[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20201001173234.GF4162920@elver.google.com>
Date: Thu, 1 Oct 2020 19:32:34 +0200
From: elver@...gle.com
To: Andrey Konovalov <andreyknvl@...gle.com>
Cc: Dmitry Vyukov <dvyukov@...gle.com>,
Vincenzo Frascino <vincenzo.frascino@....com>,
Catalin Marinas <catalin.marinas@....com>,
kasan-dev@...glegroups.com,
Andrey Ryabinin <aryabinin@...tuozzo.com>,
Alexander Potapenko <glider@...gle.com>,
Evgenii Stepanov <eugenis@...gle.com>,
Elena Petrova <lenaptr@...gle.com>,
Branislav Rankov <Branislav.Rankov@....com>,
Kevin Brodsky <kevin.brodsky@....com>,
Will Deacon <will.deacon@....com>,
Andrew Morton <akpm@...ux-foundation.org>,
linux-arm-kernel@...ts.infradead.org, linux-mm@...ck.org,
linux-kernel@...r.kernel.org
Subject: Re: [PATCH v3 08/39] kasan: split out shadow.c from common.c
On Fri, Sep 25, 2020 at 12:50AM +0200, Andrey Konovalov wrote:
> This is a preparatory commit for the upcoming addition of a new hardware
> tag-based (MTE-based) KASAN mode.
>
> The new mode won't be using shadow memory. Move all shadow-related code
> to shadow.c, which is only enabled for software KASAN modes that use
> shadow memory.
>
> No functional changes for software modes.
>
> Signed-off-by: Andrey Konovalov <andreyknvl@...gle.com>
> Signed-off-by: Vincenzo Frascino <vincenzo.frascino@....com>
Reviewed-by: Marco Elver <elver@...gle.com>
> ---
> Change-Id: Ic1c32ce72d4649848e9e6a1f2c8dd269c77673f2
> ---
> mm/kasan/Makefile | 6 +-
> mm/kasan/common.c | 486 +-------------------------------------------
> mm/kasan/shadow.c | 505 ++++++++++++++++++++++++++++++++++++++++++++++
> 3 files changed, 510 insertions(+), 487 deletions(-)
> create mode 100644 mm/kasan/shadow.c
>
> diff --git a/mm/kasan/Makefile b/mm/kasan/Makefile
> index 7cf685bb51bd..7cc1031e1ef8 100644
> --- a/mm/kasan/Makefile
> +++ b/mm/kasan/Makefile
> @@ -10,6 +10,7 @@ CFLAGS_REMOVE_generic_report.o = $(CC_FLAGS_FTRACE)
> CFLAGS_REMOVE_init.o = $(CC_FLAGS_FTRACE)
> CFLAGS_REMOVE_quarantine.o = $(CC_FLAGS_FTRACE)
> CFLAGS_REMOVE_report.o = $(CC_FLAGS_FTRACE)
> +CFLAGS_REMOVE_shadow.o = $(CC_FLAGS_FTRACE)
> CFLAGS_REMOVE_tags.o = $(CC_FLAGS_FTRACE)
> CFLAGS_REMOVE_tags_report.o = $(CC_FLAGS_FTRACE)
>
> @@ -26,9 +27,10 @@ CFLAGS_generic_report.o := $(CC_FLAGS_KASAN_RUNTIME)
> CFLAGS_init.o := $(CC_FLAGS_KASAN_RUNTIME)
> CFLAGS_quarantine.o := $(CC_FLAGS_KASAN_RUNTIME)
> CFLAGS_report.o := $(CC_FLAGS_KASAN_RUNTIME)
> +CFLAGS_shadow.o := $(CC_FLAGS_KASAN_RUNTIME)
> CFLAGS_tags.o := $(CC_FLAGS_KASAN_RUNTIME)
> CFLAGS_tags_report.o := $(CC_FLAGS_KASAN_RUNTIME)
>
> obj-$(CONFIG_KASAN) := common.o report.o
> -obj-$(CONFIG_KASAN_GENERIC) += init.o generic.o generic_report.o quarantine.o
> -obj-$(CONFIG_KASAN_SW_TAGS) += init.o tags.o tags_report.o
> +obj-$(CONFIG_KASAN_GENERIC) += init.o generic.o generic_report.o shadow.o quarantine.o
> +obj-$(CONFIG_KASAN_SW_TAGS) += init.o shadow.o tags.o tags_report.o
> diff --git a/mm/kasan/common.c b/mm/kasan/common.c
> index f65c9f792f8f..123abfb760d4 100644
> --- a/mm/kasan/common.c
> +++ b/mm/kasan/common.c
> @@ -1,6 +1,6 @@
> // SPDX-License-Identifier: GPL-2.0
> /*
> - * This file contains common generic and tag-based KASAN code.
> + * This file contains common KASAN code.
> *
> * Copyright (c) 2014 Samsung Electronics Co., Ltd.
> * Author: Andrey Ryabinin <ryabinin.a.a@...il.com>
> @@ -13,7 +13,6 @@
> #include <linux/init.h>
> #include <linux/kasan.h>
> #include <linux/kernel.h>
> -#include <linux/kmemleak.h>
> #include <linux/linkage.h>
> #include <linux/memblock.h>
> #include <linux/memory.h>
> @@ -26,12 +25,8 @@
> #include <linux/stacktrace.h>
> #include <linux/string.h>
> #include <linux/types.h>
> -#include <linux/vmalloc.h>
> #include <linux/bug.h>
>
> -#include <asm/cacheflush.h>
> -#include <asm/tlbflush.h>
> -
> #include "kasan.h"
> #include "../slab.h"
>
> @@ -61,93 +56,6 @@ void kasan_disable_current(void)
> current->kasan_depth--;
> }
>
> -bool __kasan_check_read(const volatile void *p, unsigned int size)
> -{
> - return check_memory_region((unsigned long)p, size, false, _RET_IP_);
> -}
> -EXPORT_SYMBOL(__kasan_check_read);
> -
> -bool __kasan_check_write(const volatile void *p, unsigned int size)
> -{
> - return check_memory_region((unsigned long)p, size, true, _RET_IP_);
> -}
> -EXPORT_SYMBOL(__kasan_check_write);
> -
> -#undef memset
> -void *memset(void *addr, int c, size_t len)
> -{
> - if (!check_memory_region((unsigned long)addr, len, true, _RET_IP_))
> - return NULL;
> -
> - return __memset(addr, c, len);
> -}
> -
> -#ifdef __HAVE_ARCH_MEMMOVE
> -#undef memmove
> -void *memmove(void *dest, const void *src, size_t len)
> -{
> - if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
> - !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
> - return NULL;
> -
> - return __memmove(dest, src, len);
> -}
> -#endif
> -
> -#undef memcpy
> -void *memcpy(void *dest, const void *src, size_t len)
> -{
> - if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
> - !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
> - return NULL;
> -
> - return __memcpy(dest, src, len);
> -}
> -
> -/*
> - * Poisons the shadow memory for 'size' bytes starting from 'addr'.
> - * Memory addresses should be aligned to KASAN_GRANULE_SIZE.
> - */
> -void kasan_poison_memory(const void *address, size_t size, u8 value)
> -{
> - void *shadow_start, *shadow_end;
> -
> - /*
> - * Perform shadow offset calculation based on untagged address, as
> - * some of the callers (e.g. kasan_poison_object_data) pass tagged
> - * addresses to this function.
> - */
> - address = reset_tag(address);
> -
> - shadow_start = kasan_mem_to_shadow(address);
> - shadow_end = kasan_mem_to_shadow(address + size);
> -
> - __memset(shadow_start, value, shadow_end - shadow_start);
> -}
> -
> -void kasan_unpoison_memory(const void *address, size_t size)
> -{
> - u8 tag = get_tag(address);
> -
> - /*
> - * Perform shadow offset calculation based on untagged address, as
> - * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
> - * addresses to this function.
> - */
> - address = reset_tag(address);
> -
> - kasan_poison_memory(address, size, tag);
> -
> - if (size & KASAN_GRANULE_MASK) {
> - u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
> -
> - if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
> - *shadow = tag;
> - else
> - *shadow = size & KASAN_GRANULE_MASK;
> - }
> -}
> -
> static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
> {
> void *base = task_stack_page(task);
> @@ -535,395 +443,3 @@ void kasan_kfree_large(void *ptr, unsigned long ip)
> kasan_report_invalid_free(ptr, ip);
> /* The object will be poisoned by page_alloc. */
> }
> -
> -#ifdef CONFIG_MEMORY_HOTPLUG
> -static bool shadow_mapped(unsigned long addr)
> -{
> - pgd_t *pgd = pgd_offset_k(addr);
> - p4d_t *p4d;
> - pud_t *pud;
> - pmd_t *pmd;
> - pte_t *pte;
> -
> - if (pgd_none(*pgd))
> - return false;
> - p4d = p4d_offset(pgd, addr);
> - if (p4d_none(*p4d))
> - return false;
> - pud = pud_offset(p4d, addr);
> - if (pud_none(*pud))
> - return false;
> -
> - /*
> - * We can't use pud_large() or pud_huge(), the first one is
> - * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
> - * pud_bad(), if pud is bad then it's bad because it's huge.
> - */
> - if (pud_bad(*pud))
> - return true;
> - pmd = pmd_offset(pud, addr);
> - if (pmd_none(*pmd))
> - return false;
> -
> - if (pmd_bad(*pmd))
> - return true;
> - pte = pte_offset_kernel(pmd, addr);
> - return !pte_none(*pte);
> -}
> -
> -static int __meminit kasan_mem_notifier(struct notifier_block *nb,
> - unsigned long action, void *data)
> -{
> - struct memory_notify *mem_data = data;
> - unsigned long nr_shadow_pages, start_kaddr, shadow_start;
> - unsigned long shadow_end, shadow_size;
> -
> - nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
> - start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
> - shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
> - shadow_size = nr_shadow_pages << PAGE_SHIFT;
> - shadow_end = shadow_start + shadow_size;
> -
> - if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
> - WARN_ON(start_kaddr % (KASAN_GRANULE_SIZE << PAGE_SHIFT)))
> - return NOTIFY_BAD;
> -
> - switch (action) {
> - case MEM_GOING_ONLINE: {
> - void *ret;
> -
> - /*
> - * If shadow is mapped already than it must have been mapped
> - * during the boot. This could happen if we onlining previously
> - * offlined memory.
> - */
> - if (shadow_mapped(shadow_start))
> - return NOTIFY_OK;
> -
> - ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
> - shadow_end, GFP_KERNEL,
> - PAGE_KERNEL, VM_NO_GUARD,
> - pfn_to_nid(mem_data->start_pfn),
> - __builtin_return_address(0));
> - if (!ret)
> - return NOTIFY_BAD;
> -
> - kmemleak_ignore(ret);
> - return NOTIFY_OK;
> - }
> - case MEM_CANCEL_ONLINE:
> - case MEM_OFFLINE: {
> - struct vm_struct *vm;
> -
> - /*
> - * shadow_start was either mapped during boot by kasan_init()
> - * or during memory online by __vmalloc_node_range().
> - * In the latter case we can use vfree() to free shadow.
> - * Non-NULL result of the find_vm_area() will tell us if
> - * that was the second case.
> - *
> - * Currently it's not possible to free shadow mapped
> - * during boot by kasan_init(). It's because the code
> - * to do that hasn't been written yet. So we'll just
> - * leak the memory.
> - */
> - vm = find_vm_area((void *)shadow_start);
> - if (vm)
> - vfree((void *)shadow_start);
> - }
> - }
> -
> - return NOTIFY_OK;
> -}
> -
> -static int __init kasan_memhotplug_init(void)
> -{
> - hotplug_memory_notifier(kasan_mem_notifier, 0);
> -
> - return 0;
> -}
> -
> -core_initcall(kasan_memhotplug_init);
> -#endif
> -
> -#ifdef CONFIG_KASAN_VMALLOC
> -
> -static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
> - void *unused)
> -{
> - unsigned long page;
> - pte_t pte;
> -
> - if (likely(!pte_none(*ptep)))
> - return 0;
> -
> - page = __get_free_page(GFP_KERNEL);
> - if (!page)
> - return -ENOMEM;
> -
> - memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
> - pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
> -
> - spin_lock(&init_mm.page_table_lock);
> - if (likely(pte_none(*ptep))) {
> - set_pte_at(&init_mm, addr, ptep, pte);
> - page = 0;
> - }
> - spin_unlock(&init_mm.page_table_lock);
> - if (page)
> - free_page(page);
> - return 0;
> -}
> -
> -int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
> -{
> - unsigned long shadow_start, shadow_end;
> - int ret;
> -
> - if (!is_vmalloc_or_module_addr((void *)addr))
> - return 0;
> -
> - shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
> - shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
> - shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
> - shadow_end = ALIGN(shadow_end, PAGE_SIZE);
> -
> - ret = apply_to_page_range(&init_mm, shadow_start,
> - shadow_end - shadow_start,
> - kasan_populate_vmalloc_pte, NULL);
> - if (ret)
> - return ret;
> -
> - flush_cache_vmap(shadow_start, shadow_end);
> -
> - /*
> - * We need to be careful about inter-cpu effects here. Consider:
> - *
> - * CPU#0 CPU#1
> - * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ;
> - * p[99] = 1;
> - *
> - * With compiler instrumentation, that ends up looking like this:
> - *
> - * CPU#0 CPU#1
> - * // vmalloc() allocates memory
> - * // let a = area->addr
> - * // we reach kasan_populate_vmalloc
> - * // and call kasan_unpoison_memory:
> - * STORE shadow(a), unpoison_val
> - * ...
> - * STORE shadow(a+99), unpoison_val x = LOAD p
> - * // rest of vmalloc process <data dependency>
> - * STORE p, a LOAD shadow(x+99)
> - *
> - * If there is no barrier between the end of unpoisioning the shadow
> - * and the store of the result to p, the stores could be committed
> - * in a different order by CPU#0, and CPU#1 could erroneously observe
> - * poison in the shadow.
> - *
> - * We need some sort of barrier between the stores.
> - *
> - * In the vmalloc() case, this is provided by a smp_wmb() in
> - * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
> - * get_vm_area() and friends, the caller gets shadow allocated but
> - * doesn't have any pages mapped into the virtual address space that
> - * has been reserved. Mapping those pages in will involve taking and
> - * releasing a page-table lock, which will provide the barrier.
> - */
> -
> - return 0;
> -}
> -
> -/*
> - * Poison the shadow for a vmalloc region. Called as part of the
> - * freeing process at the time the region is freed.
> - */
> -void kasan_poison_vmalloc(const void *start, unsigned long size)
> -{
> - if (!is_vmalloc_or_module_addr(start))
> - return;
> -
> - size = round_up(size, KASAN_GRANULE_SIZE);
> - kasan_poison_memory(start, size, KASAN_VMALLOC_INVALID);
> -}
> -
> -void kasan_unpoison_vmalloc(const void *start, unsigned long size)
> -{
> - if (!is_vmalloc_or_module_addr(start))
> - return;
> -
> - kasan_unpoison_memory(start, size);
> -}
> -
> -static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
> - void *unused)
> -{
> - unsigned long page;
> -
> - page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
> -
> - spin_lock(&init_mm.page_table_lock);
> -
> - if (likely(!pte_none(*ptep))) {
> - pte_clear(&init_mm, addr, ptep);
> - free_page(page);
> - }
> - spin_unlock(&init_mm.page_table_lock);
> -
> - return 0;
> -}
> -
> -/*
> - * Release the backing for the vmalloc region [start, end), which
> - * lies within the free region [free_region_start, free_region_end).
> - *
> - * This can be run lazily, long after the region was freed. It runs
> - * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
> - * infrastructure.
> - *
> - * How does this work?
> - * -------------------
> - *
> - * We have a region that is page aligned, labelled as A.
> - * That might not map onto the shadow in a way that is page-aligned:
> - *
> - * start end
> - * v v
> - * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
> - * -------- -------- -------- -------- --------
> - * | | | | |
> - * | | | /-------/ |
> - * \-------\|/------/ |/---------------/
> - * ||| ||
> - * |??AAAAAA|AAAAAAAA|AA??????| < shadow
> - * (1) (2) (3)
> - *
> - * First we align the start upwards and the end downwards, so that the
> - * shadow of the region aligns with shadow page boundaries. In the
> - * example, this gives us the shadow page (2). This is the shadow entirely
> - * covered by this allocation.
> - *
> - * Then we have the tricky bits. We want to know if we can free the
> - * partially covered shadow pages - (1) and (3) in the example. For this,
> - * we are given the start and end of the free region that contains this
> - * allocation. Extending our previous example, we could have:
> - *
> - * free_region_start free_region_end
> - * | start end |
> - * v v v v
> - * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
> - * -------- -------- -------- -------- --------
> - * | | | | |
> - * | | | /-------/ |
> - * \-------\|/------/ |/---------------/
> - * ||| ||
> - * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow
> - * (1) (2) (3)
> - *
> - * Once again, we align the start of the free region up, and the end of
> - * the free region down so that the shadow is page aligned. So we can free
> - * page (1) - we know no allocation currently uses anything in that page,
> - * because all of it is in the vmalloc free region. But we cannot free
> - * page (3), because we can't be sure that the rest of it is unused.
> - *
> - * We only consider pages that contain part of the original region for
> - * freeing: we don't try to free other pages from the free region or we'd
> - * end up trying to free huge chunks of virtual address space.
> - *
> - * Concurrency
> - * -----------
> - *
> - * How do we know that we're not freeing a page that is simultaneously
> - * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
> - *
> - * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
> - * at the same time. While we run under free_vmap_area_lock, the population
> - * code does not.
> - *
> - * free_vmap_area_lock instead operates to ensure that the larger range
> - * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
> - * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
> - * no space identified as free will become used while we are running. This
> - * means that so long as we are careful with alignment and only free shadow
> - * pages entirely covered by the free region, we will not run in to any
> - * trouble - any simultaneous allocations will be for disjoint regions.
> - */
> -void kasan_release_vmalloc(unsigned long start, unsigned long end,
> - unsigned long free_region_start,
> - unsigned long free_region_end)
> -{
> - void *shadow_start, *shadow_end;
> - unsigned long region_start, region_end;
> - unsigned long size;
> -
> - region_start = ALIGN(start, PAGE_SIZE * KASAN_GRANULE_SIZE);
> - region_end = ALIGN_DOWN(end, PAGE_SIZE * KASAN_GRANULE_SIZE);
> -
> - free_region_start = ALIGN(free_region_start,
> - PAGE_SIZE * KASAN_GRANULE_SIZE);
> -
> - if (start != region_start &&
> - free_region_start < region_start)
> - region_start -= PAGE_SIZE * KASAN_GRANULE_SIZE;
> -
> - free_region_end = ALIGN_DOWN(free_region_end,
> - PAGE_SIZE * KASAN_GRANULE_SIZE);
> -
> - if (end != region_end &&
> - free_region_end > region_end)
> - region_end += PAGE_SIZE * KASAN_GRANULE_SIZE;
> -
> - shadow_start = kasan_mem_to_shadow((void *)region_start);
> - shadow_end = kasan_mem_to_shadow((void *)region_end);
> -
> - if (shadow_end > shadow_start) {
> - size = shadow_end - shadow_start;
> - apply_to_existing_page_range(&init_mm,
> - (unsigned long)shadow_start,
> - size, kasan_depopulate_vmalloc_pte,
> - NULL);
> - flush_tlb_kernel_range((unsigned long)shadow_start,
> - (unsigned long)shadow_end);
> - }
> -}
> -
> -#else /* CONFIG_KASAN_VMALLOC */
> -
> -int kasan_module_alloc(void *addr, size_t size)
> -{
> - void *ret;
> - size_t scaled_size;
> - size_t shadow_size;
> - unsigned long shadow_start;
> -
> - shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
> - scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
> - KASAN_SHADOW_SCALE_SHIFT;
> - shadow_size = round_up(scaled_size, PAGE_SIZE);
> -
> - if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
> - return -EINVAL;
> -
> - ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
> - shadow_start + shadow_size,
> - GFP_KERNEL,
> - PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
> - __builtin_return_address(0));
> -
> - if (ret) {
> - __memset(ret, KASAN_SHADOW_INIT, shadow_size);
> - find_vm_area(addr)->flags |= VM_KASAN;
> - kmemleak_ignore(ret);
> - return 0;
> - }
> -
> - return -ENOMEM;
> -}
> -
> -void kasan_free_shadow(const struct vm_struct *vm)
> -{
> - if (vm->flags & VM_KASAN)
> - vfree(kasan_mem_to_shadow(vm->addr));
> -}
> -
> -#endif
> diff --git a/mm/kasan/shadow.c b/mm/kasan/shadow.c
> new file mode 100644
> index 000000000000..ca0cc4c31454
> --- /dev/null
> +++ b/mm/kasan/shadow.c
> @@ -0,0 +1,505 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * This file contains KASAN runtime code that manages shadow memory for
> + * generic and software tag-based KASAN modes.
> + *
> + * Copyright (c) 2014 Samsung Electronics Co., Ltd.
> + * Author: Andrey Ryabinin <ryabinin.a.a@...il.com>
> + *
> + * Some code borrowed from https://github.com/xairy/kasan-prototype by
> + * Andrey Konovalov <andreyknvl@...il.com>
> + */
> +
> +#include <linux/init.h>
> +#include <linux/kasan.h>
> +#include <linux/kernel.h>
> +#include <linux/kmemleak.h>
> +#include <linux/memory.h>
> +#include <linux/mm.h>
> +#include <linux/string.h>
> +#include <linux/types.h>
> +#include <linux/vmalloc.h>
> +
> +#include <asm/cacheflush.h>
> +#include <asm/tlbflush.h>
> +
> +#include "kasan.h"
> +
> +bool __kasan_check_read(const volatile void *p, unsigned int size)
> +{
> + return check_memory_region((unsigned long)p, size, false, _RET_IP_);
> +}
> +EXPORT_SYMBOL(__kasan_check_read);
> +
> +bool __kasan_check_write(const volatile void *p, unsigned int size)
> +{
> + return check_memory_region((unsigned long)p, size, true, _RET_IP_);
> +}
> +EXPORT_SYMBOL(__kasan_check_write);
> +
> +#undef memset
> +void *memset(void *addr, int c, size_t len)
> +{
> + if (!check_memory_region((unsigned long)addr, len, true, _RET_IP_))
> + return NULL;
> +
> + return __memset(addr, c, len);
> +}
> +
> +#ifdef __HAVE_ARCH_MEMMOVE
> +#undef memmove
> +void *memmove(void *dest, const void *src, size_t len)
> +{
> + if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
> + !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
> + return NULL;
> +
> + return __memmove(dest, src, len);
> +}
> +#endif
> +
> +#undef memcpy
> +void *memcpy(void *dest, const void *src, size_t len)
> +{
> + if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
> + !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
> + return NULL;
> +
> + return __memcpy(dest, src, len);
> +}
> +
> +/*
> + * Poisons the shadow memory for 'size' bytes starting from 'addr'.
> + * Memory addresses should be aligned to KASAN_GRANULE_SIZE.
> + */
> +void kasan_poison_memory(const void *address, size_t size, u8 value)
> +{
> + void *shadow_start, *shadow_end;
> +
> + /*
> + * Perform shadow offset calculation based on untagged address, as
> + * some of the callers (e.g. kasan_poison_object_data) pass tagged
> + * addresses to this function.
> + */
> + address = reset_tag(address);
> +
> + shadow_start = kasan_mem_to_shadow(address);
> + shadow_end = kasan_mem_to_shadow(address + size);
> +
> + __memset(shadow_start, value, shadow_end - shadow_start);
> +}
> +
> +void kasan_unpoison_memory(const void *address, size_t size)
> +{
> + u8 tag = get_tag(address);
> +
> + /*
> + * Perform shadow offset calculation based on untagged address, as
> + * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
> + * addresses to this function.
> + */
> + address = reset_tag(address);
> +
> + kasan_poison_memory(address, size, tag);
> +
> + if (size & KASAN_GRANULE_MASK) {
> + u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
> +
> + if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
> + *shadow = tag;
> + else
> + *shadow = size & KASAN_GRANULE_MASK;
> + }
> +}
> +
> +#ifdef CONFIG_MEMORY_HOTPLUG
> +static bool shadow_mapped(unsigned long addr)
> +{
> + pgd_t *pgd = pgd_offset_k(addr);
> + p4d_t *p4d;
> + pud_t *pud;
> + pmd_t *pmd;
> + pte_t *pte;
> +
> + if (pgd_none(*pgd))
> + return false;
> + p4d = p4d_offset(pgd, addr);
> + if (p4d_none(*p4d))
> + return false;
> + pud = pud_offset(p4d, addr);
> + if (pud_none(*pud))
> + return false;
> +
> + /*
> + * We can't use pud_large() or pud_huge(), the first one is
> + * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
> + * pud_bad(), if pud is bad then it's bad because it's huge.
> + */
> + if (pud_bad(*pud))
> + return true;
> + pmd = pmd_offset(pud, addr);
> + if (pmd_none(*pmd))
> + return false;
> +
> + if (pmd_bad(*pmd))
> + return true;
> + pte = pte_offset_kernel(pmd, addr);
> + return !pte_none(*pte);
> +}
> +
> +static int __meminit kasan_mem_notifier(struct notifier_block *nb,
> + unsigned long action, void *data)
> +{
> + struct memory_notify *mem_data = data;
> + unsigned long nr_shadow_pages, start_kaddr, shadow_start;
> + unsigned long shadow_end, shadow_size;
> +
> + nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
> + start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
> + shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
> + shadow_size = nr_shadow_pages << PAGE_SHIFT;
> + shadow_end = shadow_start + shadow_size;
> +
> + if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
> + WARN_ON(start_kaddr % (KASAN_GRANULE_SIZE << PAGE_SHIFT)))
> + return NOTIFY_BAD;
> +
> + switch (action) {
> + case MEM_GOING_ONLINE: {
> + void *ret;
> +
> + /*
> + * If shadow is mapped already than it must have been mapped
> + * during the boot. This could happen if we onlining previously
> + * offlined memory.
> + */
> + if (shadow_mapped(shadow_start))
> + return NOTIFY_OK;
> +
> + ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
> + shadow_end, GFP_KERNEL,
> + PAGE_KERNEL, VM_NO_GUARD,
> + pfn_to_nid(mem_data->start_pfn),
> + __builtin_return_address(0));
> + if (!ret)
> + return NOTIFY_BAD;
> +
> + kmemleak_ignore(ret);
> + return NOTIFY_OK;
> + }
> + case MEM_CANCEL_ONLINE:
> + case MEM_OFFLINE: {
> + struct vm_struct *vm;
> +
> + /*
> + * shadow_start was either mapped during boot by kasan_init()
> + * or during memory online by __vmalloc_node_range().
> + * In the latter case we can use vfree() to free shadow.
> + * Non-NULL result of the find_vm_area() will tell us if
> + * that was the second case.
> + *
> + * Currently it's not possible to free shadow mapped
> + * during boot by kasan_init(). It's because the code
> + * to do that hasn't been written yet. So we'll just
> + * leak the memory.
> + */
> + vm = find_vm_area((void *)shadow_start);
> + if (vm)
> + vfree((void *)shadow_start);
> + }
> + }
> +
> + return NOTIFY_OK;
> +}
> +
> +static int __init kasan_memhotplug_init(void)
> +{
> + hotplug_memory_notifier(kasan_mem_notifier, 0);
> +
> + return 0;
> +}
> +
> +core_initcall(kasan_memhotplug_init);
> +#endif
> +
> +#ifdef CONFIG_KASAN_VMALLOC
> +
> +static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
> + void *unused)
> +{
> + unsigned long page;
> + pte_t pte;
> +
> + if (likely(!pte_none(*ptep)))
> + return 0;
> +
> + page = __get_free_page(GFP_KERNEL);
> + if (!page)
> + return -ENOMEM;
> +
> + memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
> + pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
> +
> + spin_lock(&init_mm.page_table_lock);
> + if (likely(pte_none(*ptep))) {
> + set_pte_at(&init_mm, addr, ptep, pte);
> + page = 0;
> + }
> + spin_unlock(&init_mm.page_table_lock);
> + if (page)
> + free_page(page);
> + return 0;
> +}
> +
> +int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
> +{
> + unsigned long shadow_start, shadow_end;
> + int ret;
> +
> + if (!is_vmalloc_or_module_addr((void *)addr))
> + return 0;
> +
> + shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
> + shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
> + shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
> + shadow_end = ALIGN(shadow_end, PAGE_SIZE);
> +
> + ret = apply_to_page_range(&init_mm, shadow_start,
> + shadow_end - shadow_start,
> + kasan_populate_vmalloc_pte, NULL);
> + if (ret)
> + return ret;
> +
> + flush_cache_vmap(shadow_start, shadow_end);
> +
> + /*
> + * We need to be careful about inter-cpu effects here. Consider:
> + *
> + * CPU#0 CPU#1
> + * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ;
> + * p[99] = 1;
> + *
> + * With compiler instrumentation, that ends up looking like this:
> + *
> + * CPU#0 CPU#1
> + * // vmalloc() allocates memory
> + * // let a = area->addr
> + * // we reach kasan_populate_vmalloc
> + * // and call kasan_unpoison_memory:
> + * STORE shadow(a), unpoison_val
> + * ...
> + * STORE shadow(a+99), unpoison_val x = LOAD p
> + * // rest of vmalloc process <data dependency>
> + * STORE p, a LOAD shadow(x+99)
> + *
> + * If there is no barrier between the end of unpoisioning the shadow
> + * and the store of the result to p, the stores could be committed
> + * in a different order by CPU#0, and CPU#1 could erroneously observe
> + * poison in the shadow.
> + *
> + * We need some sort of barrier between the stores.
> + *
> + * In the vmalloc() case, this is provided by a smp_wmb() in
> + * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
> + * get_vm_area() and friends, the caller gets shadow allocated but
> + * doesn't have any pages mapped into the virtual address space that
> + * has been reserved. Mapping those pages in will involve taking and
> + * releasing a page-table lock, which will provide the barrier.
> + */
> +
> + return 0;
> +}
> +
> +/*
> + * Poison the shadow for a vmalloc region. Called as part of the
> + * freeing process at the time the region is freed.
> + */
> +void kasan_poison_vmalloc(const void *start, unsigned long size)
> +{
> + if (!is_vmalloc_or_module_addr(start))
> + return;
> +
> + size = round_up(size, KASAN_GRANULE_SIZE);
> + kasan_poison_memory(start, size, KASAN_VMALLOC_INVALID);
> +}
> +
> +void kasan_unpoison_vmalloc(const void *start, unsigned long size)
> +{
> + if (!is_vmalloc_or_module_addr(start))
> + return;
> +
> + kasan_unpoison_memory(start, size);
> +}
> +
> +static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
> + void *unused)
> +{
> + unsigned long page;
> +
> + page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
> +
> + spin_lock(&init_mm.page_table_lock);
> +
> + if (likely(!pte_none(*ptep))) {
> + pte_clear(&init_mm, addr, ptep);
> + free_page(page);
> + }
> + spin_unlock(&init_mm.page_table_lock);
> +
> + return 0;
> +}
> +
> +/*
> + * Release the backing for the vmalloc region [start, end), which
> + * lies within the free region [free_region_start, free_region_end).
> + *
> + * This can be run lazily, long after the region was freed. It runs
> + * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
> + * infrastructure.
> + *
> + * How does this work?
> + * -------------------
> + *
> + * We have a region that is page aligned, labelled as A.
> + * That might not map onto the shadow in a way that is page-aligned:
> + *
> + * start end
> + * v v
> + * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
> + * -------- -------- -------- -------- --------
> + * | | | | |
> + * | | | /-------/ |
> + * \-------\|/------/ |/---------------/
> + * ||| ||
> + * |??AAAAAA|AAAAAAAA|AA??????| < shadow
> + * (1) (2) (3)
> + *
> + * First we align the start upwards and the end downwards, so that the
> + * shadow of the region aligns with shadow page boundaries. In the
> + * example, this gives us the shadow page (2). This is the shadow entirely
> + * covered by this allocation.
> + *
> + * Then we have the tricky bits. We want to know if we can free the
> + * partially covered shadow pages - (1) and (3) in the example. For this,
> + * we are given the start and end of the free region that contains this
> + * allocation. Extending our previous example, we could have:
> + *
> + * free_region_start free_region_end
> + * | start end |
> + * v v v v
> + * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
> + * -------- -------- -------- -------- --------
> + * | | | | |
> + * | | | /-------/ |
> + * \-------\|/------/ |/---------------/
> + * ||| ||
> + * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow
> + * (1) (2) (3)
> + *
> + * Once again, we align the start of the free region up, and the end of
> + * the free region down so that the shadow is page aligned. So we can free
> + * page (1) - we know no allocation currently uses anything in that page,
> + * because all of it is in the vmalloc free region. But we cannot free
> + * page (3), because we can't be sure that the rest of it is unused.
> + *
> + * We only consider pages that contain part of the original region for
> + * freeing: we don't try to free other pages from the free region or we'd
> + * end up trying to free huge chunks of virtual address space.
> + *
> + * Concurrency
> + * -----------
> + *
> + * How do we know that we're not freeing a page that is simultaneously
> + * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
> + *
> + * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
> + * at the same time. While we run under free_vmap_area_lock, the population
> + * code does not.
> + *
> + * free_vmap_area_lock instead operates to ensure that the larger range
> + * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
> + * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
> + * no space identified as free will become used while we are running. This
> + * means that so long as we are careful with alignment and only free shadow
> + * pages entirely covered by the free region, we will not run in to any
> + * trouble - any simultaneous allocations will be for disjoint regions.
> + */
> +void kasan_release_vmalloc(unsigned long start, unsigned long end,
> + unsigned long free_region_start,
> + unsigned long free_region_end)
> +{
> + void *shadow_start, *shadow_end;
> + unsigned long region_start, region_end;
> + unsigned long size;
> +
> + region_start = ALIGN(start, PAGE_SIZE * KASAN_GRANULE_SIZE);
> + region_end = ALIGN_DOWN(end, PAGE_SIZE * KASAN_GRANULE_SIZE);
> +
> + free_region_start = ALIGN(free_region_start,
> + PAGE_SIZE * KASAN_GRANULE_SIZE);
> +
> + if (start != region_start &&
> + free_region_start < region_start)
> + region_start -= PAGE_SIZE * KASAN_GRANULE_SIZE;
> +
> + free_region_end = ALIGN_DOWN(free_region_end,
> + PAGE_SIZE * KASAN_GRANULE_SIZE);
> +
> + if (end != region_end &&
> + free_region_end > region_end)
> + region_end += PAGE_SIZE * KASAN_GRANULE_SIZE;
> +
> + shadow_start = kasan_mem_to_shadow((void *)region_start);
> + shadow_end = kasan_mem_to_shadow((void *)region_end);
> +
> + if (shadow_end > shadow_start) {
> + size = shadow_end - shadow_start;
> + apply_to_existing_page_range(&init_mm,
> + (unsigned long)shadow_start,
> + size, kasan_depopulate_vmalloc_pte,
> + NULL);
> + flush_tlb_kernel_range((unsigned long)shadow_start,
> + (unsigned long)shadow_end);
> + }
> +}
> +
> +#else /* CONFIG_KASAN_VMALLOC */
> +
> +int kasan_module_alloc(void *addr, size_t size)
> +{
> + void *ret;
> + size_t scaled_size;
> + size_t shadow_size;
> + unsigned long shadow_start;
> +
> + shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
> + scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
> + KASAN_SHADOW_SCALE_SHIFT;
> + shadow_size = round_up(scaled_size, PAGE_SIZE);
> +
> + if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
> + return -EINVAL;
> +
> + ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
> + shadow_start + shadow_size,
> + GFP_KERNEL,
> + PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
> + __builtin_return_address(0));
> +
> + if (ret) {
> + __memset(ret, KASAN_SHADOW_INIT, shadow_size);
> + find_vm_area(addr)->flags |= VM_KASAN;
> + kmemleak_ignore(ret);
> + return 0;
> + }
> +
> + return -ENOMEM;
> +}
> +
> +void kasan_free_shadow(const struct vm_struct *vm)
> +{
> + if (vm->flags & VM_KASAN)
> + vfree(kasan_mem_to_shadow(vm->addr));
> +}
> +
> +#endif
> --
> 2.28.0.681.g6f77f65b4e-goog
>
Powered by blists - more mailing lists