[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20210323191604.aqibane2w55q4oma@offworld>
Date: Tue, 23 Mar 2021 12:16:04 -0700
From: Davidlohr Bueso <dave@...olabs.net>
To: axboe@...nel.dk
Cc: dbueso@...e.de, hch@...radead.org, linux-block@...r.kernel.org,
linux-kernel@...r.kernel.org, neilb@...e.de
Subject: Re: [PATCH] drivers/block: Goodbye BLK_DEV_UMEM
I'm also Ccing Neil, who is one of the authors.
On Tue, 23 Mar 2021, Bueso wrote:
>This removes the driver on the premise that it has been unused for a long
>time. This is a better approach compared to changing untestable code nobody
>cares about in the first place. Similarly, the umem.com website now shows a
>mere Godaddy parking add.
>
>Suggested-by: Christoph Hellwig <hch@...radead.org>
>Signed-off-by: Davidlohr Bueso <dbueso@...e.de>
>---
> arch/mips/configs/malta_defconfig | 1 -
> arch/mips/configs/malta_kvm_defconfig | 1 -
> arch/mips/configs/maltaup_xpa_defconfig | 1 -
> drivers/block/Kconfig | 17 -
> drivers/block/Makefile | 1 -
> drivers/block/umem.c | 1130 -----------------------
> drivers/block/umem.h | 132 ---
> 7 files changed, 1283 deletions(-)
> delete mode 100644 drivers/block/umem.c
> delete mode 100644 drivers/block/umem.h
>
>diff --git a/arch/mips/configs/malta_defconfig b/arch/mips/configs/malta_defconfig
>index 211bd3d6e6cb..9cb2cf2595e0 100644
>--- a/arch/mips/configs/malta_defconfig
>+++ b/arch/mips/configs/malta_defconfig
>@@ -227,7 +227,6 @@ CONFIG_MTD_PHYSMAP_OF=y
> CONFIG_MTD_UBI=m
> CONFIG_MTD_UBI_GLUEBI=m
> CONFIG_BLK_DEV_FD=m
>-CONFIG_BLK_DEV_UMEM=m
> CONFIG_BLK_DEV_LOOP=m
> CONFIG_BLK_DEV_CRYPTOLOOP=m
> CONFIG_BLK_DEV_NBD=m
>diff --git a/arch/mips/configs/malta_kvm_defconfig b/arch/mips/configs/malta_kvm_defconfig
>index 62b1969b4f55..ab8d1df0f255 100644
>--- a/arch/mips/configs/malta_kvm_defconfig
>+++ b/arch/mips/configs/malta_kvm_defconfig
>@@ -232,7 +232,6 @@ CONFIG_MTD_PHYSMAP_OF=y
> CONFIG_MTD_UBI=m
> CONFIG_MTD_UBI_GLUEBI=m
> CONFIG_BLK_DEV_FD=m
>-CONFIG_BLK_DEV_UMEM=m
> CONFIG_BLK_DEV_LOOP=m
> CONFIG_BLK_DEV_CRYPTOLOOP=m
> CONFIG_BLK_DEV_NBD=m
>diff --git a/arch/mips/configs/maltaup_xpa_defconfig b/arch/mips/configs/maltaup_xpa_defconfig
>index 636311d67a53..c93e5a39c215 100644
>--- a/arch/mips/configs/maltaup_xpa_defconfig
>+++ b/arch/mips/configs/maltaup_xpa_defconfig
>@@ -230,7 +230,6 @@ CONFIG_MTD_PHYSMAP_OF=y
> CONFIG_MTD_UBI=m
> CONFIG_MTD_UBI_GLUEBI=m
> CONFIG_BLK_DEV_FD=m
>-CONFIG_BLK_DEV_UMEM=m
> CONFIG_BLK_DEV_LOOP=m
> CONFIG_BLK_DEV_CRYPTOLOOP=m
> CONFIG_BLK_DEV_NBD=m
>diff --git a/drivers/block/Kconfig b/drivers/block/Kconfig
>index fd236158f32d..56e7b8450120 100644
>--- a/drivers/block/Kconfig
>+++ b/drivers/block/Kconfig
>@@ -121,23 +121,6 @@ source "drivers/block/mtip32xx/Kconfig"
>
> source "drivers/block/zram/Kconfig"
>
>-config BLK_DEV_UMEM
>- tristate "Micro Memory MM5415 Battery Backed RAM support"
>- depends on PCI
>- help
>- Saying Y here will include support for the MM5415 family of
>- battery backed (Non-volatile) RAM cards.
>- <http://www.umem.com/>
>-
>- The cards appear as block devices that can be partitioned into
>- as many as 15 partitions.
>-
>- To compile this driver as a module, choose M here: the
>- module will be called umem.
>-
>- The umem driver has not yet been allocated a MAJOR number, so
>- one is chosen dynamically.
>-
> config BLK_DEV_UBD
> bool "Virtual block device"
> depends on UML
>diff --git a/drivers/block/Makefile b/drivers/block/Makefile
>index e3e3f1c79a82..9878eb3dbfd5 100644
>--- a/drivers/block/Makefile
>+++ b/drivers/block/Makefile
>@@ -24,7 +24,6 @@ obj-$(CONFIG_XILINX_SYSACE) += xsysace.o
> obj-$(CONFIG_CDROM_PKTCDVD) += pktcdvd.o
> obj-$(CONFIG_SUNVDC) += sunvdc.o
>
>-obj-$(CONFIG_BLK_DEV_UMEM) += umem.o
> obj-$(CONFIG_BLK_DEV_NBD) += nbd.o
> obj-$(CONFIG_BLK_DEV_CRYPTOLOOP) += cryptoloop.o
> obj-$(CONFIG_VIRTIO_BLK) += virtio_blk.o
>diff --git a/drivers/block/umem.c b/drivers/block/umem.c
>deleted file mode 100644
>index 664280f23bee..000000000000
>--- a/drivers/block/umem.c
>+++ /dev/null
>@@ -1,1130 +0,0 @@
>-// SPDX-License-Identifier: GPL-2.0-only
>-/*
>- * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
>- *
>- * (C) 2001 San Mehat <nettwerk@...inux.com>
>- * (C) 2001 Johannes Erdfelt <jerdfelt@...inux.com>
>- * (C) 2001 NeilBrown <neilb@....unsw.edu.au>
>- *
>- * This driver for the Micro Memory PCI Memory Module with Battery Backup
>- * is Copyright Micro Memory Inc 2001-2002. All rights reserved.
>- *
>- * This driver provides a standard block device interface for Micro Memory(tm)
>- * PCI based RAM boards.
>- * 10/05/01: Phap Nguyen - Rebuilt the driver
>- * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
>- * 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
>- * - use stand disk partitioning (so fdisk works).
>- * 08nov2001:NeilBrown - change driver name from "mm" to "umem"
>- * - incorporate into main kernel
>- * 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
>- * - use spin_lock_bh instead of _irq
>- * - Never block on make_request. queue
>- * bh's instead.
>- * - unregister umem from devfs at mod unload
>- * - Change version to 2.3
>- * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
>- * 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
>- * 15May2002:NeilBrown - convert to bio for 2.5
>- * 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
>- * - a sequence of writes that cover the card, and
>- * - set initialised bit then.
>- */
>-
>-#undef DEBUG /* #define DEBUG if you want debugging info (pr_debug) */
>-#include <linux/fs.h>
>-#include <linux/bio.h>
>-#include <linux/kernel.h>
>-#include <linux/mm.h>
>-#include <linux/mman.h>
>-#include <linux/gfp.h>
>-#include <linux/ioctl.h>
>-#include <linux/module.h>
>-#include <linux/init.h>
>-#include <linux/interrupt.h>
>-#include <linux/timer.h>
>-#include <linux/pci.h>
>-#include <linux/dma-mapping.h>
>-
>-#include <linux/fcntl.h> /* O_ACCMODE */
>-#include <linux/hdreg.h> /* HDIO_GETGEO */
>-
>-#include "umem.h"
>-
>-#include <linux/uaccess.h>
>-#include <asm/io.h>
>-
>-#define MM_MAXCARDS 4
>-#define MM_RAHEAD 2 /* two sectors */
>-#define MM_BLKSIZE 1024 /* 1k blocks */
>-#define MM_HARDSECT 512 /* 512-byte hardware sectors */
>-#define MM_SHIFT 6 /* max 64 partitions on 4 cards */
>-
>-/*
>- * Version Information
>- */
>-
>-#define DRIVER_NAME "umem"
>-#define DRIVER_VERSION "v2.3"
>-#define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
>-#define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
>-
>-static int debug;
>-/* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
>-#define HW_TRACE(x)
>-
>-#define DEBUG_LED_ON_TRANSFER 0x01
>-#define DEBUG_BATTERY_POLLING 0x02
>-
>-module_param(debug, int, 0644);
>-MODULE_PARM_DESC(debug, "Debug bitmask");
>-
>-static int pci_read_cmd = 0x0C; /* Read Multiple */
>-module_param(pci_read_cmd, int, 0);
>-MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
>-
>-static int pci_write_cmd = 0x0F; /* Write and Invalidate */
>-module_param(pci_write_cmd, int, 0);
>-MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
>-
>-static int pci_cmds;
>-
>-static int major_nr;
>-
>-#include <linux/blkdev.h>
>-#include <linux/blkpg.h>
>-
>-struct cardinfo {
>- struct pci_dev *dev;
>-
>- unsigned char __iomem *csr_remap;
>- unsigned int mm_size; /* size in kbytes */
>-
>- unsigned int init_size; /* initial segment, in sectors,
>- * that we know to
>- * have been written
>- */
>- struct bio *bio, *currentbio, **biotail;
>- struct bvec_iter current_iter;
>-
>- struct request_queue *queue;
>-
>- struct mm_page {
>- dma_addr_t page_dma;
>- struct mm_dma_desc *desc;
>- int cnt, headcnt;
>- struct bio *bio, **biotail;
>- struct bvec_iter iter;
>- } mm_pages[2];
>-#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
>-
>- int Active, Ready;
>-
>- struct tasklet_struct tasklet;
>- unsigned int dma_status;
>-
>- struct {
>- int good;
>- int warned;
>- unsigned long last_change;
>- } battery[2];
>-
>- spinlock_t lock;
>- int check_batteries;
>-
>- int flags;
>-};
>-
>-static struct cardinfo cards[MM_MAXCARDS];
>-static struct timer_list battery_timer;
>-
>-static int num_cards;
>-
>-static struct gendisk *mm_gendisk[MM_MAXCARDS];
>-
>-static void check_batteries(struct cardinfo *card);
>-
>-static int get_userbit(struct cardinfo *card, int bit)
>-{
>- unsigned char led;
>-
>- led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
>- return led & bit;
>-}
>-
>-static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
>-{
>- unsigned char led;
>-
>- led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
>- if (state)
>- led |= bit;
>- else
>- led &= ~bit;
>- writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
>-
>- return 0;
>-}
>-
>-/*
>- * NOTE: For the power LED, use the LED_POWER_* macros since they differ
>- */
>-static void set_led(struct cardinfo *card, int shift, unsigned char state)
>-{
>- unsigned char led;
>-
>- led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
>- if (state == LED_FLIP)
>- led ^= (1<<shift);
>- else {
>- led &= ~(0x03 << shift);
>- led |= (state << shift);
>- }
>- writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
>-
>-}
>-
>-#ifdef MM_DIAG
>-static void dump_regs(struct cardinfo *card)
>-{
>- unsigned char *p;
>- int i, i1;
>-
>- p = card->csr_remap;
>- for (i = 0; i < 8; i++) {
>- printk(KERN_DEBUG "%p ", p);
>-
>- for (i1 = 0; i1 < 16; i1++)
>- printk("%02x ", *p++);
>-
>- printk("\n");
>- }
>-}
>-#endif
>-
>-static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
>-{
>- dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
>- if (dmastat & DMASCR_ANY_ERR)
>- printk(KERN_CONT "ANY_ERR ");
>- if (dmastat & DMASCR_MBE_ERR)
>- printk(KERN_CONT "MBE_ERR ");
>- if (dmastat & DMASCR_PARITY_ERR_REP)
>- printk(KERN_CONT "PARITY_ERR_REP ");
>- if (dmastat & DMASCR_PARITY_ERR_DET)
>- printk(KERN_CONT "PARITY_ERR_DET ");
>- if (dmastat & DMASCR_SYSTEM_ERR_SIG)
>- printk(KERN_CONT "SYSTEM_ERR_SIG ");
>- if (dmastat & DMASCR_TARGET_ABT)
>- printk(KERN_CONT "TARGET_ABT ");
>- if (dmastat & DMASCR_MASTER_ABT)
>- printk(KERN_CONT "MASTER_ABT ");
>- if (dmastat & DMASCR_CHAIN_COMPLETE)
>- printk(KERN_CONT "CHAIN_COMPLETE ");
>- if (dmastat & DMASCR_DMA_COMPLETE)
>- printk(KERN_CONT "DMA_COMPLETE ");
>- printk("\n");
>-}
>-
>-/*
>- * Theory of request handling
>- *
>- * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
>- * We have two pages of mm_dma_desc, holding about 64 descriptors
>- * each. These are allocated at init time.
>- * One page is "Ready" and is either full, or can have request added.
>- * The other page might be "Active", which DMA is happening on it.
>- *
>- * Whenever IO on the active page completes, the Ready page is activated
>- * and the ex-Active page is clean out and made Ready.
>- * Otherwise the Ready page is only activated when it becomes full.
>- *
>- * If a request arrives while both pages a full, it is queued, and b_rdev is
>- * overloaded to record whether it was a read or a write.
>- *
>- * The interrupt handler only polls the device to clear the interrupt.
>- * The processing of the result is done in a tasklet.
>- */
>-
>-static void mm_start_io(struct cardinfo *card)
>-{
>- /* we have the lock, we know there is
>- * no IO active, and we know that card->Active
>- * is set
>- */
>- struct mm_dma_desc *desc;
>- struct mm_page *page;
>- int offset;
>-
>- /* make the last descriptor end the chain */
>- page = &card->mm_pages[card->Active];
>- pr_debug("start_io: %d %d->%d\n",
>- card->Active, page->headcnt, page->cnt - 1);
>- desc = &page->desc[page->cnt-1];
>-
>- desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
>- desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
>- desc->sem_control_bits = desc->control_bits;
>-
>-
>- if (debug & DEBUG_LED_ON_TRANSFER)
>- set_led(card, LED_REMOVE, LED_ON);
>-
>- desc = &page->desc[page->headcnt];
>- writel(0, card->csr_remap + DMA_PCI_ADDR);
>- writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
>-
>- writel(0, card->csr_remap + DMA_LOCAL_ADDR);
>- writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
>-
>- writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
>- writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
>-
>- writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
>- writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
>-
>- offset = ((char *)desc) - ((char *)page->desc);
>- writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
>- card->csr_remap + DMA_DESCRIPTOR_ADDR);
>- /* Force the value to u64 before shifting otherwise >> 32 is undefined C
>- * and on some ports will do nothing ! */
>- writel(cpu_to_le32(((u64)page->page_dma)>>32),
>- card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
>-
>- /* Go, go, go */
>- writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
>- card->csr_remap + DMA_STATUS_CTRL);
>-}
>-
>-static int add_bio(struct cardinfo *card);
>-
>-static void activate(struct cardinfo *card)
>-{
>- /* if No page is Active, and Ready is
>- * not empty, then switch Ready page
>- * to active and start IO.
>- * Then add any bh's that are available to Ready
>- */
>-
>- do {
>- while (add_bio(card))
>- ;
>-
>- if (card->Active == -1 &&
>- card->mm_pages[card->Ready].cnt > 0) {
>- card->Active = card->Ready;
>- card->Ready = 1-card->Ready;
>- mm_start_io(card);
>- }
>-
>- } while (card->Active == -1 && add_bio(card));
>-}
>-
>-static inline void reset_page(struct mm_page *page)
>-{
>- page->cnt = 0;
>- page->headcnt = 0;
>- page->bio = NULL;
>- page->biotail = &page->bio;
>-}
>-
>-/*
>- * If there is room on Ready page, take
>- * one bh off list and add it.
>- * return 1 if there was room, else 0.
>- */
>-static int add_bio(struct cardinfo *card)
>-{
>- struct mm_page *p;
>- struct mm_dma_desc *desc;
>- dma_addr_t dma_handle;
>- int offset;
>- struct bio *bio;
>- struct bio_vec vec;
>-
>- bio = card->currentbio;
>- if (!bio && card->bio) {
>- card->currentbio = card->bio;
>- card->current_iter = card->bio->bi_iter;
>- card->bio = card->bio->bi_next;
>- if (card->bio == NULL)
>- card->biotail = &card->bio;
>- card->currentbio->bi_next = NULL;
>- return 1;
>- }
>- if (!bio)
>- return 0;
>-
>- if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
>- return 0;
>-
>- vec = bio_iter_iovec(bio, card->current_iter);
>-
>- dma_handle = dma_map_page(&card->dev->dev,
>- vec.bv_page,
>- vec.bv_offset,
>- vec.bv_len,
>- bio_op(bio) == REQ_OP_READ ?
>- DMA_FROM_DEVICE : DMA_TO_DEVICE);
>-
>- p = &card->mm_pages[card->Ready];
>- desc = &p->desc[p->cnt];
>- p->cnt++;
>- if (p->bio == NULL)
>- p->iter = card->current_iter;
>- if ((p->biotail) != &bio->bi_next) {
>- *(p->biotail) = bio;
>- p->biotail = &(bio->bi_next);
>- bio->bi_next = NULL;
>- }
>-
>- desc->data_dma_handle = dma_handle;
>-
>- desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
>- desc->local_addr = cpu_to_le64(card->current_iter.bi_sector << 9);
>- desc->transfer_size = cpu_to_le32(vec.bv_len);
>- offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
>- desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
>- desc->zero1 = desc->zero2 = 0;
>- offset = (((char *)(desc+1)) - ((char *)p->desc));
>- desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
>- desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
>- DMASCR_PARITY_INT_EN|
>- DMASCR_CHAIN_EN |
>- DMASCR_SEM_EN |
>- pci_cmds);
>- if (bio_op(bio) == REQ_OP_WRITE)
>- desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
>- desc->sem_control_bits = desc->control_bits;
>-
>-
>- bio_advance_iter(bio, &card->current_iter, vec.bv_len);
>- if (!card->current_iter.bi_size)
>- card->currentbio = NULL;
>-
>- return 1;
>-}
>-
>-static void process_page(unsigned long data)
>-{
>- /* check if any of the requests in the page are DMA_COMPLETE,
>- * and deal with them appropriately.
>- * If we find a descriptor without DMA_COMPLETE in the semaphore, then
>- * dma must have hit an error on that descriptor, so use dma_status
>- * instead and assume that all following descriptors must be re-tried.
>- */
>- struct mm_page *page;
>- struct bio *return_bio = NULL;
>- struct cardinfo *card = (struct cardinfo *)data;
>- unsigned int dma_status = card->dma_status;
>-
>- spin_lock(&card->lock);
>- if (card->Active < 0)
>- goto out_unlock;
>- page = &card->mm_pages[card->Active];
>-
>- while (page->headcnt < page->cnt) {
>- struct bio *bio = page->bio;
>- struct mm_dma_desc *desc = &page->desc[page->headcnt];
>- int control = le32_to_cpu(desc->sem_control_bits);
>- int last = 0;
>- struct bio_vec vec;
>-
>- if (!(control & DMASCR_DMA_COMPLETE)) {
>- control = dma_status;
>- last = 1;
>- }
>-
>- page->headcnt++;
>- vec = bio_iter_iovec(bio, page->iter);
>- bio_advance_iter(bio, &page->iter, vec.bv_len);
>-
>- if (!page->iter.bi_size) {
>- page->bio = bio->bi_next;
>- if (page->bio)
>- page->iter = page->bio->bi_iter;
>- }
>-
>- dma_unmap_page(&card->dev->dev, desc->data_dma_handle,
>- vec.bv_len,
>- (control & DMASCR_TRANSFER_READ) ?
>- DMA_TO_DEVICE : DMA_FROM_DEVICE);
>- if (control & DMASCR_HARD_ERROR) {
>- /* error */
>- bio->bi_status = BLK_STS_IOERR;
>- dev_printk(KERN_WARNING, &card->dev->dev,
>- "I/O error on sector %d/%d\n",
>- le32_to_cpu(desc->local_addr)>>9,
>- le32_to_cpu(desc->transfer_size));
>- dump_dmastat(card, control);
>- } else if (op_is_write(bio_op(bio)) &&
>- le32_to_cpu(desc->local_addr) >> 9 ==
>- card->init_size) {
>- card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
>- if (card->init_size >> 1 >= card->mm_size) {
>- dev_printk(KERN_INFO, &card->dev->dev,
>- "memory now initialised\n");
>- set_userbit(card, MEMORY_INITIALIZED, 1);
>- }
>- }
>- if (bio != page->bio) {
>- bio->bi_next = return_bio;
>- return_bio = bio;
>- }
>-
>- if (last)
>- break;
>- }
>-
>- if (debug & DEBUG_LED_ON_TRANSFER)
>- set_led(card, LED_REMOVE, LED_OFF);
>-
>- if (card->check_batteries) {
>- card->check_batteries = 0;
>- check_batteries(card);
>- }
>- if (page->headcnt >= page->cnt) {
>- reset_page(page);
>- card->Active = -1;
>- activate(card);
>- } else {
>- /* haven't finished with this one yet */
>- pr_debug("do some more\n");
>- mm_start_io(card);
>- }
>- out_unlock:
>- spin_unlock(&card->lock);
>-
>- while (return_bio) {
>- struct bio *bio = return_bio;
>-
>- return_bio = bio->bi_next;
>- bio->bi_next = NULL;
>- bio_endio(bio);
>- }
>-}
>-
>-static void mm_unplug(struct blk_plug_cb *cb, bool from_schedule)
>-{
>- struct cardinfo *card = cb->data;
>-
>- spin_lock_irq(&card->lock);
>- activate(card);
>- spin_unlock_irq(&card->lock);
>- kfree(cb);
>-}
>-
>-static int mm_check_plugged(struct cardinfo *card)
>-{
>- return !!blk_check_plugged(mm_unplug, card, sizeof(struct blk_plug_cb));
>-}
>-
>-static blk_qc_t mm_submit_bio(struct bio *bio)
>-{
>- struct cardinfo *card = bio->bi_bdev->bd_disk->private_data;
>-
>- pr_debug("mm_make_request %llu %u\n",
>- (unsigned long long)bio->bi_iter.bi_sector,
>- bio->bi_iter.bi_size);
>-
>- blk_queue_split(&bio);
>-
>- spin_lock_irq(&card->lock);
>- *card->biotail = bio;
>- bio->bi_next = NULL;
>- card->biotail = &bio->bi_next;
>- if (op_is_sync(bio->bi_opf) || !mm_check_plugged(card))
>- activate(card);
>- spin_unlock_irq(&card->lock);
>-
>- return BLK_QC_T_NONE;
>-}
>-
>-static irqreturn_t mm_interrupt(int irq, void *__card)
>-{
>- struct cardinfo *card = (struct cardinfo *) __card;
>- unsigned int dma_status;
>- unsigned short cfg_status;
>-
>-HW_TRACE(0x30);
>-
>- dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
>-
>- if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
>- /* interrupt wasn't for me ... */
>- return IRQ_NONE;
>- }
>-
>- /* clear COMPLETION interrupts */
>- if (card->flags & UM_FLAG_NO_BYTE_STATUS)
>- writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
>- card->csr_remap + DMA_STATUS_CTRL);
>- else
>- writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
>- card->csr_remap + DMA_STATUS_CTRL + 2);
>-
>- /* log errors and clear interrupt status */
>- if (dma_status & DMASCR_ANY_ERR) {
>- unsigned int data_log1, data_log2;
>- unsigned int addr_log1, addr_log2;
>- unsigned char stat, count, syndrome, check;
>-
>- stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
>-
>- data_log1 = le32_to_cpu(readl(card->csr_remap +
>- ERROR_DATA_LOG));
>- data_log2 = le32_to_cpu(readl(card->csr_remap +
>- ERROR_DATA_LOG + 4));
>- addr_log1 = le32_to_cpu(readl(card->csr_remap +
>- ERROR_ADDR_LOG));
>- addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
>-
>- count = readb(card->csr_remap + ERROR_COUNT);
>- syndrome = readb(card->csr_remap + ERROR_SYNDROME);
>- check = readb(card->csr_remap + ERROR_CHECK);
>-
>- dump_dmastat(card, dma_status);
>-
>- if (stat & 0x01)
>- dev_printk(KERN_ERR, &card->dev->dev,
>- "Memory access error detected (err count %d)\n",
>- count);
>- if (stat & 0x02)
>- dev_printk(KERN_ERR, &card->dev->dev,
>- "Multi-bit EDC error\n");
>-
>- dev_printk(KERN_ERR, &card->dev->dev,
>- "Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
>- addr_log2, addr_log1, data_log2, data_log1);
>- dev_printk(KERN_ERR, &card->dev->dev,
>- "Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
>- check, syndrome);
>-
>- writeb(0, card->csr_remap + ERROR_COUNT);
>- }
>-
>- if (dma_status & DMASCR_PARITY_ERR_REP) {
>- dev_printk(KERN_ERR, &card->dev->dev,
>- "PARITY ERROR REPORTED\n");
>- pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
>- pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
>- }
>-
>- if (dma_status & DMASCR_PARITY_ERR_DET) {
>- dev_printk(KERN_ERR, &card->dev->dev,
>- "PARITY ERROR DETECTED\n");
>- pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
>- pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
>- }
>-
>- if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
>- dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
>- pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
>- pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
>- }
>-
>- if (dma_status & DMASCR_TARGET_ABT) {
>- dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
>- pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
>- pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
>- }
>-
>- if (dma_status & DMASCR_MASTER_ABT) {
>- dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
>- pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
>- pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
>- }
>-
>- /* and process the DMA descriptors */
>- card->dma_status = dma_status;
>- tasklet_schedule(&card->tasklet);
>-
>-HW_TRACE(0x36);
>-
>- return IRQ_HANDLED;
>-}
>-
>-/*
>- * If both batteries are good, no LED
>- * If either battery has been warned, solid LED
>- * If both batteries are bad, flash the LED quickly
>- * If either battery is bad, flash the LED semi quickly
>- */
>-static void set_fault_to_battery_status(struct cardinfo *card)
>-{
>- if (card->battery[0].good && card->battery[1].good)
>- set_led(card, LED_FAULT, LED_OFF);
>- else if (card->battery[0].warned || card->battery[1].warned)
>- set_led(card, LED_FAULT, LED_ON);
>- else if (!card->battery[0].good && !card->battery[1].good)
>- set_led(card, LED_FAULT, LED_FLASH_7_0);
>- else
>- set_led(card, LED_FAULT, LED_FLASH_3_5);
>-}
>-
>-static void init_battery_timer(void);
>-
>-static int check_battery(struct cardinfo *card, int battery, int status)
>-{
>- if (status != card->battery[battery].good) {
>- card->battery[battery].good = !card->battery[battery].good;
>- card->battery[battery].last_change = jiffies;
>-
>- if (card->battery[battery].good) {
>- dev_printk(KERN_ERR, &card->dev->dev,
>- "Battery %d now good\n", battery + 1);
>- card->battery[battery].warned = 0;
>- } else
>- dev_printk(KERN_ERR, &card->dev->dev,
>- "Battery %d now FAILED\n", battery + 1);
>-
>- return 1;
>- } else if (!card->battery[battery].good &&
>- !card->battery[battery].warned &&
>- time_after_eq(jiffies, card->battery[battery].last_change +
>- (HZ * 60 * 60 * 5))) {
>- dev_printk(KERN_ERR, &card->dev->dev,
>- "Battery %d still FAILED after 5 hours\n", battery + 1);
>- card->battery[battery].warned = 1;
>-
>- return 1;
>- }
>-
>- return 0;
>-}
>-
>-static void check_batteries(struct cardinfo *card)
>-{
>- /* NOTE: this must *never* be called while the card
>- * is doing (bus-to-card) DMA, or you will need the
>- * reset switch
>- */
>- unsigned char status;
>- int ret1, ret2;
>-
>- status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
>- if (debug & DEBUG_BATTERY_POLLING)
>- dev_printk(KERN_DEBUG, &card->dev->dev,
>- "checking battery status, 1 = %s, 2 = %s\n",
>- (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
>- (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
>-
>- ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
>- ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
>-
>- if (ret1 || ret2)
>- set_fault_to_battery_status(card);
>-}
>-
>-static void check_all_batteries(struct timer_list *unused)
>-{
>- int i;
>-
>- for (i = 0; i < num_cards; i++)
>- if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
>- struct cardinfo *card = &cards[i];
>- spin_lock_bh(&card->lock);
>- if (card->Active >= 0)
>- card->check_batteries = 1;
>- else
>- check_batteries(card);
>- spin_unlock_bh(&card->lock);
>- }
>-
>- init_battery_timer();
>-}
>-
>-static void init_battery_timer(void)
>-{
>- timer_setup(&battery_timer, check_all_batteries, 0);
>- battery_timer.expires = jiffies + (HZ * 60);
>- add_timer(&battery_timer);
>-}
>-
>-static void del_battery_timer(void)
>-{
>- del_timer(&battery_timer);
>-}
>-
>-/*
>- * Note no locks taken out here. In a worst case scenario, we could drop
>- * a chunk of system memory. But that should never happen, since validation
>- * happens at open or mount time, when locks are held.
>- *
>- * That's crap, since doing that while some partitions are opened
>- * or mounted will give you really nasty results.
>- */
>-static int mm_revalidate(struct gendisk *disk)
>-{
>- struct cardinfo *card = disk->private_data;
>- set_capacity(disk, card->mm_size << 1);
>- return 0;
>-}
>-
>-static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
>-{
>- struct cardinfo *card = bdev->bd_disk->private_data;
>- int size = card->mm_size * (1024 / MM_HARDSECT);
>-
>- /*
>- * get geometry: we have to fake one... trim the size to a
>- * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
>- * whatever cylinders.
>- */
>- geo->heads = 64;
>- geo->sectors = 32;
>- geo->cylinders = size / (geo->heads * geo->sectors);
>- return 0;
>-}
>-
>-static const struct block_device_operations mm_fops = {
>- .owner = THIS_MODULE,
>- .submit_bio = mm_submit_bio,
>- .getgeo = mm_getgeo,
>- .revalidate_disk = mm_revalidate,
>-};
>-
>-static int mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
>-{
>- int ret;
>- struct cardinfo *card = &cards[num_cards];
>- unsigned char mem_present;
>- unsigned char batt_status;
>- unsigned int saved_bar, data;
>- unsigned long csr_base;
>- unsigned long csr_len;
>- int magic_number;
>- static int printed_version;
>-
>- if (!printed_version++)
>- printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
>-
>- ret = pci_enable_device(dev);
>- if (ret)
>- return ret;
>-
>- pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
>- pci_set_master(dev);
>-
>- card->dev = dev;
>-
>- csr_base = pci_resource_start(dev, 0);
>- csr_len = pci_resource_len(dev, 0);
>- if (!csr_base || !csr_len)
>- return -ENODEV;
>-
>- dev_printk(KERN_INFO, &dev->dev,
>- "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
>-
>- if (dma_set_mask(&dev->dev, DMA_BIT_MASK(64)) &&
>- dma_set_mask(&dev->dev, DMA_BIT_MASK(32))) {
>- dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
>- return -ENOMEM;
>- }
>-
>- ret = pci_request_regions(dev, DRIVER_NAME);
>- if (ret) {
>- dev_printk(KERN_ERR, &card->dev->dev,
>- "Unable to request memory region\n");
>- goto failed_req_csr;
>- }
>-
>- card->csr_remap = ioremap(csr_base, csr_len);
>- if (!card->csr_remap) {
>- dev_printk(KERN_ERR, &card->dev->dev,
>- "Unable to remap memory region\n");
>- ret = -ENOMEM;
>-
>- goto failed_remap_csr;
>- }
>-
>- dev_printk(KERN_INFO, &card->dev->dev,
>- "CSR 0x%08lx -> 0x%p (0x%lx)\n",
>- csr_base, card->csr_remap, csr_len);
>-
>- switch (card->dev->device) {
>- case 0x5415:
>- card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
>- magic_number = 0x59;
>- break;
>-
>- case 0x5425:
>- card->flags |= UM_FLAG_NO_BYTE_STATUS;
>- magic_number = 0x5C;
>- break;
>-
>- case 0x6155:
>- card->flags |= UM_FLAG_NO_BYTE_STATUS |
>- UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
>- magic_number = 0x99;
>- break;
>-
>- default:
>- magic_number = 0x100;
>- break;
>- }
>-
>- if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
>- dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
>- ret = -ENOMEM;
>- goto failed_magic;
>- }
>-
>- card->mm_pages[0].desc = dma_alloc_coherent(&card->dev->dev,
>- PAGE_SIZE * 2, &card->mm_pages[0].page_dma, GFP_KERNEL);
>- card->mm_pages[1].desc = dma_alloc_coherent(&card->dev->dev,
>- PAGE_SIZE * 2, &card->mm_pages[1].page_dma, GFP_KERNEL);
>- if (card->mm_pages[0].desc == NULL ||
>- card->mm_pages[1].desc == NULL) {
>- dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
>- ret = -ENOMEM;
>- goto failed_alloc;
>- }
>- reset_page(&card->mm_pages[0]);
>- reset_page(&card->mm_pages[1]);
>- card->Ready = 0; /* page 0 is ready */
>- card->Active = -1; /* no page is active */
>- card->bio = NULL;
>- card->biotail = &card->bio;
>- spin_lock_init(&card->lock);
>-
>- card->queue = blk_alloc_queue(NUMA_NO_NODE);
>- if (!card->queue) {
>- ret = -ENOMEM;
>- goto failed_alloc;
>- }
>-
>- tasklet_init(&card->tasklet, process_page, (unsigned long)card);
>-
>- card->check_batteries = 0;
>-
>- mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
>- switch (mem_present) {
>- case MEM_128_MB:
>- card->mm_size = 1024 * 128;
>- break;
>- case MEM_256_MB:
>- card->mm_size = 1024 * 256;
>- break;
>- case MEM_512_MB:
>- card->mm_size = 1024 * 512;
>- break;
>- case MEM_1_GB:
>- card->mm_size = 1024 * 1024;
>- break;
>- case MEM_2_GB:
>- card->mm_size = 1024 * 2048;
>- break;
>- default:
>- card->mm_size = 0;
>- break;
>- }
>-
>- /* Clear the LED's we control */
>- set_led(card, LED_REMOVE, LED_OFF);
>- set_led(card, LED_FAULT, LED_OFF);
>-
>- batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
>-
>- card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
>- card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
>- card->battery[0].last_change = card->battery[1].last_change = jiffies;
>-
>- if (card->flags & UM_FLAG_NO_BATT)
>- dev_printk(KERN_INFO, &card->dev->dev,
>- "Size %d KB\n", card->mm_size);
>- else {
>- dev_printk(KERN_INFO, &card->dev->dev,
>- "Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
>- card->mm_size,
>- batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
>- card->battery[0].good ? "OK" : "FAILURE",
>- batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
>- card->battery[1].good ? "OK" : "FAILURE");
>-
>- set_fault_to_battery_status(card);
>- }
>-
>- pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
>- data = 0xffffffff;
>- pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
>- pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
>- pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
>- data &= 0xfffffff0;
>- data = ~data;
>- data += 1;
>-
>- if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
>- card)) {
>- dev_printk(KERN_ERR, &card->dev->dev,
>- "Unable to allocate IRQ\n");
>- ret = -ENODEV;
>- goto failed_req_irq;
>- }
>-
>- dev_printk(KERN_INFO, &card->dev->dev,
>- "Window size %d bytes, IRQ %d\n", data, dev->irq);
>-
>- pci_set_drvdata(dev, card);
>-
>- if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */
>- pci_write_cmd = 0x07; /* then Memory Write command */
>-
>- if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
>- unsigned short cfg_command;
>- pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
>- cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
>- pci_write_config_word(dev, PCI_COMMAND, cfg_command);
>- }
>- pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
>-
>- num_cards++;
>-
>- if (!get_userbit(card, MEMORY_INITIALIZED)) {
>- dev_printk(KERN_INFO, &card->dev->dev,
>- "memory NOT initialized. Consider over-writing whole device.\n");
>- card->init_size = 0;
>- } else {
>- dev_printk(KERN_INFO, &card->dev->dev,
>- "memory already initialized\n");
>- card->init_size = card->mm_size;
>- }
>-
>- /* Enable ECC */
>- writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
>-
>- return 0;
>-
>- failed_req_irq:
>- failed_alloc:
>- if (card->mm_pages[0].desc)
>- dma_free_coherent(&card->dev->dev, PAGE_SIZE * 2,
>- card->mm_pages[0].desc,
>- card->mm_pages[0].page_dma);
>- if (card->mm_pages[1].desc)
>- dma_free_coherent(&card->dev->dev, PAGE_SIZE * 2,
>- card->mm_pages[1].desc,
>- card->mm_pages[1].page_dma);
>- failed_magic:
>- iounmap(card->csr_remap);
>- failed_remap_csr:
>- pci_release_regions(dev);
>- failed_req_csr:
>-
>- return ret;
>-}
>-
>-static void mm_pci_remove(struct pci_dev *dev)
>-{
>- struct cardinfo *card = pci_get_drvdata(dev);
>-
>- tasklet_kill(&card->tasklet);
>- free_irq(dev->irq, card);
>- iounmap(card->csr_remap);
>-
>- if (card->mm_pages[0].desc)
>- dma_free_coherent(&card->dev->dev, PAGE_SIZE * 2,
>- card->mm_pages[0].desc,
>- card->mm_pages[0].page_dma);
>- if (card->mm_pages[1].desc)
>- dma_free_coherent(&card->dev->dev, PAGE_SIZE * 2,
>- card->mm_pages[1].desc,
>- card->mm_pages[1].page_dma);
>- blk_cleanup_queue(card->queue);
>-
>- pci_release_regions(dev);
>- pci_disable_device(dev);
>-}
>-
>-static const struct pci_device_id mm_pci_ids[] = {
>- {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
>- {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
>- {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
>- {
>- .vendor = 0x8086,
>- .device = 0xB555,
>- .subvendor = 0x1332,
>- .subdevice = 0x5460,
>- .class = 0x050000,
>- .class_mask = 0,
>- }, { /* end: all zeroes */ }
>-};
>-
>-MODULE_DEVICE_TABLE(pci, mm_pci_ids);
>-
>-static struct pci_driver mm_pci_driver = {
>- .name = DRIVER_NAME,
>- .id_table = mm_pci_ids,
>- .probe = mm_pci_probe,
>- .remove = mm_pci_remove,
>-};
>-
>-static int __init mm_init(void)
>-{
>- int retval, i;
>- int err;
>-
>- retval = pci_register_driver(&mm_pci_driver);
>- if (retval)
>- return -ENOMEM;
>-
>- err = major_nr = register_blkdev(0, DRIVER_NAME);
>- if (err < 0) {
>- pci_unregister_driver(&mm_pci_driver);
>- return -EIO;
>- }
>-
>- for (i = 0; i < num_cards; i++) {
>- mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
>- if (!mm_gendisk[i])
>- goto out;
>- }
>-
>- for (i = 0; i < num_cards; i++) {
>- struct gendisk *disk = mm_gendisk[i];
>- sprintf(disk->disk_name, "umem%c", 'a'+i);
>- spin_lock_init(&cards[i].lock);
>- disk->major = major_nr;
>- disk->first_minor = i << MM_SHIFT;
>- disk->fops = &mm_fops;
>- disk->private_data = &cards[i];
>- disk->queue = cards[i].queue;
>- set_capacity(disk, cards[i].mm_size << 1);
>- add_disk(disk);
>- }
>-
>- init_battery_timer();
>- printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
>-/* printk("mm_init: Done. 10-19-01 9:00\n"); */
>- return 0;
>-
>-out:
>- pci_unregister_driver(&mm_pci_driver);
>- unregister_blkdev(major_nr, DRIVER_NAME);
>- while (i--)
>- put_disk(mm_gendisk[i]);
>- return -ENOMEM;
>-}
>-
>-static void __exit mm_cleanup(void)
>-{
>- int i;
>-
>- del_battery_timer();
>-
>- for (i = 0; i < num_cards ; i++) {
>- del_gendisk(mm_gendisk[i]);
>- put_disk(mm_gendisk[i]);
>- }
>-
>- pci_unregister_driver(&mm_pci_driver);
>-
>- unregister_blkdev(major_nr, DRIVER_NAME);
>-}
>-
>-module_init(mm_init);
>-module_exit(mm_cleanup);
>-
>-MODULE_AUTHOR(DRIVER_AUTHOR);
>-MODULE_DESCRIPTION(DRIVER_DESC);
>-MODULE_LICENSE("GPL");
>diff --git a/drivers/block/umem.h b/drivers/block/umem.h
>deleted file mode 100644
>index 58384978ff05..000000000000
>--- a/drivers/block/umem.h
>+++ /dev/null
>@@ -1,132 +0,0 @@
>-/* SPDX-License-Identifier: GPL-2.0-only */
>-
>-/*
>- * This file contains defines for the
>- * Micro Memory MM5415
>- * family PCI Memory Module with Battery Backup.
>- *
>- * Copyright Micro Memory INC 2001. All rights reserved.
>- */
>-
>-#ifndef _DRIVERS_BLOCK_MM_H
>-#define _DRIVERS_BLOCK_MM_H
>-
>-
>-#define IRQ_TIMEOUT (1 * HZ)
>-
>-/* CSR register definition */
>-#define MEMCTRLSTATUS_MAGIC 0x00
>-#define MM_MAGIC_VALUE (unsigned char)0x59
>-
>-#define MEMCTRLSTATUS_BATTERY 0x04
>-#define BATTERY_1_DISABLED 0x01
>-#define BATTERY_1_FAILURE 0x02
>-#define BATTERY_2_DISABLED 0x04
>-#define BATTERY_2_FAILURE 0x08
>-
>-#define MEMCTRLSTATUS_MEMORY 0x07
>-#define MEM_128_MB 0xfe
>-#define MEM_256_MB 0xfc
>-#define MEM_512_MB 0xf8
>-#define MEM_1_GB 0xf0
>-#define MEM_2_GB 0xe0
>-
>-#define MEMCTRLCMD_LEDCTRL 0x08
>-#define LED_REMOVE 2
>-#define LED_FAULT 4
>-#define LED_POWER 6
>-#define LED_FLIP 255
>-#define LED_OFF 0x00
>-#define LED_ON 0x01
>-#define LED_FLASH_3_5 0x02
>-#define LED_FLASH_7_0 0x03
>-#define LED_POWER_ON 0x00
>-#define LED_POWER_OFF 0x01
>-#define USER_BIT1 0x01
>-#define USER_BIT2 0x02
>-
>-#define MEMORY_INITIALIZED USER_BIT1
>-
>-#define MEMCTRLCMD_ERRCTRL 0x0C
>-#define EDC_NONE_DEFAULT 0x00
>-#define EDC_NONE 0x01
>-#define EDC_STORE_READ 0x02
>-#define EDC_STORE_CORRECT 0x03
>-
>-#define MEMCTRLCMD_ERRCNT 0x0D
>-#define MEMCTRLCMD_ERRSTATUS 0x0E
>-
>-#define ERROR_DATA_LOG 0x20
>-#define ERROR_ADDR_LOG 0x28
>-#define ERROR_COUNT 0x3D
>-#define ERROR_SYNDROME 0x3E
>-#define ERROR_CHECK 0x3F
>-
>-#define DMA_PCI_ADDR 0x40
>-#define DMA_LOCAL_ADDR 0x48
>-#define DMA_TRANSFER_SIZE 0x50
>-#define DMA_DESCRIPTOR_ADDR 0x58
>-#define DMA_SEMAPHORE_ADDR 0x60
>-#define DMA_STATUS_CTRL 0x68
>-#define DMASCR_GO 0x00001
>-#define DMASCR_TRANSFER_READ 0x00002
>-#define DMASCR_CHAIN_EN 0x00004
>-#define DMASCR_SEM_EN 0x00010
>-#define DMASCR_DMA_COMP_EN 0x00020
>-#define DMASCR_CHAIN_COMP_EN 0x00040
>-#define DMASCR_ERR_INT_EN 0x00080
>-#define DMASCR_PARITY_INT_EN 0x00100
>-#define DMASCR_ANY_ERR 0x00800
>-#define DMASCR_MBE_ERR 0x01000
>-#define DMASCR_PARITY_ERR_REP 0x02000
>-#define DMASCR_PARITY_ERR_DET 0x04000
>-#define DMASCR_SYSTEM_ERR_SIG 0x08000
>-#define DMASCR_TARGET_ABT 0x10000
>-#define DMASCR_MASTER_ABT 0x20000
>-#define DMASCR_DMA_COMPLETE 0x40000
>-#define DMASCR_CHAIN_COMPLETE 0x80000
>-
>-/*
>-3.SOME PCs HAVE HOST BRIDGES WHICH APPARENTLY DO NOT CORRECTLY HANDLE
>-READ-LINE (0xE) OR READ-MULTIPLE (0xC) PCI COMMAND CODES DURING DMA
>-TRANSFERS. IN OTHER SYSTEMS THESE COMMAND CODES WILL CAUSE THE HOST BRIDGE
>-TO ALLOW LONGER BURSTS DURING DMA READ OPERATIONS. THE UPPER FOUR BITS
>-(31..28) OF THE DMA CSR HAVE BEEN MADE PROGRAMMABLE, SO THAT EITHER A 0x6,
>-AN 0xE OR A 0xC CAN BE WRITTEN TO THEM TO SET THE COMMAND CODE USED DURING
>-DMA READ OPERATIONS.
>-*/
>-#define DMASCR_READ 0x60000000
>-#define DMASCR_READLINE 0xE0000000
>-#define DMASCR_READMULTI 0xC0000000
>-
>-
>-#define DMASCR_ERROR_MASK (DMASCR_MASTER_ABT | DMASCR_TARGET_ABT | DMASCR_SYSTEM_ERR_SIG | DMASCR_PARITY_ERR_DET | DMASCR_MBE_ERR | DMASCR_ANY_ERR)
>-#define DMASCR_HARD_ERROR (DMASCR_MASTER_ABT | DMASCR_TARGET_ABT | DMASCR_SYSTEM_ERR_SIG | DMASCR_PARITY_ERR_DET | DMASCR_MBE_ERR)
>-
>-#define WINDOWMAP_WINNUM 0x7B
>-
>-#define DMA_READ_FROM_HOST 0
>-#define DMA_WRITE_TO_HOST 1
>-
>-struct mm_dma_desc {
>- __le64 pci_addr;
>- __le64 local_addr;
>- __le32 transfer_size;
>- u32 zero1;
>- __le64 next_desc_addr;
>- __le64 sem_addr;
>- __le32 control_bits;
>- u32 zero2;
>-
>- dma_addr_t data_dma_handle;
>-
>- /* Copy of the bits */
>- __le64 sem_control_bits;
>-} __attribute__((aligned(8)));
>-
>-/* bits for card->flags */
>-#define UM_FLAG_DMA_IN_REGS 1
>-#define UM_FLAG_NO_BYTE_STATUS 2
>-#define UM_FLAG_NO_BATTREG 4
>-#define UM_FLAG_NO_BATT 8
>-#endif
>--
>2.26.2
>
Powered by blists - more mailing lists