[<prev] [next>] [thread-next>] [day] [month] [year] [list]
Message-ID: <a8a7875b-f08b-62c6-a630-245687e0df3b@gmail.com>
Date: Sat, 31 Oct 2020 12:58:36 +0100
From: Johan Jonker <jbx6244@...il.com>
To: Yifeng Zhao <yifeng.zhao@...k-chips.com>,
miquel.raynal@...tlin.com, richard@....at, vigneshr@...com,
robh+dt@...nel.org
Cc: devicetree@...r.kernel.org, heiko@...ech.de,
linux-kernel@...r.kernel.org, linux-rockchip@...ts.infradead.org,
linux-mtd@...ts.infradead.org, linux-arm-kernel@...ts.infradead.org
Subject: Re: [PATCH v13 2/8] mtd: rawnand: rockchip: NFC drivers for RK3308,
RK2928 and others
Hi Yifeng,
Some comments, have a look if it's usefull.
On 10/28/20 10:53 AM, Yifeng Zhao wrote:
> This driver supports Rockchip NFC (NAND Flash Controller) found on RK3308,
> RK2928, RKPX30, RV1108 and other SOCs. The driver has been tested using
> 8-bit NAND interface on the ARM based RK3308 platform.
>
> Support Rockchip SoCs and NFC versions:
> - PX30 and RK3326(NFCv900).
> ECC: 16/40/60/70 bits/1KB.
> CLOCK: ahb and nfc.
> - RK3308 and RV1108(NFCv800).
> ECC: 16 bits/1KB.
> CLOCK: ahb and nfc.
> - RK3036 and RK3128(NFCv622).
> ECC: 16/24/40/60 bits/1KB.
> CLOCK: ahb and nfc.
> - RK3066, RK3188 and RK2928(NFCv600).
> ECC: 16/24/40/60 bits/1KB.
> CLOCK: ahb.
>
> Supported features:
> - Read full page data by DMA.
> - Support HW ECC(one step is 1KB).
> - Support 2 - 32K page size.
> - Support 8 CS(depend on SoCs)
>
> Limitations:
> - No support for the ecc step size is 512.
> - Untested on some SoCs.
> - No support for subpages.
> - No support for the builtin randomizer.
> - The original bad block mask is not supported. It is recommended to use
> the BBT(bad block table).
>
> Signed-off-by: Yifeng Zhao <yifeng.zhao@...k-chips.com>
> ---
>
> Changes in v13:
> - The nfc->buffer will realloc while the page size of the second mtd
> is large than the first one.
> - Fix coding style.
> - Fix some comments.
>
> Changes in v12: None
> Changes in v11:
> - Fix compile error.
>
> Changes in v10:
> - Fix compile error on master v5.9-rc7.
>
> Changes in v9:
> - The nfc->buffer will realloc while the page size of the second mtd
> is large than the first one
> - Fix coding style.
> - Remove struct rk_nfc_clk.
> - Prepend some function with rk_nfc_.
> - Replace function readl_poll_timeout_atomic with readl_relaxed_poll_timeout.
> - Remove function rk_nfc_read_byte and rk_nfc_write_byte.
> - Don't select the die if 'check_only == true' in function rk_nfc_exec_op.
> - Modify function rk_nfc_write_page and rk_nfc_write_page_raw.
>
> Changes in v8: None
> Changes in v7:
> - Rebase to linux-next.
> - Fix coding style.
> - Reserved 4 bytes at the beginning of the oob area.
> - Page raw read and write included ecc data.
>
> Changes in v6:
> - The mtd->name set by NAND label property.
> - Add some comments.
> - Fix compile error.
>
> Changes in v5:
> - Add boot blocks support with different ECC for bootROM.
> - Rename rockchip-nand.c to rockchip-nand-controller.c.
> - Unification of other variable names.
> - Remove some compatible define.
>
> Changes in v4:
> - Define platform data structure for the register offsets.
> - The compatible define with rkxx_nfc.
> - Use SET_SYSTEM_SLEEP_PM_OPS to define PM_OPS.
> - Use exec_op instead of legacy hooks.
>
> Changes in v3: None
> Changes in v2:
> - Fix compile error.
> - Include header files sorted by file name.
>
> drivers/mtd/nand/raw/Kconfig | 12 +
> drivers/mtd/nand/raw/Makefile | 1 +
> .../mtd/nand/raw/rockchip-nand-controller.c | 1460 +++++++++++++++++
> 3 files changed, 1473 insertions(+)
> create mode 100644 drivers/mtd/nand/raw/rockchip-nand-controller.c
>
> diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
> index 6c46f25b57e2..2cc533e4e239 100644
> --- a/drivers/mtd/nand/raw/Kconfig
> +++ b/drivers/mtd/nand/raw/Kconfig
> @@ -462,6 +462,18 @@ config MTD_NAND_ARASAN
> Enables the driver for the Arasan NAND flash controller on
> Zynq Ultrascale+ MPSoC.
>
> +config MTD_NAND_ROCKCHIP
> + tristate "Rockchip NAND controller"
> + depends on ARCH_ROCKCHIP && HAS_IOMEM
> + help
> + Enables support for NAND controller on Rockchip SoCs.
> + There are four different versions of NAND FLASH Controllers,
> + including:
> + NFC v600: RK2928, RK3066, RK3188
> + NFC v622: RK3036, RK3128
> + NFC v800: RK3308, RV1108
> + NFC v900: PX30, RK3326
> +
> comment "Misc"
>
> config MTD_SM_COMMON
> diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
> index 2930f5b9015d..960c9be25204 100644
> --- a/drivers/mtd/nand/raw/Makefile
> +++ b/drivers/mtd/nand/raw/Makefile
> @@ -58,6 +58,7 @@ obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o
> obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o
> obj-$(CONFIG_MTD_NAND_CADENCE) += cadence-nand-controller.o
> obj-$(CONFIG_MTD_NAND_ARASAN) += arasan-nand-controller.o
> +obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o
>
> nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o
> nand-objs += nand_onfi.o
> diff --git a/drivers/mtd/nand/raw/rockchip-nand-controller.c b/drivers/mtd/nand/raw/rockchip-nand-controller.c
> new file mode 100644
> index 000000000000..2e96fd314346
> --- /dev/null
> +++ b/drivers/mtd/nand/raw/rockchip-nand-controller.c
> @@ -0,0 +1,1460 @@
> +// SPDX-License-Identifier: GPL-2.0 OR MIT
> +/*
> + * Rockchip NAND Flash controller driver.
> + * Copyright (C) 2020 Rockchip Inc.
> + * Author: Yifeng Zhao <yifeng.zhao@...k-chips.com>
> + */
> +
> +#include <linux/clk.h>
> +#include <linux/delay.h>
> +#include <linux/dma-mapping.h>
> +#include <linux/dmaengine.h>
> +#include <linux/interrupt.h>
> +#include <linux/iopoll.h>
> +#include <linux/module.h>
> +#include <linux/mtd/mtd.h>
> +#include <linux/mtd/rawnand.h>
> +#include <linux/of.h>
> +#include <linux/of_device.h>
> +#include <linux/platform_device.h>
> +#include <linux/slab.h>
> +
> +/*
> + * NFC Page Data Layout:
> + * 1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc +
> + * 1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc +
> + * ......
> + * NAND Page Data Layout:
> + * 1024 * n Data + m Bytes oob
> + * Original Bad Block Mask Location:
> + * First byte of oob(spare).
> + * nand_chip->oob_poi data layout:
> + * 4Bytes sys data + .... + 4Bytes sys data + ecc data.
> + */
> +
> +/* NAND controller register definition */
> +#define NFC_READ (0)
> +#define NFC_WRITE (1)
> +
> +#define NFC_FMCTL (0x00)
> +#define FMCTL_CE_SEL_M 0xFF
> +#define FMCTL_CE_SEL(x) (1 << (x))
> +#define FMCTL_WP BIT(8)
> +#define FMCTL_RDY BIT(9)
> +
> +#define NFC_FMWAIT (0x04)
> +#define FLCTL_RST BIT(0)
> +#define FLCTL_WR (1) /* 0: read, 1: write */
> +#define FLCTL_XFER_ST BIT(2)
> +#define FLCTL_XFER_EN BIT(3)
> +#define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */
> +#define FLCTL_XFER_READY BIT(20)
> +#define FLCTL_XFER_SECTOR (22)
> +#define FLCTL_TOG_FIX BIT(29)
> +
> +#define BCHCTL_BANK_M (7 << 5)
> +#define BCHCTL_BANK (5)
> +
> +#define DMA_ST BIT(0)
> +#define DMA_WR (1) /* 0: write, 1: read */
> +#define DMA_EN BIT(2)
> +#define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */
> +#define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */
> +#define DMA_INC_NUM (9) /* 1 - 16 */
> +
> +#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
> + (((x) >> (e).high) & (e).high_mask) << (e).low_bn)
> +#define INT_DMA BIT(0)
> +#define NFC_BANK (0x800)
> +#define NFC_BANK_STEP (0x100)
> +#define BANK_DATA (0x00)
> +#define BANK_ADDR (0x04)
> +#define BANK_CMD (0x08)
> +#define NFC_SRAM0 (0x1000)
> +#define NFC_SRAM1 (0x1400)
> +#define NFC_SRAM_SIZE (0x400)
> +#define NFC_TIMEOUT (500000)
> +#define NFC_MAX_OOB_PER_STEP 128
> +#define NFC_MIN_OOB_PER_STEP 64
> +#define MAX_DATA_SIZE 0xFFFC
> +#define MAX_ADDRESS_CYC 6
> +#define NFC_ECC_MAX_MODES 4
> +#define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */
> +#define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 data.*/
> +#define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */
> +#define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs))
> +
> +enum nfc_type {
> + NFC_V6,
> + NFC_V8,
> + NFC_V9,
> +};
> +
> +/**
> + * struct rk_ecc_cnt_status: represent a ecc status data.
> + * @err_flag_bit: error flag bit index at register.
> + * @low: ecc count low bit index at register.
> + * @low_mask: mask bit.
> + * @low_bn: ecc count low bit number.
> + * @high: ecc count high bit index at register.
> + * @high_mask: mask bit
> + */
> +struct ecc_cnt_status {
> + u8 err_flag_bit;
> + u8 low;
> + u8 low_mask;
> + u8 low_bn;
> + u8 high;
> + u8 high_mask;
> +};
> +
> +/*
> + * @type: nfc version
> + * @ecc_strengths: ecc strengths
> + * @ecc_cfgs: ecc config values
> + * @flctl_off: FLCTL register offset
> + * @bchctl_off: BCHCTL register offset
> + * @dma_data_buf_off: DMA_DATA_BUF register offset
> + * @dma_oob_buf_off: DMA_OOB_BUF register offset
> + * @dma_cfg_off: DMA_CFG register offset
> + * @dma_st_off: DMA_ST register offset
> + * @bch_st_off: BCG_ST register offset
> + * @randmz_off: RANDMZ register offset
> + * @int_en_off: interrupt enable register offset
> + * @int_clr_off: interrupt clean register offset
> + * @int_st_off: interrupt status register offset
> + * @oob0_off: oob0 register offset
> + * @oob1_off: oob1 register offset
> + * @ecc0: represent ECC0 status data
> + * @ecc1: represent ECC1 status data
> + */
> +struct nfc_cfg {
> + enum nfc_type type;
> + u8 ecc_strengths[NFC_ECC_MAX_MODES];
> + u32 ecc_cfgs[NFC_ECC_MAX_MODES];
> + u32 flctl_off;
> + u32 bchctl_off;
> + u32 dma_cfg_off;
> + u32 dma_data_buf_off;
> + u32 dma_oob_buf_off;
> + u32 dma_st_off;
> + u32 bch_st_off;
> + u32 randmz_off;
> + u32 int_en_off;
> + u32 int_clr_off;
> + u32 int_st_off;
> + u32 oob0_off;
> + u32 oob1_off;
> + struct ecc_cnt_status ecc0;
> + struct ecc_cnt_status ecc1;
> +};
> +
> +struct rk_nfc_nand_chip {
> + struct list_head node;
> + struct nand_chip chip;
> +
> + u16 spare_per_sector;
> + u16 oob_buf_per_sector;
> + u16 boot_blks;
> + u16 boot_ecc;
u32 boot_ecc;
Keep size in functions call and variables the same every where.
u32 ecc;
u32 timing;
> + u16 metadata_size;
> +
> + u8 nsels;
> + u8 sels[0];
> + /* Nothing after this field. */
> +};
> +
> +struct rk_nfc {
> + struct nand_controller controller;
> + const struct nfc_cfg *cfg;
> + struct device *dev;
> +
> + struct clk *nfc_clk;
> + struct clk *ahb_clk;
> + void __iomem *regs;
> +
> + u32 selected_bank;
> + u32 band_offset;
> + u32 cur_clk;
u32 cur_ecc;
u32 cur_timing;
> +
> + struct completion done;
> + struct list_head chips;
> +
> + u8 *buffer;
> + u8 *page_buf;
> + u32 *oob_buf;
> + u32 buffer_size;
> + u32 oob_buf_size;
> +
> + unsigned long assigned_cs;
> +};
> +
> +static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip)
> +{
> + return container_of(chip, struct rk_nfc_nand_chip, chip);
> +}
> +
> +static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i)
> +{
> + return (u8 *)p + i * chip->ecc.size;
> +}
> +
> +static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i)
> +{
> + u8 *poi;
> +
> + poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
> +
> + return poi;
> +}
> +
> +static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i)
> +{
> + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
> + u8 *poi;
> +
> + poi = chip->oob_poi + rknand->metadata_size +
> + chip->ecc.bytes * i;
> +
> + return poi;
> +}
> +
> +static inline int rk_nfc_data_len(struct nand_chip *chip)
> +{
> + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
> +
> + return chip->ecc.size + rknand->spare_per_sector;
> +}
> +
> +static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
> +{
> + struct rk_nfc *nfc = nand_get_controller_data(chip);
> +
> + return nfc->buffer + i * rk_nfc_data_len(chip);
> +}
> +
> +static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
> +{
> + struct rk_nfc *nfc = nand_get_controller_data(chip);
> +
> + return nfc->buffer + i * rk_nfc_data_len(chip) + chip->ecc.size;
> +}
> +
> +static void rk_nfc_select_chip(struct nand_chip *chip, int cs)
> +{
> + struct rk_nfc *nfc = nand_get_controller_data(chip);
> + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
> + u32 val;
> +
> + if (cs < 0) {
> + nfc->selected_bank = -1;
> + /* Deselect the currently selected target. */
> + val = readl_relaxed(nfc->regs + NFC_FMCTL);
> + val &= ~FMCTL_CE_SEL_M;
> + writel(val, nfc->regs + NFC_FMCTL);
> + return;
> + }
> +
> + nfc->selected_bank = rknand->sels[cs];
> + nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
> +
> + val = readl_relaxed(nfc->regs + NFC_FMCTL);
> + val &= ~FMCTL_CE_SEL_M;
> + val |= FMCTL_CE_SEL(nfc->selected_bank);
> +
> + writel(val, nfc->regs + NFC_FMCTL);
/*
* Compare current chip timing with selected chip timing and
* change if needed.
*/
if (nfc->cur_timing <> rknand->timing) {
rk_nfc_timing_setup(..., rknand->timing);
}
/*
* Compare current chip ECC setting with selected chip ECC setting and
* change if needed.
*/
if (nfc->cur_ecc <> rknand->ecc) {
rk_nfc_hw_ecc_setup(..., rknand->ecc);
}
Only when we have a boot block we make an extra rk_nfc_hw_ecc_setup(...)
call.
> +}
> +
> +static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
> +{
> + int rc;
> + u32 val;
> +
> + rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val,
> + val & FMCTL_RDY, 10, NFC_TIMEOUT);
> +
> + return rc;
> +}
> +
> +static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len)
> +{
> + int i;
> +
> + for (i = 0; i < len; i++)
> + buf[i] = readb_relaxed(nfc->regs + nfc->band_offset +
> + BANK_DATA);
> +}
> +
> +static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len)
> +{
> + int i;
> +
> + for (i = 0; i < len; i++)
> + writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA);
> +}
> +
> +static int rk_nfc_cmd(struct nand_chip *chip,
> + const struct nand_subop *subop)
> +{
> + struct rk_nfc *nfc = nand_get_controller_data(chip);
> + unsigned int i, j, remaining, start;
> + int reg_offset = nfc->band_offset;
> + u8 *inbuf = NULL;
> + const u8 *outbuf;
> + u32 cnt = 0;
> + int ret = 0;
> +
> + for (i = 0; i < subop->ninstrs; i++) {
> + const struct nand_op_instr *instr = &subop->instrs[i];
> +
> + switch (instr->type) {
> + case NAND_OP_CMD_INSTR:
> + writeb(instr->ctx.cmd.opcode,
> + nfc->regs + reg_offset + BANK_CMD);
> + break;
> +
> + case NAND_OP_ADDR_INSTR:
> + remaining = nand_subop_get_num_addr_cyc(subop, i);
> + start = nand_subop_get_addr_start_off(subop, i);
> +
> + for (j = 0; j < 8 && j + start < remaining; j++)
> + writeb(instr->ctx.addr.addrs[j + start],
> + nfc->regs + reg_offset + BANK_ADDR);
> + break;
> +
> + case NAND_OP_DATA_IN_INSTR:
> + case NAND_OP_DATA_OUT_INSTR:
> + start = nand_subop_get_data_start_off(subop, i);
> + cnt = nand_subop_get_data_len(subop, i);
> +
> + if (instr->type == NAND_OP_DATA_OUT_INSTR) {
> + outbuf = instr->ctx.data.buf.out + start;
> + rk_nfc_write_buf(nfc, outbuf, cnt);
> + } else {
> + inbuf = instr->ctx.data.buf.in + start;
> + rk_nfc_read_buf(nfc, inbuf, cnt);
> + }
> + break;
> +
> + case NAND_OP_WAITRDY_INSTR:
> + if (rk_nfc_wait_ioready(nfc) < 0) {
> + ret = -ETIMEDOUT;
> + dev_err(nfc->dev, "IO not ready\n");
> + }
> + break;
> + }
> + }
> +
> + return ret;
> +}
> +
> +static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER(
> + NAND_OP_PARSER_PATTERN(
> + rk_nfc_cmd,
> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
> + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)),
> + NAND_OP_PARSER_PATTERN(
> + rk_nfc_cmd,
> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
> + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE),
> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
> +);
> +
> +static int rk_nfc_exec_op(struct nand_chip *chip,
> + const struct nand_operation *op,
> + bool check_only)
> +{
> + if (!check_only)
> + rk_nfc_select_chip(chip, op->cs);
> +
> + return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op,
> + check_only);
> +}
> +
> +static int rk_nfc_setup_data_interface(struct nand_chip *chip, int csline,
static int rk_nfc_setup_interface(struct nand_chip *chip, int csline,
> + const struct nand_interface_config *conf)
> +{
> + struct rk_nfc *nfc = nand_get_controller_data(chip);
> + const struct nand_sdr_timings *timings;
> + u32 rate, tc2rw, trwpw, trw2c;
> + u32 temp;
> +
> + if (csline == NAND_DATA_IFACE_CHECK_ONLY)
> + return 0;
> +
> + timings = nand_get_sdr_timings(conf);
> + if (IS_ERR(timings))
> + return -EOPNOTSUPP;
> +
> + if (IS_ERR(nfc->nfc_clk))
> + rate = clk_get_rate(nfc->ahb_clk);
> + else
> + rate = clk_get_rate(nfc->nfc_clk);
> +
> + /* Turn clock rate into kHz. */
> + rate /= 1000;
> +
> + tc2rw = 1;
> + trw2c = 1;
> +
> + trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
> + trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);
> +
> + temp = timings->tREA_max / 1000;
> + temp = DIV_ROUND_UP(temp * rate, 1000000);
> +
> + if (trwpw < temp)
> + trwpw = temp;
> +
> + /*
> + * ACCON: access timing control register
> + * -------------------------------------
> + * 31:18: reserved
> + * 17:12: csrw, clock cycles from the falling edge of CSn to the
> + * falling edge of RDn or WRn
> + * 11:11: reserved
> + * 10:05: rwpw, the width of RDn or WRn in processor clock cycles
> + * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
> + * rising edge of CSn
> + */
> + temp = ACCTIMING(tc2rw, trwpw, trw2c);
> + writel(temp, nfc->regs + NFC_FMWAIT);
remove
With 2 NFC's and 8 cs per controller we could have 16 different
settings.
Store only.
Compare current timing with chip timing and write when the chip
is selected.
/* Save chip timing */
rknand->timing = temp;
> +
> + return 0;
> +}
> +
rk_nfc_timing_setup(.., u32 timimg)
{
struct rk_nfc *nfc = nand_get_controller_data(chip);
[..]
writel(timimg, nfc->regs + NFC_FMWAIT);
/* Save current timing */
nfc->cur_timing = timing;
}
> +static int rk_nfc_hw_ecc_setup(struct nand_chip *chip,
> + struct nand_ecc_ctrl *ecc,
> + uint32_t strength)
> +{
> + struct rk_nfc *nfc = nand_get_controller_data(chip);
> + u32 reg, i;
> +
> + for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
> + if (ecc->strength == nfc->cfg->ecc_strengths[i]) {
> + reg = nfc->cfg->ecc_cfgs[i];
> + break;
> + }
> + }
> +
> + if (i >= NFC_ECC_MAX_MODES)
> + return -EINVAL;
> +
> + writel(reg, nfc->regs + nfc->cfg->bchctl_off);
/* Save chip ECC setting */
nfc->cur_ecc = reg;
> +
> + return 0;
> +}
> +
> +static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
> + dma_addr_t dma_data, dma_addr_t dma_oob)
> +{
> + u32 dma_reg, fl_reg, bch_reg;
> +
> + dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
> + (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
> +
> + fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
> + (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
> +
> + if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
> + bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
> + bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
> + (nfc->selected_bank << BCHCTL_BANK);
> + writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
> + }
> +
> + writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
> + writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
> + writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
> + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
> + fl_reg |= FLCTL_XFER_ST;
> + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
> +}
> +
> +static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
> +{
> + void __iomem *ptr;
> + int ret = 0;
> + u32 reg;
> +
> + ptr = nfc->regs + nfc->cfg->flctl_off;
> +
> + ret = readl_relaxed_poll_timeout(ptr, reg,
> + reg & FLCTL_XFER_READY,
> + 10, NFC_TIMEOUT);
> +
> + return ret;
> +}
> +
> +static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
> + int oob_on, int page)
> +{
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + struct rk_nfc *nfc = nand_get_controller_data(chip);
> + struct nand_ecc_ctrl *ecc = &chip->ecc;
> + int ret = 0;
> + u32 i;
> +
/*
* Normal timing and ECC layout size setup is already done in
* the rk_nfc_select_chip() function.
*/
How about the ECC layout size setup for a boot block?
> + if (!buf)
> + memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
> +> + for (i = 0; i < ecc->steps; i++) {
> + /* Copy data to nfc buffer. */
> + if (buf)
> + memcpy(rk_nfc_data_ptr(chip, i),
> + rk_nfc_buf_to_data_ptr(chip, buf, i),
> + ecc->size);
> + /*
> + * The first four bytes of OOB are reserved for the
> + * boot ROM. In some debugging cases, such as with a
> + * read, erase and write back test these 4 bytes stored
> + * in OOB also need to be written back.
> + */
/*
* The first four bytes of OOB are reserved for the
* boot ROM. In some debugging cases, such as with a
* read, erase and write back test these 4 bytes stored
* in OOB also need to be written back.
*
* The function nand_block_bad detects bad blocks like:
*
* bad = chip->oob_poi[chip->badblockpos];
*
* chip->badblockpos == 0 for a large page NAND Flash,
* so chip->oob_poi[0] is the bad block mask (BBM).
*
* The OOB data layout on the NFC is:
*
* PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
*
* or
*
* 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
*
* The code here just swaps the first 4 bytes with the last
* 4 bytes without losing any data.
*
* The chip->oob_poi data layout:
*
* BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3
*
* The rk_nfc_ooblayout_free() function already has reserved
* these 4 bytes with:
*
* oob_region->offset = NFC_SYS_DATA_SIZE + 2;
*/
> + if (!i)
> + memcpy(rk_nfc_oob_ptr(chip, i),
> + rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
> + NFC_SYS_DATA_SIZE);
> + else
> + memcpy(rk_nfc_oob_ptr(chip, i),
> + rk_nfc_buf_to_oob_ptr(chip, i - 1),
> + NFC_SYS_DATA_SIZE);
> + /* Copy ECC data to the NFC buffer. */
> + memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
> + rk_nfc_buf_to_oob_ecc_ptr(chip, i),
> + ecc->bytes);
> + }
> +
> + nand_prog_page_begin_op(chip, page, 0, NULL, 0);
> + rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize);
> + ret = nand_prog_page_end_op(chip);
> +
> + /*
> + * Deselect the currently selected target after the ops is done
> + * to reduce the power consumption.
> + */
> + rk_nfc_select_chip(chip, -1);
Does the MTD framework always select again?
> +
> + return ret;
> +}
> +
> +static int rk_nfc_write_oob(struct nand_chip *chip, int page)
> +{
> + return rk_nfc_write_page_raw(chip, NULL, 1, page);
> +}
> +
> +static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
> + int oob_on, int page)
> +{
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + struct rk_nfc *nfc = nand_get_controller_data(chip);
> + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
> + struct nand_ecc_ctrl *ecc = &chip->ecc;
> + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
> + NFC_MIN_OOB_PER_STEP;
> + int pages_per_blk = mtd->erasesize / mtd->writesize;
> + int ret = 0, i, boot_rom_mode = 0;
> + dma_addr_t dma_data, dma_oob;
> + u32 reg;
> + u8 *oob;
> +
> + nand_prog_page_begin_op(chip, page, 0, NULL, 0);
> +
> + memcpy(nfc->page_buf, buf, mtd->writesize);
> +
> + /*
> + * The first blocks (4, 8 or 16 depending on the device) are used
> + * by the boot ROM and the first 32 bits of OOB need to link to
> + * the next page address in the same block. We can't directly copy
> + * OOB data from the MTD framework, because this page address
> + * conflicts for example with the bad block marker (BBM),
> + * so we shift all OOB data including the BBM with 4 byte positions.
> + * As a consequence the OOB size available to the MTD framework is
> + * also reduced with 4 bytes.
> + *
> + * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
* PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
keep layouts aligned
> + *
> + * If a NAND is not a boot medium or the page is not a boot block,
> + * the first 4 bytes are left untouched by writing 0xFF to them.
> + *
> + * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
> + *
> + * Configure the ECC algorithm supported by the boot ROM.
> + */
> + if ((page < pages_per_blk * rknand->boot_blks) &&
if ((page < (pages_per_blk * rknand->boot_blks)) &&
> + (chip->options & NAND_IS_BOOT_MEDIUM)) {
> + boot_rom_mode = 1;
> + if (rknand->boot_ecc != ecc->strength)
> + rk_nfc_hw_ecc_setup(chip, ecc,
> + rknand->boot_ecc);
> + }
> +
> + for (i = 0; i < ecc->steps; i++) {
> + if (!i) {
> + reg = 0xFFFFFFFF;
> + } else {
> + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
> + reg = oob[0] | oob[1] << 8 | oob[2] << 16 |
> + oob[3] << 24;
> + }
> + if (!i && boot_rom_mode)
> + reg = (page & (pages_per_blk - 1)) * 4;
> +
> + if (nfc->cfg->type == NFC_V9)
> + nfc->oob_buf[i] = reg;
> + else
> + nfc->oob_buf[i * (oob_step / 4)] = reg;
> + }
> +
> + dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
> + mtd->writesize, DMA_TO_DEVICE);
> + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
> + ecc->steps * oob_step,
> + DMA_TO_DEVICE);
> +
> + reinit_completion(&nfc->done);
> + writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
> +
> + rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
> + dma_oob);
> + ret = wait_for_completion_timeout(&nfc->done,
> + msecs_to_jiffies(100));
> + if (!ret)
> + dev_warn(nfc->dev, "write: wait dma done timeout.\n");
> + /*
> + * Whether the DMA transfer is completed or not. The driver
> + * needs to check the NFC`s status register to see if the data
> + * transfer was completed.
> + */
> + ret = rk_nfc_wait_for_xfer_done(nfc);
> +
> + dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
> + DMA_TO_DEVICE);
> + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
> + DMA_TO_DEVICE);
> +
> + if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
> + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength);
> +
> + if (ret) {
> + ret = -EIO;
> + dev_err(nfc->dev,
> + "write: wait transfer done timeout.\n");
> + }
> +
> + if (ret)
> + return ret;
remove, always deselect
if (!ret) {
> +
> + ret = nand_prog_page_end_op(chip);
}
> +
> + /*
> + * Deselect the currently selected target after the ops is done
> + * to reduce the power consumption.
> + */
> + rk_nfc_select_chip(chip, -1);
Does the MTD framework always select again?
> +
> + return ret;
> +}
> +
> +static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
> + int page)
> +{
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + struct rk_nfc *nfc = nand_get_controller_data(chip);
> + struct nand_ecc_ctrl *ecc = &chip->ecc;
> + int i;
> +
/*
* Normal timing and ECC layout size setup is already done in
* the rk_nfc_select_chip() function.
*/
How about the ECC layout size setup for a boot block?
> + nand_read_page_op(chip, page, 0, NULL, 0);
> + rk_nfc_read_buf(nfc, nfc->buffer, mtd->writesize + mtd->oobsize);
> +
> + /*
> + * Deselect the currently selected target after the ops is done
> + * to reduce the power consumption.
> + */
> + rk_nfc_select_chip(chip, -1);
> +
> + for (i = 0; i < ecc->steps; i++) {
> + /*
> + * The first four bytes of OOB are reserved for the
> + * boot ROM. In some debugging cases, such as with a read,
> + * erase and write back test, these 4 bytes also must be
> + * saved somewhere, otherwise this information will be
> + * lost during a write back.
> + */
> + if (!i)
> + memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
> + rk_nfc_oob_ptr(chip, i),
> + NFC_SYS_DATA_SIZE);
> + else
> + memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1),
> + rk_nfc_oob_ptr(chip, i),
> + NFC_SYS_DATA_SIZE);
> + /* Copy ECC data from the NFC buffer. */
> + memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i),
> + rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
> + ecc->bytes);
> + /* Copy data from the NFC buffer. */
> + if (buf)
> + memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i),
> + rk_nfc_data_ptr(chip, i),
> + ecc->size);
> + }
> +
> + return 0;
> +}
> +
> +static int rk_nfc_read_oob(struct nand_chip *chip, int page)
> +{
> + return rk_nfc_read_page_raw(chip, NULL, 1, page);
> +}
> +
> +static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on,
> + int page)
> +{
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + struct rk_nfc *nfc = nand_get_controller_data(chip);
> + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
> + struct nand_ecc_ctrl *ecc = &chip->ecc;
> + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
> + NFC_MIN_OOB_PER_STEP;
> + int pages_per_blk = mtd->erasesize / mtd->writesize;
> + dma_addr_t dma_data, dma_oob;
> + int ret = 0, i, boot_rom_mode = 0;
int ret = 0, i, cnt, boot_rom_mode = 0;
> + int bitflips = 0, bch_st;
> + u8 *oob;
> + u32 tmp;
> +
> + nand_read_page_op(chip, page, 0, NULL, 0);
> +
> + dma_data = dma_map_single(nfc->dev, nfc->page_buf,
> + mtd->writesize,
> + DMA_FROM_DEVICE);
> + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
> + ecc->steps * oob_step,
> + DMA_FROM_DEVICE);
> +
> + /*
> + * The first blocks (4, 8 or 16 depending on the device)
> + * are used by the boot ROM.
> + * Configure the ECC algorithm supported by the boot ROM.
> + */
> + if ((page < pages_per_blk * rknand->boot_blks) &&
> + if ((page < (pages_per_blk * rknand->boot_blks)) &&
> + (chip->options & NAND_IS_BOOT_MEDIUM)) {
> + boot_rom_mode = 1;
> + if (rknand->boot_ecc != ecc->strength)
> + rk_nfc_hw_ecc_setup(chip, ecc,
> + rknand->boot_ecc);
> + }
> +
> + reinit_completion(&nfc->done);
> + writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
> + rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
> + dma_oob);
> + ret = wait_for_completion_timeout(&nfc->done,
> + msecs_to_jiffies(100));
> + if (!ret)
> + dev_warn(nfc->dev, "read: wait dma done timeout.\n");
> + /*
> + * Whether the DMA transfer is completed or not. The driver
> + * needs to check the NFC`s status register to see if the data
> + * transfer was completed.
> + */
> + ret = rk_nfc_wait_for_xfer_done(nfc);
add empty line
> + dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
> + DMA_FROM_DEVICE);
> + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
> + DMA_FROM_DEVICE);
> +
> + if (ret) {
> + bitflips = -EIO;
ret = -EIO;
return only "0" or official error codes
> + dev_err(nfc->dev,
> + "read: wait transfer done timeout.\n");
> + goto out;
> + }
> +
> + for (i = 1; i < ecc->steps; i++) {
> + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
> + if (nfc->cfg->type == NFC_V9)
> + tmp = nfc->oob_buf[i];
> + else
> + tmp = nfc->oob_buf[i * (oob_step / 4)];
> + *oob++ = (u8)tmp;
> + *oob++ = (u8)(tmp >> 8);
> + *oob++ = (u8)(tmp >> 16);
> + *oob++ = (u8)(tmp >> 24);
> + }
> +
> + for (i = 0; i < (ecc->steps / 2); i++) {
> + bch_st = readl_relaxed(nfc->regs +
> + nfc->cfg->bch_st_off + i * 4);
> + if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
> + bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
> + mtd->ecc_stats.failed++;
> + bitflips = 0;
max_bitflips = -1;
use max_bitflips only for the error warning, not as return value
> + } else {
> + ret = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
use ret only with "0" or official error codes, use cnt instead
cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
> + mtd->ecc_stats.corrected += ret;
mtd->ecc_stats.corrected += cnt;
> + bitflips = max_t(u32, bitflips, ret);
bitflips = max_t(u32, bitflips, cnt);
> +
> + ret = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
> + mtd->ecc_stats.corrected += ret;
mtd->ecc_stats.corrected += cnt;
> + bitflips = max_t(u32, bitflips, ret);
bitflips = max_t(u32, bitflips, cnt);
> + }
> + }
> +out:
> + memcpy(buf, nfc->page_buf, mtd->writesize);
> +
> + if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
> + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength);
> +
> + if (bitflips > ecc->strength)
if (bitflips == -1) {
ret = -EIO;
> + dev_err(nfc->dev, "read page: %x ecc error!\n", page);
}
> +
> + /*
> + * Deselect the currently selected target after the ops is done
> + * to reduce the power consumption.
> + */
> + rk_nfc_select_chip(chip, -1);
> +
> + return bitflips;
return ret;
Return only "0" or official error codes
If you want to do a "bad block scan" function in user space analyse/use
"mtd->ecc_stats" instead.
> +}
> +
> +static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
> +{
> + /* Disable flash wp. */
> + writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
> + /* Config default timing 40ns at 150 Mhz nfc clock. */
> + writel(0x1081, nfc->regs + NFC_FMWAIT);
> + /* Disable randomizer and DMA. */
> + writel(0, nfc->regs + nfc->cfg->randmz_off);
> + writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
> + writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
> +}
> +
> +static irqreturn_t rk_nfc_irq(int irq, void *id)
> +{
> + struct rk_nfc *nfc = id;
> + u32 sta, ien;
> +
> + sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off);
> + ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off);
> +
> + if (!(sta & ien))
> + return IRQ_NONE;
> +
> + writel(sta, nfc->regs + nfc->cfg->int_clr_off);
> + writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off);
> +
> + complete(&nfc->done);
> +
> + return IRQ_HANDLED;
> +}
> +
> +static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc)
> +{
> + int ret;
> +
> + if (!IS_ERR(nfc->nfc_clk)) {
> + ret = clk_prepare_enable(nfc->nfc_clk);
> + if (ret) {
> + dev_err(dev, "failed to enable nfc clk\n");
> + return ret;
> + }
> + }
> +
> + ret = clk_prepare_enable(nfc->ahb_clk);
> + if (ret) {
> + dev_err(dev, "failed to enable ahb clk\n");
> + if (!IS_ERR(nfc->nfc_clk))
> + clk_disable_unprepare(nfc->nfc_clk);
> + return ret;
> + }
> +
> + return 0;
> +}
> +
> +static void rk_nfc_disable_clks(struct rk_nfc *nfc)
> +{
> + if (!IS_ERR(nfc->nfc_clk))
> + clk_disable_unprepare(nfc->nfc_clk);
> + clk_disable_unprepare(nfc->ahb_clk);
> +}
> +
> +static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
> + struct mtd_oob_region *oob_region)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
> +
> + if (section)
> + return -ERANGE;
> +
> + /*
> + * The beginning of the OOB area stores the reserved data for the NFC,
> + * the size of the reserved data is NFC_SYS_DATA_SIZE bytes.
> + */
> + oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
> + oob_region->offset = NFC_SYS_DATA_SIZE + 2;
> +
> + return 0;
> +}
> +
> +static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
> + struct mtd_oob_region *oob_region)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
> +
> + if (section)
> + return -ERANGE;
> +
> + oob_region->length = mtd->oobsize - rknand->metadata_size;
> + oob_region->offset = rknand->metadata_size;
> +
> + return 0;
> +}
> +
> +static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
> + .free = rk_nfc_ooblayout_free,
> + .ecc = rk_nfc_ooblayout_ecc,
> +};
> +
> +static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + struct rk_nfc *nfc = nand_get_controller_data(chip);
> + struct nand_ecc_ctrl *ecc = &chip->ecc;
> + const u8 *strengths = nfc->cfg->ecc_strengths;
> + u8 max_strength, nfc_max_strength;
> + int i;
> +
> + nfc_max_strength = nfc->cfg->ecc_strengths[0];
> + /* If optional dt settings not present. */
> + if (!ecc->size || !ecc->strength ||
> + ecc->strength > nfc_max_strength) {
> + chip->ecc.size = 1024;
> + ecc->steps = mtd->writesize / ecc->size;
> +
> + /*
> + * HW ECC always requests the number of ECC bytes per 1024 byte
> + * blocks. The first 4 OOB bytes are reserved for sys data.
> + */
> + max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
> + fls(8 * 1024);
> + if (max_strength > nfc_max_strength)
> + max_strength = nfc_max_strength;
> +
> + for (i = 0; i < 4; i++) {
> + if (max_strength >= strengths[i])
> + break;
> + }
> +
> + if (i >= 4) {
> + dev_err(nfc->dev, "Unsupported ECC strength\n");
> + return -EOPNOTSUPP;
> + }
> +
> + ecc->strength = strengths[i];
> + }
> + ecc->steps = mtd->writesize / ecc->size;
> + ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
> + /* HW ECC always work with even numbers of ECC bytes. */
> + ecc->bytes = ALIGN(ecc->bytes, 2);
> +
> + rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength);
> +
> + return 0;
> +}
> +
> +static int rk_nfc_attach_chip(struct nand_chip *chip)
> +{
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + struct device *dev = mtd->dev.parent;
> + struct rk_nfc *nfc = nand_get_controller_data(chip);
> + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
> + struct nand_ecc_ctrl *ecc = &chip->ecc;
> + int new_len, new_oob_len;
> + void *buf;
> + int ret;
> +
> + if (chip->options & NAND_BUSWIDTH_16) {
> + dev_err(dev, "16 bits bus width not supported");
> + return -EINVAL;
> + }
> +
> + if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
> + return 0;
> +
> + ret = rk_nfc_ecc_init(dev, mtd);
> + if (ret)
> + return ret;
> + rknand->spare_per_sector = ecc->bytes + NFC_SYS_DATA_SIZE;
> + rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps;
> +
> + if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) {
> + dev_err(dev,
> + "Driver needs at least %d bytes of meta data\n",
> + NFC_SYS_DATA_SIZE + 2);
> + return -EIO;
> + }
> +
> + /* Check buffer first, avoid duplicate alloc buffer. */
> + new_len = mtd->writesize + mtd->oobsize;
> + if (nfc->buffer && new_len > nfc->buffer_size) {
> + buf = krealloc(nfc->buffer, new_len, GFP_KERNEL | GFP_DMA);
> + if (!buf)
> + return -ENOMEM;
> + nfc->buffer = buf;
> + nfc->buffer_size = new_len;
> + }
> +
> + new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
> + if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) {
> + buf = krealloc(nfc->oob_buf, new_oob_len,
> + GFP_KERNEL | GFP_DMA);
> + if (!buf) {
> + kfree(nfc->buffer);
> + nfc->buffer = NULL;
> + return -ENOMEM;
> + }
> + nfc->oob_buf = buf;
> + nfc->oob_buf_size = new_oob_len;
> + }
> +
> + if (!nfc->buffer) {
> + nfc->buffer = kzalloc(new_len, GFP_KERNEL | GFP_DMA);
> + if (!nfc->buffer)
> + return -ENOMEM;
> + nfc->buffer_size = new_len;
> + }
> +
> + if (!nfc->oob_buf) {
> + nfc->oob_buf = kzalloc(new_oob_len, GFP_KERNEL | GFP_DMA);
> + if (!nfc->oob_buf) {
> + kfree(nfc->buffer);
> + nfc->buffer = NULL;
> + return -ENOMEM;
> + }
> + nfc->oob_buf_size = new_oob_len;
> + }
> +
> + nfc->page_buf = nfc->buffer;
> +
> + chip->ecc.write_page_raw = rk_nfc_write_page_raw;
> + chip->ecc.write_page = rk_nfc_write_page_hwecc;
> + chip->ecc.write_oob_raw = rk_nfc_write_oob;
> + chip->ecc.write_oob = rk_nfc_write_oob;
> +
> + chip->ecc.read_page_raw = rk_nfc_read_page_raw;
> + chip->ecc.read_page = rk_nfc_read_page_hwecc;
> + chip->ecc.read_oob_raw = rk_nfc_read_oob;
> + chip->ecc.read_oob = rk_nfc_read_oob;
> +
> + return 0;
> +}
> +
> +static const struct nand_controller_ops rk_nfc_controller_ops = {
> + .attach_chip = rk_nfc_attach_chip,
> + .exec_op = rk_nfc_exec_op,
> + .setup_interface = rk_nfc_setup_data_interface,
.setup_interface = rk_nfc_setup_interface,
> +};
> +
> +static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc,
> + struct device_node *np)
> +{
> + struct rk_nfc_nand_chip *rknand;
> + struct nand_chip *chip;
> + struct mtd_info *mtd;
> + int nsels;
> + u32 tmp;
> + int ret;
> + int i;
> +
> + if (!of_get_property(np, "reg", &nsels))
> + return -ENODEV;
> + nsels /= sizeof(u32);
> + if (!nsels || nsels > NFC_MAX_NSELS) {
> + dev_err(dev, "invalid reg property size %d\n", nsels);
> + return -EINVAL;
> + }
> +
> + rknand = devm_kzalloc(dev, sizeof(*rknand) + nsels * sizeof(u8),
> + GFP_KERNEL);
> + if (!rknand)
> + return -ENOMEM;
> +
> + rknand->nsels = nsels;
> + for (i = 0; i < nsels; i++) {
> + ret = of_property_read_u32_index(np, "reg", i, &tmp);
> + if (ret) {
> + dev_err(dev, "reg property failure : %d\n", ret);
> + return ret;
> + }
> +
> + if (tmp >= NFC_MAX_NSELS) {
> + dev_err(dev, "invalid CS: %u\n", tmp);
> + return -EINVAL;
> + }
> +
> + if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
> + dev_err(dev, "CS %u already assigned\n", tmp);
> + return -EINVAL;
> + }
> +
> + rknand->sels[i] = tmp;
> + }
> +
> + chip = &rknand->chip;
> + chip->controller = &nfc->controller;
> +
> + nand_set_flash_node(chip, np);
> +
> + nand_set_controller_data(chip, nfc);
> +
> + chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
> + chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
> +
> + /* Set default mode in case dt entry is missing. */
> + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
> +
> + mtd = nand_to_mtd(chip);
> + mtd->owner = THIS_MODULE;
> + mtd->dev.parent = dev;
> +
> + if (!mtd->name) {
> + dev_err(nfc->dev, "NAND label property is mandatory\n");
> + return -EINVAL;
> + }
> +
> + mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops);
> + rk_nfc_hw_init(nfc);
> + ret = nand_scan(chip, nsels);
> + if (ret)
> + return ret;
> +
> + if (chip->options & NAND_IS_BOOT_MEDIUM) {
> + ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp);
> + rknand->boot_blks = ret ? 0 : tmp;
> +
> + ret = of_property_read_u32(np, "rockchip,boot-ecc-strength",
> + &tmp);
> + rknand->boot_ecc = ret ? chip->ecc.strength : tmp;
> + }
> +
> + ret = mtd_device_register(mtd, NULL, 0);
> + if (ret) {
> + dev_err(dev, "mtd parse partition error\n");
> + nand_cleanup(chip);
> + return ret;
> + }
> +
> + list_add_tail(&rknand->node, &nfc->chips);
> +
> + return 0;
> +}
> +
> +static void rk_nfc_chips_cleanup(struct rk_nfc *nfc)
> +{
> + struct rk_nfc_nand_chip *rknand, *tmp;
> + struct nand_chip *chip;
> + int ret;
> +
> + list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) {
> + chip = &rknand->chip;
> + ret = mtd_device_unregister(nand_to_mtd(chip));
> + WARN_ON(ret);
> + nand_cleanup(chip);
> + list_del(&rknand->node);
> + }
> +}
> +
> +static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc)
> +{
> + struct device_node *np = dev->of_node, *nand_np;
> + int nchips = of_get_child_count(np);
> + int ret;
> +
> + if (!nchips || nchips > NFC_MAX_NSELS) {
> + dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
> + nchips);
> + return -EINVAL;
> + }
> +
> + for_each_child_of_node(np, nand_np) {
> + ret = rk_nfc_nand_chip_init(dev, nfc, nand_np);
> + if (ret) {
> + of_node_put(nand_np);
> + rk_nfc_chips_cleanup(nfc);
> + return ret;
> + }
> + }
> +
> + return 0;
> +}
> +
> +static struct nfc_cfg nfc_v6_cfg = {
> + .type = NFC_V6,
> + .ecc_strengths = {60, 40, 24, 16},
> + .ecc_cfgs = {
> + 0x00040011, 0x00040001, 0x00000011, 0x00000001,
> + },
> + .flctl_off = 0x08,
> + .bchctl_off = 0x0C,
> + .dma_cfg_off = 0x10,
> + .dma_data_buf_off = 0x14,
> + .dma_oob_buf_off = 0x18,
> + .dma_st_off = 0x1C,
> + .bch_st_off = 0x20,
> + .randmz_off = 0x150,
> + .int_en_off = 0x16C,
> + .int_clr_off = 0x170,
> + .int_st_off = 0x174,
> + .oob0_off = 0x200,
> + .oob1_off = 0x230,
> + .ecc0 = {
> + .err_flag_bit = 2,
> + .low = 3,
> + .low_mask = 0x1F,
> + .low_bn = 5,
> + .high = 27,
> + .high_mask = 0x1,
> + },
> + .ecc1 = {
> + .err_flag_bit = 15,
> + .low = 16,
> + .low_mask = 0x1F,
> + .low_bn = 5,
> + .high = 29,
> + .high_mask = 0x1,
> + },
> +};
> +
> +static struct nfc_cfg nfc_v8_cfg = {
> + .type = NFC_V8,
> + .ecc_strengths = {16, 16, 16, 16},
> + .ecc_cfgs = {
> + 0x00000001, 0x00000001, 0x00000001, 0x00000001,
> + },
> + .flctl_off = 0x08,
> + .bchctl_off = 0x0C,
> + .dma_cfg_off = 0x10,
> + .dma_data_buf_off = 0x14,
> + .dma_oob_buf_off = 0x18,
> + .dma_st_off = 0x1C,
> + .bch_st_off = 0x20,
> + .randmz_off = 0x150,
> + .int_en_off = 0x16C,
> + .int_clr_off = 0x170,
> + .int_st_off = 0x174,
> + .oob0_off = 0x200,
> + .oob1_off = 0x230,
> + .ecc0 = {
> + .err_flag_bit = 2,
> + .low = 3,
> + .low_mask = 0x1F,
> + .low_bn = 5,
> + .high = 27,
> + .high_mask = 0x1,
> + },
> + .ecc1 = {
> + .err_flag_bit = 15,
> + .low = 16,
> + .low_mask = 0x1F,
> + .low_bn = 5,
> + .high = 29,
> + .high_mask = 0x1,
> + },
> +};
> +
> +static struct nfc_cfg nfc_v9_cfg = {
> + .type = NFC_V9,
> + .ecc_strengths = {70, 60, 40, 16},
> + .ecc_cfgs = {
> + 0x00000001, 0x06000001, 0x04000001, 0x02000001,
> + },
> + .flctl_off = 0x10,
> + .bchctl_off = 0x20,
> + .dma_cfg_off = 0x30,
> + .dma_data_buf_off = 0x34,
> + .dma_oob_buf_off = 0x38,
> + .dma_st_off = 0x3C,
> + .bch_st_off = 0x150,
> + .randmz_off = 0x208,
> + .int_en_off = 0x120,
> + .int_clr_off = 0x124,
> + .int_st_off = 0x128,
> + .oob0_off = 0x200,
> + .oob1_off = 0x204,
> + .ecc0 = {
> + .err_flag_bit = 2,
> + .low = 3,
> + .low_mask = 0x7F,
> + .low_bn = 7,
> + .high = 0,
> + .high_mask = 0x0,
> + },
> + .ecc1 = {
> + .err_flag_bit = 18,
> + .low = 19,
> + .low_mask = 0x7F,
> + .low_bn = 7,
> + .high = 0,
> + .high_mask = 0x0,
> + },
> +};
> +
> +static const struct of_device_id rk_nfc_id_table[] = {
> + {
> + .compatible = "rockchip,px30-nfc",
> + .data = &nfc_v9_cfg
> + },
> + {
> + .compatible = "rockchip,rk2928-nfc",
> + .data = &nfc_v6_cfg
> + },
> + {
> + .compatible = "rockchip,rv1108-nfc",
> + .data = &nfc_v8_cfg
> + },
> + { /* sentinel */ }
> +};
> +MODULE_DEVICE_TABLE(of, rk_nfc_id_table);
> +
> +static int rk_nfc_probe(struct platform_device *pdev)
> +{
> + struct device *dev = &pdev->dev;
> + struct rk_nfc *nfc;
> + int ret, irq;
> +
> + nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
> + if (!nfc)
> + return -ENOMEM;
> +
> + nand_controller_init(&nfc->controller);
> + INIT_LIST_HEAD(&nfc->chips);
> + nfc->controller.ops = &rk_nfc_controller_ops;
> +
> + nfc->cfg = of_device_get_match_data(dev);
> + nfc->dev = dev;
> +
> + init_completion(&nfc->done);
> +
> + nfc->regs = devm_platform_ioremap_resource(pdev, 0);
> + if (IS_ERR(nfc->regs)) {
> + ret = PTR_ERR(nfc->regs);
> + goto release_nfc;
> + }
> +
> + nfc->nfc_clk = devm_clk_get(dev, "nfc");
> + if (IS_ERR(nfc->nfc_clk)) {
> + dev_dbg(dev, "no nfc clk\n");
> + /* Some earlier models, such as rk3066, have no nfc clk. */
> + }
> +
> + nfc->ahb_clk = devm_clk_get(dev, "ahb");
> + if (IS_ERR(nfc->ahb_clk)) {
> + dev_err(dev, "no ahb clk\n");
> + ret = PTR_ERR(nfc->ahb_clk);
> + goto release_nfc;
> + }
> +
> + ret = rk_nfc_enable_clks(dev, nfc);
> + if (ret)
> + goto release_nfc;
> +
> + irq = platform_get_irq(pdev, 0);
> + if (irq < 0) {
> + dev_err(dev, "no nfc irq resource\n");
> + ret = -EINVAL;
> + goto clk_disable;
> + }
> +
> + writel(0, nfc->regs + nfc->cfg->int_en_off);
> + ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc);
> + if (ret) {
> + dev_err(dev, "failed to request nfc irq\n");
> + goto clk_disable;
> + }
> +
> + platform_set_drvdata(pdev, nfc);
> +
> + ret = rk_nfc_nand_chips_init(dev, nfc);
> + if (ret) {
> + dev_err(dev, "failed to init NAND chips\n");
> + goto clk_disable;
> + }
> + return 0;
> +
> +clk_disable:
> + rk_nfc_disable_clks(nfc);
> +release_nfc:
> + return ret;
> +}
> +
> +static int rk_nfc_remove(struct platform_device *pdev)
> +{
> + struct rk_nfc *nfc = platform_get_drvdata(pdev);
> +
> + kfree(nfc->buffer);
> + kfree(nfc->oob_buf);
> + rk_nfc_chips_cleanup(nfc);
> + rk_nfc_disable_clks(nfc);
> +
> + return 0;
> +}
> +
> +static int __maybe_unused rk_nfc_suspend(struct device *dev)
> +{
> + struct rk_nfc *nfc = dev_get_drvdata(dev);
> +
> + rk_nfc_disable_clks(nfc);
> +
> + return 0;
> +}
> +
> +static int __maybe_unused rk_nfc_resume(struct device *dev)
> +{
> + struct rk_nfc *nfc = dev_get_drvdata(dev);
> + struct rk_nfc_nand_chip *rknand;
> + struct nand_chip *chip;
> + int ret;
> + u32 i;
> +
> + ret = rk_nfc_enable_clks(dev, nfc);
> + if (ret)
> + return ret;
> +
> + /* Reset NAND chip if VCC was powered off. */
> + list_for_each_entry(rknand, &nfc->chips, node) {
> + chip = &rknand->chip;
> + for (i = 0; i < rknand->nsels; i++)
> + nand_reset(chip, i);
> + }
> +
> + return 0;
> +}
> +
> +static const struct dev_pm_ops rk_nfc_pm_ops = {
> + SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume)
> +};
> +
> +static struct platform_driver rk_nfc_driver = {
> + .probe = rk_nfc_probe,
> + .remove = rk_nfc_remove,
> + .driver = {
> + .name = "rockchip-nfc",
> + .of_match_table = rk_nfc_id_table,
> + .pm = &rk_nfc_pm_ops,
> + },
> +};
> +
> +module_platform_driver(rk_nfc_driver);
> +
> +MODULE_LICENSE("Dual MIT/GPL");
> +MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@...k-chips.com>");
> +MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
> +MODULE_ALIAS("platform:rockchip-nand-controller");
>
Powered by blists - more mailing lists