[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <20210219004824.2899045-6-axelrasmussen@google.com>
Date: Thu, 18 Feb 2021 16:48:23 -0800
From: Axel Rasmussen <axelrasmussen@...gle.com>
To: Alexander Viro <viro@...iv.linux.org.uk>,
Alexey Dobriyan <adobriyan@...il.com>,
Andrea Arcangeli <aarcange@...hat.com>,
Andrew Morton <akpm@...ux-foundation.org>,
Anshuman Khandual <anshuman.khandual@....com>,
Catalin Marinas <catalin.marinas@....com>,
Chinwen Chang <chinwen.chang@...iatek.com>,
Huang Ying <ying.huang@...el.com>,
Ingo Molnar <mingo@...hat.com>, Jann Horn <jannh@...gle.com>,
Jerome Glisse <jglisse@...hat.com>,
Lokesh Gidra <lokeshgidra@...gle.com>,
"Matthew Wilcox (Oracle)" <willy@...radead.org>,
Michael Ellerman <mpe@...erman.id.au>,
"Michal Koutný" <mkoutny@...e.com>,
Michel Lespinasse <walken@...gle.com>,
Mike Kravetz <mike.kravetz@...cle.com>,
Mike Rapoport <rppt@...ux.vnet.ibm.com>,
Nicholas Piggin <npiggin@...il.com>,
Peter Xu <peterx@...hat.com>, Shaohua Li <shli@...com>,
Shawn Anastasio <shawn@...stas.io>,
Steven Rostedt <rostedt@...dmis.org>,
Steven Price <steven.price@....com>,
Vlastimil Babka <vbabka@...e.cz>
Cc: linux-kernel@...r.kernel.org, linux-fsdevel@...r.kernel.org,
linux-mm@...ck.org, Adam Ruprecht <ruprecht@...gle.com>,
Axel Rasmussen <axelrasmussen@...gle.com>,
Cannon Matthews <cannonmatthews@...gle.com>,
"Dr . David Alan Gilbert" <dgilbert@...hat.com>,
David Rientjes <rientjes@...gle.com>,
Mina Almasry <almasrymina@...gle.com>,
Oliver Upton <oupton@...gle.com>
Subject: [PATCH v7 5/6] userfaultfd: update documentation to describe minor
fault handling
Reword / reorganize things a little bit into "lists", so new features /
modes / ioctls can sort of just be appended.
Describe how UFFDIO_REGISTER_MODE_MINOR and UFFDIO_CONTINUE can be used
to intercept and resolve minor faults. Make it clear that COPY and
ZEROPAGE are used for MISSING faults, whereas CONTINUE is used for MINOR
faults.
Signed-off-by: Axel Rasmussen <axelrasmussen@...gle.com>
---
Documentation/admin-guide/mm/userfaultfd.rst | 107 ++++++++++++-------
1 file changed, 66 insertions(+), 41 deletions(-)
diff --git a/Documentation/admin-guide/mm/userfaultfd.rst b/Documentation/admin-guide/mm/userfaultfd.rst
index 65eefa66c0ba..3aa38e8b8361 100644
--- a/Documentation/admin-guide/mm/userfaultfd.rst
+++ b/Documentation/admin-guide/mm/userfaultfd.rst
@@ -63,36 +63,36 @@ the generic ioctl available.
The ``uffdio_api.features`` bitmask returned by the ``UFFDIO_API`` ioctl
defines what memory types are supported by the ``userfaultfd`` and what
-events, except page fault notifications, may be generated.
-
-If the kernel supports registering ``userfaultfd`` ranges on hugetlbfs
-virtual memory areas, ``UFFD_FEATURE_MISSING_HUGETLBFS`` will be set in
-``uffdio_api.features``. Similarly, ``UFFD_FEATURE_MISSING_SHMEM`` will be
-set if the kernel supports registering ``userfaultfd`` ranges on shared
-memory (covering all shmem APIs, i.e. tmpfs, ``IPCSHM``, ``/dev/zero``,
-``MAP_SHARED``, ``memfd_create``, etc).
-
-The userland application that wants to use ``userfaultfd`` with hugetlbfs
-or shared memory need to set the corresponding flag in
-``uffdio_api.features`` to enable those features.
-
-If the userland desires to receive notifications for events other than
-page faults, it has to verify that ``uffdio_api.features`` has appropriate
-``UFFD_FEATURE_EVENT_*`` bits set. These events are described in more
-detail below in `Non-cooperative userfaultfd`_ section.
-
-Once the ``userfaultfd`` has been enabled the ``UFFDIO_REGISTER`` ioctl should
-be invoked (if present in the returned ``uffdio_api.ioctls`` bitmask) to
-register a memory range in the ``userfaultfd`` by setting the
+events, except page fault notifications, may be generated:
+
+- The ``UFFD_FEATURE_EVENT_*`` flags indicate that various other events
+ other than page faults are supported. These events are described in more
+ detail below in the `Non-cooperative userfaultfd`_ section.
+
+- ``UFFD_FEATURE_MISSING_HUGETLBFS`` and ``UFFD_FEATURE_MISSING_SHMEM``
+ indicate that the kernel supports ``UFFDIO_REGISTER_MODE_MISSING``
+ registrations for hugetlbfs and shared memory (covering all shmem APIs,
+ i.e. tmpfs, ``IPCSHM``, ``/dev/zero``, ``MAP_SHARED``, ``memfd_create``,
+ etc) virtual memory areas, respectively.
+
+- ``UFFD_FEATURE_MINOR_HUGETLBFS`` indicates that the kernel supports
+ ``UFFDIO_REGISTER_MODE_MINOR`` registration for hugetlbfs virtual memory
+ areas.
+
+The userland application should set the feature flags it intends to use
+when invoking the ``UFFDIO_API`` ioctl, to request that those features be
+enabled if supported.
+
+Once the ``userfaultfd`` API has been enabled the ``UFFDIO_REGISTER``
+ioctl should be invoked (if present in the returned ``uffdio_api.ioctls``
+bitmask) to register a memory range in the ``userfaultfd`` by setting the
uffdio_register structure accordingly. The ``uffdio_register.mode``
bitmask will specify to the kernel which kind of faults to track for
-the range (``UFFDIO_REGISTER_MODE_MISSING`` would track missing
-pages). The ``UFFDIO_REGISTER`` ioctl will return the
+the range. The ``UFFDIO_REGISTER`` ioctl will return the
``uffdio_register.ioctls`` bitmask of ioctls that are suitable to resolve
userfaults on the range registered. Not all ioctls will necessarily be
-supported for all memory types depending on the underlying virtual
-memory backend (anonymous memory vs tmpfs vs real filebacked
-mappings).
+supported for all memory types (e.g. anonymous memory vs. shmem vs.
+hugetlbfs), or all types of intercepted faults.
Userland can use the ``uffdio_register.ioctls`` to manage the virtual
address space in the background (to add or potentially also remove
@@ -100,21 +100,46 @@ memory from the ``userfaultfd`` registered range). This means a userfault
could be triggering just before userland maps in the background the
user-faulted page.
-The primary ioctl to resolve userfaults is ``UFFDIO_COPY``. That
-atomically copies a page into the userfault registered range and wakes
-up the blocked userfaults
-(unless ``uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE`` is set).
-Other ioctl works similarly to ``UFFDIO_COPY``. They're atomic as in
-guaranteeing that nothing can see an half copied page since it'll
-keep userfaulting until the copy has finished.
+Resolving Userfaults
+--------------------
+
+There are three basic ways to resolve userfaults:
+
+- ``UFFDIO_COPY`` atomically copies some existing page contents from
+ userspace.
+
+- ``UFFDIO_ZEROPAGE`` atomically zeros the new page.
+
+- ``UFFDIO_CONTINUE`` maps an existing, previously-populated page.
+
+These operations are atomic in the sense that they guarantee nothing can
+see a half-populated page, since readers will keep userfaulting until the
+operation has finished.
+
+By default, these wake up userfaults blocked on the range in question.
+They support a ``UFFDIO_*_MODE_DONTWAKE`` ``mode`` flag, which indicates
+that waking will be done separately at some later time.
+
+Which ioctl to choose depends on the kind of page fault, and what we'd
+like to do to resolve it:
+
+- For ``UFFDIO_REGISTER_MODE_MISSING`` faults, the fault needs to be
+ resolved by either providing a new page (``UFFDIO_COPY``), or mapping
+ the zero page (``UFFDIO_ZEROPAGE``). By default, the kernel would map
+ the zero page for a missing fault. With userfaultfd, userspace can
+ decide what content to provide before the faulting thread continues.
+
+- For ``UFFDIO_REGISTER_MODE_MINOR`` faults, there is an existing page (in
+ the page cache). Userspace has the option of modifying the page's
+ contents before resolving the fault. Once the contents are correct
+ (modified or not), userspace asks the kernel to map the page and let the
+ faulting thread continue with ``UFFDIO_CONTINUE``.
Notes:
-- If you requested ``UFFDIO_REGISTER_MODE_MISSING`` when registering then
- you must provide some kind of page in your thread after reading from
- the uffd. You must provide either ``UFFDIO_COPY`` or ``UFFDIO_ZEROPAGE``.
- The normal behavior of the OS automatically providing a zero page on
- an anonymous mmaping is not in place.
+- You can tell which kind of fault occurred by examining
+ ``pagefault.flags`` within the ``uffd_msg``, checking for the
+ ``UFFD_PAGEFAULT_FLAG_*`` flags.
- None of the page-delivering ioctls default to the range that you
registered with. You must fill in all fields for the appropriate
@@ -122,9 +147,9 @@ Notes:
- You get the address of the access that triggered the missing page
event out of a struct uffd_msg that you read in the thread from the
- uffd. You can supply as many pages as you want with ``UFFDIO_COPY`` or
- ``UFFDIO_ZEROPAGE``. Keep in mind that unless you used DONTWAKE then
- the first of any of those IOCTLs wakes up the faulting thread.
+ uffd. You can supply as many pages as you want with these IOCTLs.
+ Keep in mind that unless you used DONTWAKE then the first of any of
+ those IOCTLs wakes up the faulting thread.
- Be sure to test for all errors including
(``pollfd[0].revents & POLLERR``). This can happen, e.g. when ranges
--
2.30.0.617.g56c4b15f3c-goog
Powered by blists - more mailing lists