lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date:   Thu, 3 Sep 2020 17:30:07 +0530
From:   Pratik Sampat <psampat@...ux.ibm.com>
To:     dedekind1@...il.com, rjw@...ysocki.net, daniel.lezcano@...aro.org,
        srivatsa@...il.mit.edu, shuah@...nel.org, npiggin@...il.com,
        ego@...ux.vnet.ibm.com, svaidy@...ux.ibm.com,
        linux-pm@...r.kernel.org, linux-kernel@...r.kernel.org,
        linux-kselftest@...r.kernel.org, pratik.r.sampat@...il.com
Subject: Re: [RFC v4 1/1] selftests/cpuidle: Add support for cpuidle latency
 measurement

Hello Artem,

On 02/09/20 8:55 pm, Artem Bityutskiy wrote:
> On Wed, 2020-09-02 at 17:15 +0530, Pratik Rajesh Sampat wrote:
>> Measure cpuidle latencies on wakeup to determine and compare with the
>> advertsied wakeup latencies for each idle state.

Thank you for pointing me to your talk. It was very interesting!
I certainly did not know about that the Intel architecture being aware
of timers and pre-wakes the CPUs which makes the timer experiment
observations void.

> It looks like the measurements include more than just C-state wake,
> they also include the overhead of waking up the proces, context switch,
> and potentially any interrupts that happen on that CPU. I am not saying
> this is not interesting data, it surely is, but it is going to be
> larger than you see in cpuidle latency tables. Potentially
> significantly larger.

The measurements will definitely include overhead than just the C-State
wakeup.

However, we are also collecting a baseline measurement wherein we run
the same test on a 100% busy CPU and the measurement of latency from
that could be considered to the kernel-userspace overhead.
The rest of the measurements would be considered keeping this baseline
in mind.

> Therefore, I am not sure this program should be advertised as "cpuidle
> measurement". It really measures the "IPI latency" in case of the IPI
> method.

Now with the new found knowledge of timers in Intel, I understand that
this really only seems to measure IPI latency and not timer latency,
although both the observations shouldn't be too far off anyways.

>> A baseline measurement for each case of IPI and timers is taken at
>> 100 percent CPU usage to quantify for the kernel-userpsace overhead
>> during execution.
> At least on Intel platforms, this will mean that the IPI method won't
> cover deep C-states like, say, PC6, because one CPU is busy. Again, not
> saying this is not interesting, just pointing out the limitation.

That's a valid point. We have similar deep idle states in POWER too.
The idea here is that this test should be run on an already idle
system, of course there will be kernel jitters along the way
which can cause little skewness in observations across some CPUs but I
believe the observations overall should be stable.

Another solution to this could be using isolcpus, but that just
increases the complexity all the more.
If you have any suggestions of any other way that could guarantee
idleness that would be great.

>
> I was working on a somewhat similar stuff for x86 platforms, and I am
> almost ready to publish that on github. I can notify you when I do so
> if you are interested. But here is a small presentation of the approach
> that I did on Plumbers last year:
>
> https://youtu.be/Opk92aQyvt0?t=8266
>
> (the link points to the start of my talk)
>
Sure thing. Do notify me when it comes up.
I would be happy to have a look at it.

--
Thanks!
Pratik

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ