[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20201030181152443876127@rock-chips.com>
Date: Fri, 30 Oct 2020 18:12:52 +0800
From: 赵仪峰 <yifeng.zhao@...k-chips.com>
To: "Miquel Raynal" <miquel.raynal@...tlin.com>
Cc: richard <richard@....at>, vigneshr <vigneshr@...com>,
robh+dt <robh+dt@...nel.org>,
devicetree <devicetree@...r.kernel.org>,
linux-mtd <linux-mtd@...ts.infradead.org>,
HeikoStübner <heiko@...ech.de>,
linux-rockchip <linux-rockchip@...ts.infradead.org>,
linux-arm-kernel <linux-arm-kernel@...ts.infradead.org>,
linux-kernel <linux-kernel@...r.kernel.org>
Subject: Re: Re: [PATCH v13 2/8] mtd: rawnand: rockchip: NFC drivers for RK3308, RK2928 and others
Hi Miquel,
>Hi Yifeng,
>
>A few more comments below, but overall looks better.
>
>Yifeng Zhao <yifeng.zhao@...k-chips.com> wrote on Wed, 28 Oct 2020
>17:53:24 +0800:
>
>> This driver supports Rockchip NFC (NAND Flash Controller) found on RK3308,
>> RK2928, RKPX30, RV1108 and other SOCs. The driver has been tested using
>> 8-bit NAND interface on the ARM based RK3308 platform.
>>
>> Support Rockchip SoCs and NFC versions:
>> - PX30 and RK3326(NFCv900).
>> ECC: 16/40/60/70 bits/1KB.
>> CLOCK: ahb and nfc.
>> - RK3308 and RV1108(NFCv800).
>> ECC: 16 bits/1KB.
>> CLOCK: ahb and nfc.
>> - RK3036 and RK3128(NFCv622).
>> ECC: 16/24/40/60 bits/1KB.
>> CLOCK: ahb and nfc.
>> - RK3066, RK3188 and RK2928(NFCv600).
>> ECC: 16/24/40/60 bits/1KB.
>> CLOCK: ahb.
>>
>> Supported features:
>> - Read full page data by DMA.
>> - Support HW ECC(one step is 1KB).
>> - Support 2 - 32K page size.
>> - Support 8 CS(depend on SoCs)
>>
>> Limitations:
>> - No support for the ecc step size is 512.
>> - Untested on some SoCs.
>> - No support for subpages.
>> - No support for the builtin randomizer.
>> - The original bad block mask is not supported. It is recommended to use
>> the BBT(bad block table).
>>
>> Signed-off-by: Yifeng Zhao <yifeng.zhao@...k-chips.com>
>> ---
>>
>> Changes in v13:
>> - The nfc->buffer will realloc while the page size of the second mtd
>> is large than the first one.
>> - Fix coding style.
>> - Fix some comments.
>>
>> Changes in v12: None
>> Changes in v11:
>> - Fix compile error.
>>
>> Changes in v10:
>> - Fix compile error on master v5.9-rc7.
>>
>> Changes in v9:
>> - The nfc->buffer will realloc while the page size of the second mtd
>> is large than the first one
>> - Fix coding style.
>> - Remove struct rk_nfc_clk.
>> - Prepend some function with rk_nfc_.
>> - Replace function readl_poll_timeout_atomic with readl_relaxed_poll_timeout.
>> - Remove function rk_nfc_read_byte and rk_nfc_write_byte.
>> - Don't select the die if 'check_only == true' in function rk_nfc_exec_op.
>> - Modify function rk_nfc_write_page and rk_nfc_write_page_raw.
>>
>> Changes in v8: None
>> Changes in v7:
>> - Rebase to linux-next.
>> - Fix coding style.
>> - Reserved 4 bytes at the beginning of the oob area.
>> - Page raw read and write included ecc data.
>>
>> Changes in v6:
>> - The mtd->name set by NAND label property.
>> - Add some comments.
>> - Fix compile error.
>>
>> Changes in v5:
>> - Add boot blocks support with different ECC for bootROM.
>> - Rename rockchip-nand.c to rockchip-nand-controller.c.
>> - Unification of other variable names.
>> - Remove some compatible define.
>>
>> Changes in v4:
>> - Define platform data structure for the register offsets.
>> - The compatible define with rkxx_nfc.
>> - Use SET_SYSTEM_SLEEP_PM_OPS to define PM_OPS.
>> - Use exec_op instead of legacy hooks.
>>
>> Changes in v3: None
>> Changes in v2:
>> - Fix compile error.
>> - Include header files sorted by file name.
>>
>> drivers/mtd/nand/raw/Kconfig | 12 +
>> drivers/mtd/nand/raw/Makefile | 1 +
>> .../mtd/nand/raw/rockchip-nand-controller.c | 1460 +++++++++++++++++
>> 3 files changed, 1473 insertions(+)
>> create mode 100644 drivers/mtd/nand/raw/rockchip-nand-controller.c
>>
>> diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
>> index 6c46f25b57e2..2cc533e4e239 100644
>> --- a/drivers/mtd/nand/raw/Kconfig
>> +++ b/drivers/mtd/nand/raw/Kconfig
>> @@ -462,6 +462,18 @@ config MTD_NAND_ARASAN
>> Enables the driver for the Arasan NAND flash controller on
>> Zynq Ultrascale+ MPSoC.
>>
>> +config MTD_NAND_ROCKCHIP
>> + tristate "Rockchip NAND controller"
>> + depends on ARCH_ROCKCHIP && HAS_IOMEM
>> + help
>> + Enables support for NAND controller on Rockchip SoCs.
>> + There are four different versions of NAND FLASH Controllers,
>> + including:
>> + NFC v600: RK2928, RK3066, RK3188
>> + NFC v622: RK3036, RK3128
>> + NFC v800: RK3308, RV1108
>> + NFC v900: PX30, RK3326
>> +
>> comment "Misc"
>>
>> config MTD_SM_COMMON
>> diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
>> index 2930f5b9015d..960c9be25204 100644
>> --- a/drivers/mtd/nand/raw/Makefile
>> +++ b/drivers/mtd/nand/raw/Makefile
>> @@ -58,6 +58,7 @@ obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o
>> obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o
>> obj-$(CONFIG_MTD_NAND_CADENCE) += cadence-nand-controller.o
>> obj-$(CONFIG_MTD_NAND_ARASAN) += arasan-nand-controller.o
>> +obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o
>>
>> nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o
>> nand-objs += nand_onfi.o
>> diff --git a/drivers/mtd/nand/raw/rockchip-nand-controller.c b/drivers/mtd/nand/raw/rockchip-nand-controller.c
>> new file mode 100644
>> index 000000000000..2e96fd314346
>> --- /dev/null
>> +++ b/drivers/mtd/nand/raw/rockchip-nand-controller.c
>> @@ -0,0 +1,1460 @@
>> +// SPDX-License-Identifier: GPL-2.0 OR MIT
>> +/*
>> + * Rockchip NAND Flash controller driver.
>> + * Copyright (C) 2020 Rockchip Inc.
>> + * Author: Yifeng Zhao <yifeng.zhao@...k-chips.com>
>> + */
>> +
>> +#include <linux/clk.h>
>> +#include <linux/delay.h>
>> +#include <linux/dma-mapping.h>
>> +#include <linux/dmaengine.h>
>> +#include <linux/interrupt.h>
>> +#include <linux/iopoll.h>
>> +#include <linux/module.h>
>> +#include <linux/mtd/mtd.h>
>> +#include <linux/mtd/rawnand.h>
>> +#include <linux/of.h>
>> +#include <linux/of_device.h>
>> +#include <linux/platform_device.h>
>> +#include <linux/slab.h>
>> +
>> +/*
>> + * NFC Page Data Layout:
>> + * 1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc +
>> + * 1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc +
>> + * ......
>> + * NAND Page Data Layout:
>> + * 1024 * n Data + m Bytes oob
>> + * Original Bad Block Mask Location:
>> + * First byte of oob(spare).
>> + * nand_chip->oob_poi data layout:
>> + * 4Bytes sys data + .... + 4Bytes sys data + ecc data.
>> + */
>> +
>> +/* NAND controller register definition */
>> +#define NFC_READ (0)
>> +#define NFC_WRITE (1)
>> +
>> +#define NFC_FMCTL (0x00)
>> +#define FMCTL_CE_SEL_M 0xFF
>> +#define FMCTL_CE_SEL(x) (1 << (x))
>> +#define FMCTL_WP BIT(8)
>> +#define FMCTL_RDY BIT(9)
>> +
>> +#define NFC_FMWAIT (0x04)
>> +#define FLCTL_RST BIT(0)
>> +#define FLCTL_WR (1) /* 0: read, 1: write */
>> +#define FLCTL_XFER_ST BIT(2)
>> +#define FLCTL_XFER_EN BIT(3)
>> +#define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */
>> +#define FLCTL_XFER_READY BIT(20)
>> +#define FLCTL_XFER_SECTOR (22)
>> +#define FLCTL_TOG_FIX BIT(29)
>> +
>> +#define BCHCTL_BANK_M (7 << 5)
>> +#define BCHCTL_BANK (5)
>> +
>> +#define DMA_ST BIT(0)
>> +#define DMA_WR (1) /* 0: write, 1: read */
>> +#define DMA_EN BIT(2)
>> +#define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */
>> +#define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */
>> +#define DMA_INC_NUM (9) /* 1 - 16 */
>> +
>> +#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
>> + (((x) >> (e).high) & (e).high_mask) << (e).low_bn)
>> +#define INT_DMA BIT(0)
>> +#define NFC_BANK (0x800)
>> +#define NFC_BANK_STEP (0x100)
>> +#define BANK_DATA (0x00)
>> +#define BANK_ADDR (0x04)
>> +#define BANK_CMD (0x08)
>> +#define NFC_SRAM0 (0x1000)
>> +#define NFC_SRAM1 (0x1400)
>> +#define NFC_SRAM_SIZE (0x400)
>> +#define NFC_TIMEOUT (500000)
>> +#define NFC_MAX_OOB_PER_STEP 128
>> +#define NFC_MIN_OOB_PER_STEP 64
>> +#define MAX_DATA_SIZE 0xFFFC
>> +#define MAX_ADDRESS_CYC 6
>> +#define NFC_ECC_MAX_MODES 4
>> +#define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */
>> +#define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 data.*/
>> +#define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */
>> +#define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs))
>> +
>> +enum nfc_type {
>> + NFC_V6,
>> + NFC_V8,
>> + NFC_V9,
>> +};
>> +
>> +/**
>> + * struct rk_ecc_cnt_status: represent a ecc status data.
>> + * @err_flag_bit: error flag bit index at register.
>> + * @low: ecc count low bit index at register.
>> + * @low_mask: mask bit.
>> + * @low_bn: ecc count low bit number.
>> + * @high: ecc count high bit index at register.
>> + * @high_mask: mask bit
>> + */
>> +struct ecc_cnt_status {
>> + u8 err_flag_bit;
>> + u8 low;
>> + u8 low_mask;
>> + u8 low_bn;
>> + u8 high;
>> + u8 high_mask;
>> +};
>> +
>> +/*
>> + * @type: nfc version
>> + * @ecc_strengths: ecc strengths
>> + * @ecc_cfgs: ecc config values
>> + * @flctl_off: FLCTL register offset
>> + * @bchctl_off: BCHCTL register offset
>> + * @dma_data_buf_off: DMA_DATA_BUF register offset
>> + * @dma_oob_buf_off: DMA_OOB_BUF register offset
>> + * @dma_cfg_off: DMA_CFG register offset
>> + * @dma_st_off: DMA_ST register offset
>> + * @bch_st_off: BCG_ST register offset
>> + * @randmz_off: RANDMZ register offset
>> + * @int_en_off: interrupt enable register offset
>> + * @int_clr_off: interrupt clean register offset
>> + * @int_st_off: interrupt status register offset
>> + * @oob0_off: oob0 register offset
>> + * @oob1_off: oob1 register offset
>> + * @ecc0: represent ECC0 status data
>> + * @ecc1: represent ECC1 status data
>> + */
>> +struct nfc_cfg {
>> + enum nfc_type type;
>> + u8 ecc_strengths[NFC_ECC_MAX_MODES];
>> + u32 ecc_cfgs[NFC_ECC_MAX_MODES];
>> + u32 flctl_off;
>> + u32 bchctl_off;
>> + u32 dma_cfg_off;
>> + u32 dma_data_buf_off;
>> + u32 dma_oob_buf_off;
>> + u32 dma_st_off;
>> + u32 bch_st_off;
>> + u32 randmz_off;
>> + u32 int_en_off;
>> + u32 int_clr_off;
>> + u32 int_st_off;
>> + u32 oob0_off;
>> + u32 oob1_off;
>> + struct ecc_cnt_status ecc0;
>> + struct ecc_cnt_status ecc1;
>> +};
>> +
>> +struct rk_nfc_nand_chip {
>> + struct list_head node;
>> + struct nand_chip chip;
>> +
>> + u16 spare_per_sector;
>> + u16 oob_buf_per_sector;
>> + u16 boot_blks;
>> + u16 boot_ecc;
>> + u16 metadata_size;
>> +
>> + u8 nsels;
>> + u8 sels[0];
>> + /* Nothing after this field. */
>> +};
>> +
>> +struct rk_nfc {
>> + struct nand_controller controller;
>> + const struct nfc_cfg *cfg;
>> + struct device *dev;
>> +
>> + struct clk *nfc_clk;
>> + struct clk *ahb_clk;
>> + void __iomem *regs;
>> +
>> + u32 selected_bank;
>> + u32 band_offset;
>> + u32 cur_clk;
>> +
>> + struct completion done;
>> + struct list_head chips;
>> +
>> + u8 *buffer;
>> + u8 *page_buf;
>> + u32 *oob_buf;
>> + u32 buffer_size;
>> + u32 oob_buf_size;
>> +
>> + unsigned long assigned_cs;
>> +};
>> +
>> +static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip)
>> +{
>> + return container_of(chip, struct rk_nfc_nand_chip, chip);
>> +}
>> +
>> +static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i)
>> +{
>> + return (u8 *)p + i * chip->ecc.size;
>> +}
>> +
>> +static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i)
>> +{
>> + u8 *poi;
>> +
>> + poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
>> +
>> + return poi;
>> +}
>> +
>> +static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i)
>> +{
>> + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
>> + u8 *poi;
>> +
>> + poi = chip->oob_poi + rknand->metadata_size +
>> + chip->ecc.bytes * i;
>> +
>> + return poi;
>> +}
>> +
>> +static inline int rk_nfc_data_len(struct nand_chip *chip)
>> +{
>> + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
>> +
>> + return chip->ecc.size + rknand->spare_per_sector;
>> +}
>> +
>> +static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
>> +{
>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>> +
>> + return nfc->buffer + i * rk_nfc_data_len(chip);
>> +}
>> +
>> +static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
>> +{
>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>> +
>> + return nfc->buffer + i * rk_nfc_data_len(chip) + chip->ecc.size;
>> +}
>> +
>> +static void rk_nfc_select_chip(struct nand_chip *chip, int cs)
>> +{
>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>> + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
>> + u32 val;
>> +
>> + if (cs < 0) {
>> + nfc->selected_bank = -1;
>> + /* Deselect the currently selected target. */
>> + val = readl_relaxed(nfc->regs + NFC_FMCTL);
>> + val &= ~FMCTL_CE_SEL_M;
>> + writel(val, nfc->regs + NFC_FMCTL);
>> + return;
>> + }
>> +
>> + nfc->selected_bank = rknand->sels[cs];
>> + nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
>> +
>> + val = readl_relaxed(nfc->regs + NFC_FMCTL);
>> + val &= ~FMCTL_CE_SEL_M;
>> + val |= FMCTL_CE_SEL(nfc->selected_bank);
>> +
>> + writel(val, nfc->regs + NFC_FMCTL);
>> +}
>> +
>> +static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
>> +{
>> + int rc;
>> + u32 val;
>> +
>> + rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val,
>> + val & FMCTL_RDY, 10, NFC_TIMEOUT);
>> +
>> + return rc;
>> +}
>> +
>> +static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len)
>> +{
>> + int i;
>> +
>> + for (i = 0; i < len; i++)
>> + buf[i] = readb_relaxed(nfc->regs + nfc->band_offset +
>> + BANK_DATA);
>> +}
>> +
>> +static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len)
>> +{
>> + int i;
>> +
>> + for (i = 0; i < len; i++)
>> + writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA);
>> +}
>> +
>> +static int rk_nfc_cmd(struct nand_chip *chip,
>> + const struct nand_subop *subop)
>> +{
>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>> + unsigned int i, j, remaining, start;
>> + int reg_offset = nfc->band_offset;
>> + u8 *inbuf = NULL;
>> + const u8 *outbuf;
>> + u32 cnt = 0;
>> + int ret = 0;
>> +
>> + for (i = 0; i < subop->ninstrs; i++) {
>> + const struct nand_op_instr *instr = &subop->instrs[i];
>> +
>> + switch (instr->type) {
>> + case NAND_OP_CMD_INSTR:
>> + writeb(instr->ctx.cmd.opcode,
>> + nfc->regs + reg_offset + BANK_CMD);
>> + break;
>> +
>> + case NAND_OP_ADDR_INSTR:
>> + remaining = nand_subop_get_num_addr_cyc(subop, i);
>> + start = nand_subop_get_addr_start_off(subop, i);
>> +
>> + for (j = 0; j < 8 && j + start < remaining; j++)
>> + writeb(instr->ctx.addr.addrs[j + start],
>> + nfc->regs + reg_offset + BANK_ADDR);
>> + break;
>> +
>> + case NAND_OP_DATA_IN_INSTR:
>> + case NAND_OP_DATA_OUT_INSTR:
>> + start = nand_subop_get_data_start_off(subop, i);
>> + cnt = nand_subop_get_data_len(subop, i);
>> +
>> + if (instr->type == NAND_OP_DATA_OUT_INSTR) {
>> + outbuf = instr->ctx.data.buf.out + start;
>> + rk_nfc_write_buf(nfc, outbuf, cnt);
>> + } else {
>> + inbuf = instr->ctx.data.buf.in + start;
>> + rk_nfc_read_buf(nfc, inbuf, cnt);
>> + }
>> + break;
>> +
>> + case NAND_OP_WAITRDY_INSTR:
>> + if (rk_nfc_wait_ioready(nfc) < 0) {
>> + ret = -ETIMEDOUT;
>> + dev_err(nfc->dev, "IO not ready\n");
>> + }
>> + break;
>> + }
>> + }
>> +
>> + return ret;
>> +}
>> +
>> +static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER(
>> + NAND_OP_PARSER_PATTERN(
>> + rk_nfc_cmd,
>> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
>> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
>> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
>> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
>> + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)),
>> + NAND_OP_PARSER_PATTERN(
>> + rk_nfc_cmd,
>> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
>> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
>> + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE),
>> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
>> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
>> +);
>> +
>> +static int rk_nfc_exec_op(struct nand_chip *chip,
>> + const struct nand_operation *op,
>> + bool check_only)
>> +{
>> + if (!check_only)
>> + rk_nfc_select_chip(chip, op->cs);
>> +
>> + return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op,
>> + check_only);
>> +}
>> +
>> +static int rk_nfc_setup_data_interface(struct nand_chip *chip, int csline,
>> + const struct nand_interface_config *conf)
>
>Please have a look at the recent changes in the core, this helper
>should be named "setup_interface".
>
>> +{
>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>> + const struct nand_sdr_timings *timings;
>> + u32 rate, tc2rw, trwpw, trw2c;
>> + u32 temp;
>> +
>> + if (csline == NAND_DATA_IFACE_CHECK_ONLY)
>> + return 0;
>> +
>> + timings = nand_get_sdr_timings(conf);
>> + if (IS_ERR(timings))
>> + return -EOPNOTSUPP;
>> +
>> + if (IS_ERR(nfc->nfc_clk))
>> + rate = clk_get_rate(nfc->ahb_clk);
>> + else
>> + rate = clk_get_rate(nfc->nfc_clk);
>> +
>> + /* Turn clock rate into kHz. */
>> + rate /= 1000;
>> +
>> + tc2rw = 1;
>> + trw2c = 1;
>> +
>> + trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
>> + trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);
>> +
>> + temp = timings->tREA_max / 1000;
>> + temp = DIV_ROUND_UP(temp * rate, 1000000);
>> +
>> + if (trwpw < temp)
>> + trwpw = temp;
>> +
>> + /*
>> + * ACCON: access timing control register
>> + * -------------------------------------
>> + * 31:18: reserved
>> + * 17:12: csrw, clock cycles from the falling edge of CSn to the
>> + * falling edge of RDn or WRn
>> + * 11:11: reserved
>> + * 10:05: rwpw, the width of RDn or WRn in processor clock cycles
>> + * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
>> + * rising edge of CSn
>> + */
>> + temp = ACCTIMING(tc2rw, trwpw, trw2c);
>> + writel(temp, nfc->regs + NFC_FMWAIT);
>
>You should save the chip's timing configuration instead of writing it
>here, and setting the register value during chip selection. This way
>you may handle several chips with different timing
>constraints/configurations.
>
>> +
>> + return 0;
>> +}
>> +
>> +static int rk_nfc_hw_ecc_setup(struct nand_chip *chip,
>> + struct nand_ecc_ctrl *ecc,
>> + uint32_t strength)
>> +{
>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>> + u32 reg, i;
>> +
>> + for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
>> + if (ecc->strength == nfc->cfg->ecc_strengths[i]) {
>> + reg = nfc->cfg->ecc_cfgs[i];
>> + break;
>> + }
>> + }
>> +
>> + if (i >= NFC_ECC_MAX_MODES)
>> + return -EINVAL;
>> +
>> + writel(reg, nfc->regs + nfc->cfg->bchctl_off);
>
>Same here, if you handle different chips, they may use different ECC
>configurations, this should be handled.
>
>> +
>> + return 0;
>> +}
>> +
>> +static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
>> + dma_addr_t dma_data, dma_addr_t dma_oob)
>> +{
>> + u32 dma_reg, fl_reg, bch_reg;
>> +
>> + dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
>> + (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
>> +
>> + fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
>> + (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
>> +
>> + if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
>> + bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
>> + bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
>> + (nfc->selected_bank << BCHCTL_BANK);
>> + writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
>> + }
>> +
>> + writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
>> + writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
>> + writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
>> + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
>> + fl_reg |= FLCTL_XFER_ST;
>> + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
>> +}
>> +
>> +static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
>> +{
>> + void __iomem *ptr;
>> + int ret = 0;
>> + u32 reg;
>> +
>> + ptr = nfc->regs + nfc->cfg->flctl_off;
>> +
>> + ret = readl_relaxed_poll_timeout(ptr, reg,
>> + reg & FLCTL_XFER_READY,
>> + 10, NFC_TIMEOUT);
>> +
>> + return ret;
>> +}
>> +
>> +static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
>> + int oob_on, int page)
>> +{
>> + struct mtd_info *mtd = nand_to_mtd(chip);
>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>> + struct nand_ecc_ctrl *ecc = &chip->ecc;
>> + int ret = 0;
>> + u32 i;
>> +
>> + if (!buf)
>> + memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
>> +
>> + for (i = 0; i < ecc->steps; i++) {
>> + /* Copy data to nfc buffer. */
>> + if (buf)
>> + memcpy(rk_nfc_data_ptr(chip, i),
>> + rk_nfc_buf_to_data_ptr(chip, buf, i),
>> + ecc->size);
>> + /*
>> + * The first four bytes of OOB are reserved for the
>> + * boot ROM. In some debugging cases, such as with a
>> + * read, erase and write back test these 4 bytes stored
>> + * in OOB also need to be written back.
>> + */
>
>The controller driver should not arbitrate this. If you don't want to
>expose these bytes, they should not appear "free" in the OOB layout,
>but a raw access *must* but able to address the entire page/oob.
I don't have a solution to fix it.
The function nand_block_bad detect bad block like it:
bad = chip->oob_poi[chip->badblockpos]; //chip->badblockpos = 0 for large page NAND Flash.
So chip->oob_poi[0] is bad masker.
The oob data layout for rk nfc is:
PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
or
0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
The code here just to swap the first 4 bytes with the last 4 bytes and without droped any data.
and the chip->oob_poi data layout:
BBM OOB1 OOB2 OOB3|......| PA0 PA1 PA2 PA3
The OOB layout free already reserved this 4 bytes:
oob_region->offset = NFC_SYS_DATA_SIZE + 2;
>> + if (!i)
>> + memcpy(rk_nfc_oob_ptr(chip, i),
>> + rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
>> + NFC_SYS_DATA_SIZE);
>> + else
>> + memcpy(rk_nfc_oob_ptr(chip, i),
>> + rk_nfc_buf_to_oob_ptr(chip, i - 1),
>> + NFC_SYS_DATA_SIZE);
>> + /* Copy ECC data to the NFC buffer. */
>> + memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
>> + rk_nfc_buf_to_oob_ecc_ptr(chip, i),
>> + ecc->bytes);
>> + }
>> +
>> + nand_prog_page_begin_op(chip, page, 0, NULL, 0);
>> + rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize);
>> + ret = nand_prog_page_end_op(chip);
>> +
>> + /*
>> + * Deselect the currently selected target after the ops is done
>> + * to reduce the power consumption.
>> + */
>> + rk_nfc_select_chip(chip, -1);
>> +
>> + return ret;
>> +}
>> +
>> +static int rk_nfc_write_oob(struct nand_chip *chip, int page)
>> +{
>> + return rk_nfc_write_page_raw(chip, NULL, 1, page);
>
>Not sure this is relevant. You should not do that, I guess the core
>will automatically take care of it.
>
>> +}
>> +
>> +static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
>> + int oob_on, int page)
>> +{
>> + struct mtd_info *mtd = nand_to_mtd(chip);
>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>> + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
>> + struct nand_ecc_ctrl *ecc = &chip->ecc;
>> + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
>> + NFC_MIN_OOB_PER_STEP;
>> + int pages_per_blk = mtd->erasesize / mtd->writesize;
>> + int ret = 0, i, boot_rom_mode = 0;
>> + dma_addr_t dma_data, dma_oob;
>> + u32 reg;
>> + u8 *oob;
>> +
>> + nand_prog_page_begin_op(chip, page, 0, NULL, 0);
>> +
>> + memcpy(nfc->page_buf, buf, mtd->writesize);
>> +
>> + /*
>> + * The first blocks (4, 8 or 16 depending on the device) are used
>> + * by the boot ROM and the first 32 bits of OOB need to link to
>> + * the next page address in the same block. We can't directly copy
>> + * OOB data from the MTD framework, because this page address
>> + * conflicts for example with the bad block marker (BBM),
>> + * so we shift all OOB data including the BBM with 4 byte positions.
>> + * As a consequence the OOB size available to the MTD framework is
>> + * also reduced with 4 bytes.
>> + *
>> + * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
>> + *
>> + * If a NAND is not a boot medium or the page is not a boot block,
>> + * the first 4 bytes are left untouched by writing 0xFF to them.
>> + *
>> + * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
>> + *
>> + * Configure the ECC algorithm supported by the boot ROM.
>> + */
>> + if ((page < pages_per_blk * rknand->boot_blks) &&
>> + (chip->options & NAND_IS_BOOT_MEDIUM)) {
>> + boot_rom_mode = 1;
>> + if (rknand->boot_ecc != ecc->strength)
>> + rk_nfc_hw_ecc_setup(chip, ecc,
>> + rknand->boot_ecc);
>> + }
>> +
>> + for (i = 0; i < ecc->steps; i++) {
>> + if (!i) {
>> + reg = 0xFFFFFFFF;
>> + } else {
>> + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
>> + reg = oob[0] | oob[1] << 8 | oob[2] << 16 |
>> + oob[3] << 24;
>> + }
>> + if (!i && boot_rom_mode)
>> + reg = (page & (pages_per_blk - 1)) * 4;
>> +
>> + if (nfc->cfg->type == NFC_V9)
>> + nfc->oob_buf[i] = reg;
>> + else
>> + nfc->oob_buf[i * (oob_step / 4)] = reg;
>> + }
>> +
>> + dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
>> + mtd->writesize, DMA_TO_DEVICE);
>> + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
>> + ecc->steps * oob_step,
>> + DMA_TO_DEVICE);
>> +
>> + reinit_completion(&nfc->done);
>> + writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
>> +
>> + rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
>> + dma_oob);
>> + ret = wait_for_completion_timeout(&nfc->done,
>> + msecs_to_jiffies(100));
>> + if (!ret)
>> + dev_warn(nfc->dev, "write: wait dma done timeout.\n");
>> + /*
>> + * Whether the DMA transfer is completed or not. The driver
>> + * needs to check the NFC`s status register to see if the data
>> + * transfer was completed.
>> + */
>> + ret = rk_nfc_wait_for_xfer_done(nfc);
>> +
>> + dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
>> + DMA_TO_DEVICE);
>> + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
>> + DMA_TO_DEVICE);
>> +
>> + if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
>> + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength);
>> +
>> + if (ret) {
>> + ret = -EIO;
>> + dev_err(nfc->dev,
>> + "write: wait transfer done timeout.\n");
>> + }
>> +
>> + if (ret)
>> + return ret;
>> +
>> + ret = nand_prog_page_end_op(chip);
>> +
>> + /*
>> + * Deselect the currently selected target after the ops is done
>> + * to reduce the power consumption.
>> + */
>
>If you force this deselection, your should probably do it even in case
>of error?
>
>> + rk_nfc_select_chip(chip, -1);
>> +
>> + return ret;
>> +}
>> +
>> +static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
>> + int page)
>> +{
>> + struct mtd_info *mtd = nand_to_mtd(chip);
>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>> + struct nand_ecc_ctrl *ecc = &chip->ecc;
>> + int i;
>> +
>> + nand_read_page_op(chip, page, 0, NULL, 0);
>> + rk_nfc_read_buf(nfc, nfc->buffer, mtd->writesize + mtd->oobsize);
>> +
>> + /*
>> + * Deselect the currently selected target after the ops is done
>> + * to reduce the power consumption.
>> + */
>> + rk_nfc_select_chip(chip, -1);
>> +
>> + for (i = 0; i < ecc->steps; i++) {
>> + /*
>> + * The first four bytes of OOB are reserved for the
>> + * boot ROM. In some debugging cases, such as with a read,
>> + * erase and write back test, these 4 bytes also must be
>> + * saved somewhere, otherwise this information will be
>> + * lost during a write back.
>
>Ditto
>
>> + */
>> + if (!i)
>> + memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
>> + rk_nfc_oob_ptr(chip, i),
>> + NFC_SYS_DATA_SIZE);
>> + else
>> + memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1),
>> + rk_nfc_oob_ptr(chip, i),
>> + NFC_SYS_DATA_SIZE);
>> + /* Copy ECC data from the NFC buffer. */
>> + memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i),
>> + rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
>> + ecc->bytes);
>> + /* Copy data from the NFC buffer. */
>> + if (buf)
>> + memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i),
>> + rk_nfc_data_ptr(chip, i),
>> + ecc->size);
>> + }
>> +
>> + return 0;
>> +}
>> +
>> +static int rk_nfc_read_oob(struct nand_chip *chip, int page)
>> +{
>> + return rk_nfc_read_page_raw(chip, NULL, 1, page);
>
>Ditto
>
>> +}
>> +
>> +static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on,
>> + int page)
>> +{
>> + struct mtd_info *mtd = nand_to_mtd(chip);
>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>> + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
>> + struct nand_ecc_ctrl *ecc = &chip->ecc;
>> + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
>> + NFC_MIN_OOB_PER_STEP;
>> + int pages_per_blk = mtd->erasesize / mtd->writesize;
>> + dma_addr_t dma_data, dma_oob;
>> + int ret = 0, i, boot_rom_mode = 0;
>> + int bitflips = 0, bch_st;
>> + u8 *oob;
>> + u32 tmp;
>> +
>> + nand_read_page_op(chip, page, 0, NULL, 0);
>> +
>> + dma_data = dma_map_single(nfc->dev, nfc->page_buf,
>> + mtd->writesize,
>> + DMA_FROM_DEVICE);
>> + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
>> + ecc->steps * oob_step,
>> + DMA_FROM_DEVICE);
>> +
>> + /*
>> + * The first blocks (4, 8 or 16 depending on the device)
>> + * are used by the boot ROM.
>> + * Configure the ECC algorithm supported by the boot ROM.
>> + */
>> + if ((page < pages_per_blk * rknand->boot_blks) &&
>> + (chip->options & NAND_IS_BOOT_MEDIUM)) {
>> + boot_rom_mode = 1;
>> + if (rknand->boot_ecc != ecc->strength)
>> + rk_nfc_hw_ecc_setup(chip, ecc,
>> + rknand->boot_ecc);
>> + }
>> +
>> + reinit_completion(&nfc->done);
>> + writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
>> + rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
>> + dma_oob);
>> + ret = wait_for_completion_timeout(&nfc->done,
>> + msecs_to_jiffies(100));
>> + if (!ret)
>> + dev_warn(nfc->dev, "read: wait dma done timeout.\n");
>> + /*
>> + * Whether the DMA transfer is completed or not. The driver
>> + * needs to check the NFC`s status register to see if the data
>> + * transfer was completed.
>> + */
>> + ret = rk_nfc_wait_for_xfer_done(nfc);
>> + dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
>> + DMA_FROM_DEVICE);
>> + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
>> + DMA_FROM_DEVICE);
>> +
>> + if (ret) {
>> + bitflips = -EIO;
>> + dev_err(nfc->dev,
>> + "read: wait transfer done timeout.\n");
>> + goto out;
>> + }
>> +
>> + for (i = 1; i < ecc->steps; i++) {
>> + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
>> + if (nfc->cfg->type == NFC_V9)
>> + tmp = nfc->oob_buf[i];
>> + else
>> + tmp = nfc->oob_buf[i * (oob_step / 4)];
>> + *oob++ = (u8)tmp;
>> + *oob++ = (u8)(tmp >> 8);
>> + *oob++ = (u8)(tmp >> 16);
>> + *oob++ = (u8)(tmp >> 24);
>> + }
>> +
>> + for (i = 0; i < (ecc->steps / 2); i++) {
>> + bch_st = readl_relaxed(nfc->regs +
>> + nfc->cfg->bch_st_off + i * 4);
>> + if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
>> + bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
>> + mtd->ecc_stats.failed++;
>> + bitflips = 0;
>> + } else {
>> + ret = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
>> + mtd->ecc_stats.corrected += ret;
>> + bitflips = max_t(u32, bitflips, ret);
>> +
>> + ret = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
>> + mtd->ecc_stats.corrected += ret;
>> + bitflips = max_t(u32, bitflips, ret);
>> + }
>> + }
>> +out:
>> + memcpy(buf, nfc->page_buf, mtd->writesize);
>> +
>> + if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
>> + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength);
>> +
>> + if (bitflips > ecc->strength)
>> + dev_err(nfc->dev, "read page: %x ecc error!\n", page);
>> +
>> + /*
>> + * Deselect the currently selected target after the ops is done
>> + * to reduce the power consumption.
>> + */
>> + rk_nfc_select_chip(chip, -1);
>> +
>> + return bitflips;
>> +}
>> +
>> +static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
>> +{
>> + /* Disable flash wp. */
>> + writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
>> + /* Config default timing 40ns at 150 Mhz nfc clock. */
>> + writel(0x1081, nfc->regs + NFC_FMWAIT);
>> + /* Disable randomizer and DMA. */
>> + writel(0, nfc->regs + nfc->cfg->randmz_off);
>> + writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
>> + writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
>> +}
>> +
>> +static irqreturn_t rk_nfc_irq(int irq, void *id)
>> +{
>> + struct rk_nfc *nfc = id;
>> + u32 sta, ien;
>> +
>> + sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off);
>> + ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off);
>> +
>> + if (!(sta & ien))
>> + return IRQ_NONE;
>> +
>> + writel(sta, nfc->regs + nfc->cfg->int_clr_off);
>> + writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off);
>> +
>> + complete(&nfc->done);
>> +
>> + return IRQ_HANDLED;
>> +}
>> +
>> +static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc)
>> +{
>> + int ret;
>> +
>> + if (!IS_ERR(nfc->nfc_clk)) {
>> + ret = clk_prepare_enable(nfc->nfc_clk);
>> + if (ret) {
>> + dev_err(dev, "failed to enable nfc clk\n");
>> + return ret;
>> + }
>> + }
>> +
>> + ret = clk_prepare_enable(nfc->ahb_clk);
>> + if (ret) {
>> + dev_err(dev, "failed to enable ahb clk\n");
>> + if (!IS_ERR(nfc->nfc_clk))
>> + clk_disable_unprepare(nfc->nfc_clk);
>> + return ret;
>> + }
>> +
>> + return 0;
>> +}
>> +
>> +static void rk_nfc_disable_clks(struct rk_nfc *nfc)
>> +{
>> + if (!IS_ERR(nfc->nfc_clk))
>> + clk_disable_unprepare(nfc->nfc_clk);
>> + clk_disable_unprepare(nfc->ahb_clk);
>> +}
>> +
>> +static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
>> + struct mtd_oob_region *oob_region)
>> +{
>> + struct nand_chip *chip = mtd_to_nand(mtd);
>> + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
>> +
>> + if (section)
>> + return -ERANGE;
>> +
>> + /*
>> + * The beginning of the OOB area stores the reserved data for the NFC,
>> + * the size of the reserved data is NFC_SYS_DATA_SIZE bytes.
>> + */
>> + oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
>> + oob_region->offset = NFC_SYS_DATA_SIZE + 2;
>> +
>> + return 0;
>> +}
>> +
>> +static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
>> + struct mtd_oob_region *oob_region)
>> +{
>> + struct nand_chip *chip = mtd_to_nand(mtd);
>> + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
>> +
>> + if (section)
>> + return -ERANGE;
>> +
>> + oob_region->length = mtd->oobsize - rknand->metadata_size;
>> + oob_region->offset = rknand->metadata_size;
>> +
>> + return 0;
>> +}
>> +
>> +static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
>> + .free = rk_nfc_ooblayout_free,
>> + .ecc = rk_nfc_ooblayout_ecc,
>> +};
>> +
>> +static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
>> +{
>> + struct nand_chip *chip = mtd_to_nand(mtd);
>> + struct rk_nfc *nfc = nand_get_controller_data(chip);
>> + struct nand_ecc_ctrl *ecc = &chip->ecc;
>> + const u8 *strengths = nfc->cfg->ecc_strengths;
>> + u8 max_strength, nfc_max_strength;
>> + int i;
>> +
>> + nfc_max_strength = nfc->cfg->ecc_strengths[0];
>> + /* If optional dt settings not present. */
>> + if (!ecc->size || !ecc->strength ||
>> + ecc->strength > nfc_max_strength) {
>> + chip->ecc.size = 1024;
>> + ecc->steps = mtd->writesize / ecc->size;
>> +
>> + /*
>> + * HW ECC always requests the number of ECC bytes per 1024 byte
>> + * blocks. The first 4 OOB bytes are reserved for sys data.
>> + */
>> + max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
>> + fls(8 * 1024);
>> + if (max_strength > nfc_max_strength)
>> + max_strength = nfc_max_strength;
>> +
>> + for (i = 0; i < 4; i++) {
>> + if (max_strength >= strengths[i])
>> + break;
>> + }
>> +
>> + if (i >= 4) {
>> + dev_err(nfc->dev, "Unsupported ECC strength\n");
>> + return -EOPNOTSUPP;
>> + }
>> +
>> + ecc->strength = strengths[i];
>> + }
>> + ecc->steps = mtd->writesize / ecc->size;
>> + ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
>
>Here you assume 1024 ECC step size, this is wrong. Either the
>controller only supports 1024 bytes or you officially state somewhere
>that you don't support more ECC step sizes yet.
>
>> + /* HW ECC always work with even numbers of ECC bytes. */
>> + ecc->bytes = ALIGN(ecc->bytes, 2);
>
>Shouldn't you ensure the number of bytes is rounded up ?
The V6 and V9 controller supports DDR mode, so ECC bytes need to be aligned to an even number if enable DDR mode.
This drivers no support ddr mode now,I will drop this code.
>> +
>> + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength);
>> +
>> + return 0;
>> +}
>> +
>
>
>Thanks,
>Miquèl
>
>
>
Powered by blists - more mailing lists