virtual
memory address spaces
On Mon, Jul 13, 2020 at 1:44 AM SeongJae Park <sjpark@...zon.com> wrote:
>
> From: SeongJae Park <sjpark@...zon.de>
>
> This commit introduces a reference implementation of the address space
> specific low level primitives for the virtual address space, so that
> users of DAMON can easily monitor the data accesses on virtual address
> spaces of specific processes by simply configuring the implementation to
> be used by DAMON.
>
> The low level primitives for the fundamental access monitoring are
> defined in two parts:
> 1. Identification of the monitoring target address range for the address
> space.
> 2. Access check of specific address range in the target space.
>
> The reference implementation for the virtual address space provided by
> this commit is designed as below.
>
> PTE Accessed-bit Based Access Check
> -----------------------------------
>
> The implementation uses PTE Accessed-bit for basic access checks. That
> is, it clears the bit for next sampling target page and checks whether
> it set again after one sampling period. To avoid disturbing other
> Accessed bit users such as the reclamation logic, the implementation
> adjusts the ``PG_Idle`` and ``PG_Young`` appropriately, as same to the
> 'Idle Page Tracking'.
>
> VMA-based Target Address Range Construction
> -------------------------------------------
>
> Only small parts in the super-huge virtual address space of the
> processes are mapped to physical memory and accessed. Thus, tracking
> the unmapped address regions is just wasteful. However, because DAMON
> can deal with some level of noise using the adaptive regions adjustment
> mechanism, tracking every mapping is not strictly required but could
> even incur a high overhead in some cases. That said, too huge unmapped
> areas inside the monitoring target should be removed to not take the
> time for the adaptive mechanism.
>
> For the reason, this implementation converts the complex mappings to
> three distinct regions that cover every mapped area of the address
> space. Also, the two gaps between the three regions are the two biggest
> unmapped areas in the given address space. The two biggest unmapped
> areas would be the gap between the heap and the uppermost mmap()-ed
> region, and the gap between the lowermost mmap()-ed region and the stack
> in most of the cases. Because these gaps are exceptionally huge in
> usual address spacees, excluding these will be sufficient to make a
> reasonable trade-off. Below shows this in detail::
>
> <heap>
> <BIG UNMAPPED REGION 1>
> <uppermost mmap()-ed region>
> (small mmap()-ed regions and munmap()-ed regions)
> <lowermost mmap()-ed region>
> <BIG UNMAPPED REGION 2>
> <stack>
>
> Signed-off-by: SeongJae Park <sjpark@...zon.de>
> Reviewed-by: Leonard Foerster <foersleo@...zon.de>
[snip]
> +
> +static void damon_mkold(struct mm_struct *mm, unsigned long addr)
> +{
> + pte_t *pte = NULL;
> + pmd_t *pmd = NULL;
> + spinlock_t *ptl;
> +
> + if (follow_pte_pmd(mm, addr, NULL, &pte, &pmd, &ptl))
> + return;
> +
> + if (pte) {
> + if (pte_young(*pte)) {
Any reason for skipping mmu_notifier_clear_young()? Why exclude VMs as
DAMON's target applications?
> + clear_page_idle(pte_page(*pte));
> + set_page_young(pte_page(*pte));
> + }
> + *pte = pte_mkold(*pte);
> + pte_unmap_unlock(pte, ptl);
> + return;
> + }
> +
Powered by blists - more mailing lists