[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <CAKfTPtBtiweSfErgQ3ZVw9HB2Q7b=V4uoGS2dbaqY1KNz6kUhA@mail.gmail.com>
Date: Mon, 23 Nov 2020 11:05:28 +0100
From: Vincent Guittot <vincent.guittot@...aro.org>
To: Dietmar Eggemann <dietmar.eggemann@....com>
Cc: Peter Zijlstra <peterz@...radead.org>,
"Rafael J. Wysocki" <rjw@...ysocki.net>,
Ingo Molnar <mingo@...nel.org>,
Thomas Gleixner <tglx@...utronix.de>,
Morten Rasmussen <morten.rasmussen@....com>,
Patrick Bellasi <patrick.bellasi@...bug.net>,
"Cc: Len Brown" <lenb@...nel.org>,
linux-kernel <linux-kernel@...r.kernel.org>,
Valentin Schneider <valentin.schneider@....com>,
Ionela Voinescu <ionela.voinescu@....com>,
Quentin Perret <qperret@...gle.com>,
Viresh Kumar <viresh.kumar@...aro.org>
Subject: Re: [RFC] Documentation/scheduler/schedutil.txt
On Mon, 23 Nov 2020 at 10:30, Dietmar Eggemann <dietmar.eggemann@....com> wrote:
>
> On 20/11/2020 09:56, Peter Zijlstra wrote:
> > On Fri, Nov 20, 2020 at 08:55:27AM +0100, Peter Zijlstra wrote:
> >> - In saturated scenarios task movement will cause some transient dips,
> >> suppose we have a CPU saturated with 4 tasks, then when we migrate a task
> >> to an idle CPU, the old CPU will have a 'running' value of 0.75 while the
> >> new CPU will gain 0.25. This is inevitable and time progression will
> >> correct this. XXX do we still guarantee f_max due to no idle-time?
> >
> > Do we want something like this? Is the 1.5 threshold sane? (it's been too
> > long since I looked at actual numbers here)
>
> Did some tests on a big.little system:
>
> (1) rt-app workload on big CPU:
>
> - task0-3 (runtime/period=4000us/16000us, started with
> 4000us delay to each other) run on CPU1
> - then task3 migrates to CPU2 and runs there for 64ms
> - then task2 migrates to CPU2 too and both tasks run there
> for another 64ms
>
> ...
> task3-3-1684 [001] 3982.798729: sched_pelt_cfs: cpu=1 path=/ load=232890 runnable=3260 util=1011
> migration/1-14 [001] 3982.798756: sched_migrate_task: comm=task3-3 pid=1684 prio=101 orig_cpu=1 dest_cpu=2*
> migration/1-14 [001] 3982.798767: sched_pelt_cfs: cpu=1 path=/ load=161374 runnable=2263 util=*700* <-- util dip !!!
> task1-1-1682 [001] 3982.799802: sched_pelt_cfs: cpu=1 path=/ load=160988 runnable=2257 util=706
> ...
> task2-2-1683 [001] 3982.849123: sched_pelt_cfs: cpu=1 path=/ load=161124 runnable=2284 util=904
> task2-2-1683 [001] 3982.851960: sched_pelt_cfs: cpu=1 path=/ load=160130 runnable=2271 util=911
> migration/1-14 [001] 3982.851984: sched_migrate_task: comm=task2-2 pid=1683 prio=101 orig_cpu=1 dest_cpu=2**
> migration/1-14 [001] 3982.851995: sched_pelt_cfs: cpu=1 path=/ load=88672 runnable=*1257* util=512 <-- runnable below 1536
> task1-1-1682 [001] 3982.852983: sched_pelt_cfs: cpu=1 path=/ load=88321 runnable=1252 util=521
> ...
>
>
> * task1,2,3 remain on CPU1 and still have to catch up, no idle
> time on CPU1
>
> ** task 1,2 remain on CPU1, there is idle time on CPU1!
>
>
> (2) rt-app workload on LITTLE CPU (orig cpu_capacity: 446)
>
> - task0-3 (runtime/period=1742us/16000us, started with
> 4000us delay to each other) run on CPU4
> - then task3 migrates to CPU5 and runs there for 64ms
> - then task2 migrates to CPU5 too and both tasks run there
> for another 64ms
>
> ...
> task1-1-1777 [004] 789.443015: sched_pelt_cfs: cpu=4 path=/ load=234718 runnable=3018 util=976
> migration/4-29 [004] 789.444718: sched_migrate_task: comm=task3-3 pid=1779 prio=101 orig_cpu=4 dest_cpu=5*
> migration/4-29 [004] 789.444739: sched_pelt_cfs: cpu=4 path=/ load=163543 runnable=2114 util=*778* <--util dip !!!
> task2-2-1778 [004] 789.447013: sched_pelt_cfs: cpu=4 path=/ load=163392 runnable=2120 util=777
> ...
> task1-1-1777 [004] 789.507012: sched_pelt_cfs: cpu=4 path=/ load=164482 runnable=2223 util=879
> migration/4-29 [004] 789.508023: sched_migrate_task: comm=task2-2 pid=1778 prio=101 orig_cpu=4 dest_cpu=5**
> migration/4-29 [004] 789.508044: sched_pelt_cfs: cpu=4 path=/ load=94099 runnable=*1264* util=611 <-- runnable below 1536
> task0-0-1776 [004] 789.511011: sched_pelt_cfs: cpu=4 path=/ load=93898 runnable=1264 util=622
> ...
>
> * task1,2,3 remain on CPU1 and still have to catch up, no idle
> time on CPU1
>
> ** task 1,2 remain on CPU1, no idle time on CPU1 yet.
>
> So for the big CPU, there is idle time and for the LITTLE there
> isn't with runnable below the threshold.
I'm not sure to catch what you want to highlight with your tests ?
>
> As Quentin pointed out, sugov_cpu_is_busy() (only implemented on
> 'single') tries to do something similar.
>
> I assume that 'another utilization metric' mentioned in commit
> b7eaf1aab9f8 ("cpufreq: schedutil: Avoid reducing frequency of
> busy CPUs prematurely") is rq->cfs.avg.runnable_avg.
Powered by blists - more mailing lists