lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <5816B9E5-1664-4D66-9128-EFC2EEE089B2@fb.com>
Date:   Thu, 18 Mar 2021 07:22:30 +0000
From:   Song Liu <songliubraving@...com>
To:     Namhyung Kim <namhyung@...nel.org>
CC:     linux-kernel <linux-kernel@...r.kernel.org>,
        Kernel Team <Kernel-team@...com>,
        Arnaldo Carvalho de Melo <acme@...nel.org>,
        "Arnaldo Carvalho de Melo" <acme@...hat.com>,
        Jiri Olsa <jolsa@...nel.org>
Subject: Re: [PATCH v2 1/3] perf-stat: introduce bperf, share hardware PMCs
 with BPF



> On Mar 17, 2021, at 10:54 PM, Namhyung Kim <namhyung@...nel.org> wrote:
> 

[...]

>> +
>> +static int bperf_reload_leader_program(struct evsel *evsel, int attr_map_fd,
>> +                                      struct perf_event_attr_map_entry *entry)
>> +{
>> +       struct bperf_leader_bpf *skel = bperf_leader_bpf__open();
>> +       int link_fd, diff_map_fd, err;
>> +       struct bpf_link *link = NULL;
>> +
>> +       if (!skel) {
>> +               pr_err("Failed to open leader skeleton\n");
>> +               return -1;
>> +       }
>> +
>> +       bpf_map__resize(skel->maps.events, libbpf_num_possible_cpus());
>> +       err = bperf_leader_bpf__load(skel);
>> +       if (err) {
>> +               pr_err("Failed to load leader skeleton\n");
>> +               goto out;
>> +       }
>> +
>> +       err = -1;
>> +       link = bpf_program__attach(skel->progs.on_switch);
>> +       if (!link) {
>> +               pr_err("Failed to attach leader program\n");
>> +               goto out;
>> +       }
>> +
>> +       link_fd = bpf_link__fd(link);
>> +       diff_map_fd = bpf_map__fd(skel->maps.diff_readings);
>> +       entry->link_id = bpf_link_get_id(link_fd);
>> +       entry->diff_map_id = bpf_map_get_id(diff_map_fd);
>> +       err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, entry, BPF_ANY);
>> +       assert(err == 0);
>> +
>> +       evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry->link_id);
>> +       assert(evsel->bperf_leader_link_fd >= 0);
> 
> Isn't it the same as link_fd?

This is a different fd on the same link. 

> 
>> +
>> +       /*
>> +        * save leader_skel for install_pe, which is called within
>> +        * following evsel__open_per_cpu call
>> +        */
>> +       evsel->leader_skel = skel;
>> +       evsel__open_per_cpu(evsel, all_cpu_map, -1);
>> +
>> +out:
>> +       bperf_leader_bpf__destroy(skel);
>> +       bpf_link__destroy(link);
> 
> Why do we destroy it?  Is it because we get an another reference?

Yes. We only need evsel->bperf_leader_link_fd to keep the whole 
skeleton attached. 

When multiple perf-stat sessions are sharing the leader skeleton, 
only the first one loads the leader skeleton, by calling 
bperf_reload_leader_program(). Other sessions simply hold a fd to 
the bpf_link. More explanation in bperf__load() below.  


> 
>> +       return err;
>> +}
>> +
>> +static int bperf__load(struct evsel *evsel, struct target *target)
>> +{
>> +       struct perf_event_attr_map_entry entry = {0xffffffff, 0xffffffff};
>> +       int attr_map_fd, diff_map_fd = -1, err;
>> +       enum bperf_filter_type filter_type;
>> +       __u32 filter_entry_cnt, i;
>> +
>> +       if (bperf_check_target(evsel, target, &filter_type, &filter_entry_cnt))
>> +               return -1;
>> +
>> +       if (!all_cpu_map) {
>> +               all_cpu_map = perf_cpu_map__new(NULL);
>> +               if (!all_cpu_map)
>> +                       return -1;
>> +       }
>> +
>> +       evsel->bperf_leader_prog_fd = -1;
>> +       evsel->bperf_leader_link_fd = -1;
>> +
>> +       /*
>> +        * Step 1: hold a fd on the leader program and the bpf_link, if
>> +        * the program is not already gone, reload the program.
>> +        * Use flock() to ensure exclusive access to the perf_event_attr
>> +        * map.
>> +        */
>> +       attr_map_fd = bperf_lock_attr_map(target);
>> +       if (attr_map_fd < 0) {
>> +               pr_err("Failed to lock perf_event_attr map\n");
>> +               return -1;
>> +       }
>> +
>> +       err = bpf_map_lookup_elem(attr_map_fd, &evsel->core.attr, &entry);
>> +       if (err) {
>> +               err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, &entry, BPF_ANY);
>> +               if (err)
>> +                       goto out;
>> +       }
>> +
>> +       evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry.link_id);
>> +       if (evsel->bperf_leader_link_fd < 0 &&
>> +           bperf_reload_leader_program(evsel, attr_map_fd, &entry))
>> +               goto out;

Continue with previous explanation. In bperf_reload_leader_program(), 
we open another reference to the link, and destroy the skeleton. This 
brings the code to the same state as evsel->bperf_leader_link_fd >= 
condition above. 

>> +
>> +       /*
>> +        * The bpf_link holds reference to the leader program, and the
>> +        * leader program holds reference to the maps. Therefore, if
>> +        * link_id is valid, diff_map_id should also be valid.
>> +        */
>> +       evsel->bperf_leader_prog_fd = bpf_prog_get_fd_by_id(
>> +               bpf_link_get_prog_id(evsel->bperf_leader_link_fd));
>> +       assert(evsel->bperf_leader_prog_fd >= 0);
>> +
>> +       diff_map_fd = bpf_map_get_fd_by_id(entry.diff_map_id);
>> +       assert(diff_map_fd >= 0);
>> +

[...]

>> +static int bperf__read(struct evsel *evsel)
>> +{
>> +       struct bperf_follower_bpf *skel = evsel->follower_skel;
>> +       __u32 num_cpu_bpf = cpu__max_cpu();
>> +       struct bpf_perf_event_value values[num_cpu_bpf];
>> +       int reading_map_fd, err = 0;
>> +       __u32 i, j, num_cpu;
>> +
>> +       bperf_sync_counters(evsel);
>> +       reading_map_fd = bpf_map__fd(skel->maps.accum_readings);
>> +
>> +       for (i = 0; i < bpf_map__max_entries(skel->maps.accum_readings); i++) {
>> +               __u32 cpu;
>> +
>> +               err = bpf_map_lookup_elem(reading_map_fd, &i, values);
>> +               if (err)
>> +                       goto out;
>> +               switch (evsel->follower_skel->bss->type) {
>> +               case BPERF_FILTER_GLOBAL:
>> +                       assert(i == 0);
>> +
>> +                       num_cpu = all_cpu_map->nr;
>> +                       for (j = 0; j < num_cpu; j++) {
>> +                               cpu = all_cpu_map->map[j];
>> +                               perf_counts(evsel->counts, cpu, 0)->val = values[cpu].counter;
>> +                               perf_counts(evsel->counts, cpu, 0)->ena = values[cpu].enabled;
>> +                               perf_counts(evsel->counts, cpu, 0)->run = values[cpu].running;
> 
> I'm confused with this.  Does the accum_readings map contain values
> for all cpus?  IIUC it has only a single entry but you access it for each cpu.
> What am I missing?

accumulated_reading is a percpu array. In this case, each cpu has its own 
bpf_perf_event_value with index 0. The BPF program could only access the 
data on current cpu. When reading from use space, we get #-of-cpus entries 
for index 0.  

Does this make sense?

Thanks,
Song

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ