lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date:   Mon, 18 Jan 2021 11:11:48 +0100
From:   Oscar Salvador <osalvador@...e.de>
To:     akpm@...ux-foundation.org
Cc:     david@...hat.com, mhocko@...nel.org, linux-kernel@...r.kernel.org,
        linux-mm@...ck.org, vbabka@...e.cz, pasha.tatashin@...een.com
Subject: Re: [PATCH 2/5] mm,memory_hotplug: Allocate memmap from the added
 memory range

On Thu, Dec 17, 2020 at 02:07:55PM +0100, Oscar Salvador wrote:
> Physical memory hotadd has to allocate a memmap (struct page array) for
> the newly added memory section. Currently, alloc_pages_node() is used
> for those allocations.
> 
> This has some disadvantages:
>  a) an existing memory is consumed for that purpose
>     (eg: ~2MB per 128MB memory section on x86_64)
>  b) if the whole node is movable then we have off-node struct pages
>     which has performance drawbacks.
>  c) It might be there are no PMD_ALIGNED chunks so memmap array gets
>     populated with base pages.
> 
> This can be improved when CONFIG_SPARSEMEM_VMEMMAP is enabled.
> 
> Vmemap page tables can map arbitrary memory.
> That means that we can simply use the beginning of each memory section and
> map struct pages there.
> struct pages which back the allocated space then just need to be treated
> carefully.
> 
> Implementation wise we will reuse vmem_altmap infrastructure to override
> the default allocator used by __populate_section_memmap.
> Part of the implementation also relies on memory_block structure gaining
> a new field which specifies the number of vmemmap_pages at the beginning.
> This comes in handy as in {online,offline}_pages, all the isolation and
> migration is being done on (buddy_start_pfn, end_pfn] range,
> being buddy_start_pfn = start_pfn + nr_vmemmap_pages.
> 
> In this way, we have:
> 
> (start_pfn, buddy_start_pfn - 1] = Initialized and PageReserved
> (buddy_start_pfn, end_pfn]       = Initialized and sent to buddy
> 
> Hot-remove:
> 
>  We need to be careful when removing memory, as adding and
>  removing memory needs to be done with the same granularity.
>  To check that this assumption is not violated, we check the
>  memory range we want to remove and if a) any memory block has
>  vmemmap pages and b) the range spans more than a single memory
>  block, we scream out loud and refuse to proceed.
> 
>  If all is good and the range was using memmap on memory (aka vmemmap pages),
>  we construct an altmap structure so free_hugepage_table does the right
>  thing and calls vmem_altmap_free instead of free_pagetable.
> 
> Signed-off-by: Oscar Salvador <osalvador@...e.de>

Let us refloat this one before it sinks deeper :-)


-- 
Oscar Salvador
SUSE L3

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ