lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20210323191604.aqibane2w55q4oma@offworld>
Date:   Tue, 23 Mar 2021 12:16:04 -0700
From:   Davidlohr Bueso <dave@...olabs.net>
To:     axboe@...nel.dk
Cc:     dbueso@...e.de, hch@...radead.org, linux-block@...r.kernel.org,
        linux-kernel@...r.kernel.org, neilb@...e.de
Subject: Re: [PATCH] drivers/block: Goodbye BLK_DEV_UMEM

I'm also Ccing Neil, who is one of the authors.

On Tue, 23 Mar 2021, Bueso wrote:

>This removes the driver on the premise that it has been unused for a long
>time. This is a better approach compared to changing untestable code nobody
>cares about in the first place. Similarly, the umem.com website now shows a
>mere Godaddy parking add.
>
>Suggested-by: Christoph Hellwig <hch@...radead.org>
>Signed-off-by: Davidlohr Bueso <dbueso@...e.de>
>---
> arch/mips/configs/malta_defconfig       |    1 -
> arch/mips/configs/malta_kvm_defconfig   |    1 -
> arch/mips/configs/maltaup_xpa_defconfig |    1 -
> drivers/block/Kconfig                   |   17 -
> drivers/block/Makefile                  |    1 -
> drivers/block/umem.c                    | 1130 -----------------------
> drivers/block/umem.h                    |  132 ---
> 7 files changed, 1283 deletions(-)
> delete mode 100644 drivers/block/umem.c
> delete mode 100644 drivers/block/umem.h
>
>diff --git a/arch/mips/configs/malta_defconfig b/arch/mips/configs/malta_defconfig
>index 211bd3d6e6cb..9cb2cf2595e0 100644
>--- a/arch/mips/configs/malta_defconfig
>+++ b/arch/mips/configs/malta_defconfig
>@@ -227,7 +227,6 @@ CONFIG_MTD_PHYSMAP_OF=y
> CONFIG_MTD_UBI=m
> CONFIG_MTD_UBI_GLUEBI=m
> CONFIG_BLK_DEV_FD=m
>-CONFIG_BLK_DEV_UMEM=m
> CONFIG_BLK_DEV_LOOP=m
> CONFIG_BLK_DEV_CRYPTOLOOP=m
> CONFIG_BLK_DEV_NBD=m
>diff --git a/arch/mips/configs/malta_kvm_defconfig b/arch/mips/configs/malta_kvm_defconfig
>index 62b1969b4f55..ab8d1df0f255 100644
>--- a/arch/mips/configs/malta_kvm_defconfig
>+++ b/arch/mips/configs/malta_kvm_defconfig
>@@ -232,7 +232,6 @@ CONFIG_MTD_PHYSMAP_OF=y
> CONFIG_MTD_UBI=m
> CONFIG_MTD_UBI_GLUEBI=m
> CONFIG_BLK_DEV_FD=m
>-CONFIG_BLK_DEV_UMEM=m
> CONFIG_BLK_DEV_LOOP=m
> CONFIG_BLK_DEV_CRYPTOLOOP=m
> CONFIG_BLK_DEV_NBD=m
>diff --git a/arch/mips/configs/maltaup_xpa_defconfig b/arch/mips/configs/maltaup_xpa_defconfig
>index 636311d67a53..c93e5a39c215 100644
>--- a/arch/mips/configs/maltaup_xpa_defconfig
>+++ b/arch/mips/configs/maltaup_xpa_defconfig
>@@ -230,7 +230,6 @@ CONFIG_MTD_PHYSMAP_OF=y
> CONFIG_MTD_UBI=m
> CONFIG_MTD_UBI_GLUEBI=m
> CONFIG_BLK_DEV_FD=m
>-CONFIG_BLK_DEV_UMEM=m
> CONFIG_BLK_DEV_LOOP=m
> CONFIG_BLK_DEV_CRYPTOLOOP=m
> CONFIG_BLK_DEV_NBD=m
>diff --git a/drivers/block/Kconfig b/drivers/block/Kconfig
>index fd236158f32d..56e7b8450120 100644
>--- a/drivers/block/Kconfig
>+++ b/drivers/block/Kconfig
>@@ -121,23 +121,6 @@ source "drivers/block/mtip32xx/Kconfig"
>
> source "drivers/block/zram/Kconfig"
>
>-config BLK_DEV_UMEM
>-	tristate "Micro Memory MM5415 Battery Backed RAM support"
>-	depends on PCI
>-	help
>-	  Saying Y here will include support for the MM5415 family of
>-	  battery backed (Non-volatile) RAM cards.
>-	  <http://www.umem.com/>
>-
>-	  The cards appear as block devices that can be partitioned into
>-	  as many as 15 partitions.
>-
>-	  To compile this driver as a module, choose M here: the
>-	  module will be called umem.
>-
>-	  The umem driver has not yet been allocated a MAJOR number, so
>-	  one is chosen dynamically.
>-
> config BLK_DEV_UBD
> 	bool "Virtual block device"
> 	depends on UML
>diff --git a/drivers/block/Makefile b/drivers/block/Makefile
>index e3e3f1c79a82..9878eb3dbfd5 100644
>--- a/drivers/block/Makefile
>+++ b/drivers/block/Makefile
>@@ -24,7 +24,6 @@ obj-$(CONFIG_XILINX_SYSACE)	+= xsysace.o
> obj-$(CONFIG_CDROM_PKTCDVD)	+= pktcdvd.o
> obj-$(CONFIG_SUNVDC)		+= sunvdc.o
>
>-obj-$(CONFIG_BLK_DEV_UMEM)	+= umem.o
> obj-$(CONFIG_BLK_DEV_NBD)	+= nbd.o
> obj-$(CONFIG_BLK_DEV_CRYPTOLOOP) += cryptoloop.o
> obj-$(CONFIG_VIRTIO_BLK)	+= virtio_blk.o
>diff --git a/drivers/block/umem.c b/drivers/block/umem.c
>deleted file mode 100644
>index 664280f23bee..000000000000
>--- a/drivers/block/umem.c
>+++ /dev/null
>@@ -1,1130 +0,0 @@
>-// SPDX-License-Identifier: GPL-2.0-only
>-/*
>- * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
>- *
>- * (C) 2001 San Mehat <nettwerk@...inux.com>
>- * (C) 2001 Johannes Erdfelt <jerdfelt@...inux.com>
>- * (C) 2001 NeilBrown <neilb@....unsw.edu.au>
>- *
>- * This driver for the Micro Memory PCI Memory Module with Battery Backup
>- * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
>- *
>- * This driver provides a standard block device interface for Micro Memory(tm)
>- * PCI based RAM boards.
>- * 10/05/01: Phap Nguyen - Rebuilt the driver
>- * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
>- * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
>- *                       - use stand disk partitioning (so fdisk works).
>- * 08nov2001:NeilBrown	 - change driver name from "mm" to "umem"
>- *			 - incorporate into main kernel
>- * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
>- *			 - use spin_lock_bh instead of _irq
>- *			 - Never block on make_request.  queue
>- *			   bh's instead.
>- *			 - unregister umem from devfs at mod unload
>- *			 - Change version to 2.3
>- * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
>- * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
>- * 15May2002:NeilBrown   - convert to bio for 2.5
>- * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
>- *			 - a sequence of writes that cover the card, and
>- *			 - set initialised bit then.
>- */
>-
>-#undef DEBUG	/* #define DEBUG if you want debugging info (pr_debug) */
>-#include <linux/fs.h>
>-#include <linux/bio.h>
>-#include <linux/kernel.h>
>-#include <linux/mm.h>
>-#include <linux/mman.h>
>-#include <linux/gfp.h>
>-#include <linux/ioctl.h>
>-#include <linux/module.h>
>-#include <linux/init.h>
>-#include <linux/interrupt.h>
>-#include <linux/timer.h>
>-#include <linux/pci.h>
>-#include <linux/dma-mapping.h>
>-
>-#include <linux/fcntl.h>        /* O_ACCMODE */
>-#include <linux/hdreg.h>  /* HDIO_GETGEO */
>-
>-#include "umem.h"
>-
>-#include <linux/uaccess.h>
>-#include <asm/io.h>
>-
>-#define MM_MAXCARDS 4
>-#define MM_RAHEAD 2      /* two sectors */
>-#define MM_BLKSIZE 1024  /* 1k blocks */
>-#define MM_HARDSECT 512  /* 512-byte hardware sectors */
>-#define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
>-
>-/*
>- * Version Information
>- */
>-
>-#define DRIVER_NAME	"umem"
>-#define DRIVER_VERSION	"v2.3"
>-#define DRIVER_AUTHOR	"San Mehat, Johannes Erdfelt, NeilBrown"
>-#define DRIVER_DESC	"Micro Memory(tm) PCI memory board block driver"
>-
>-static int debug;
>-/* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
>-#define HW_TRACE(x)
>-
>-#define DEBUG_LED_ON_TRANSFER	0x01
>-#define DEBUG_BATTERY_POLLING	0x02
>-
>-module_param(debug, int, 0644);
>-MODULE_PARM_DESC(debug, "Debug bitmask");
>-
>-static int pci_read_cmd = 0x0C;		/* Read Multiple */
>-module_param(pci_read_cmd, int, 0);
>-MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
>-
>-static int pci_write_cmd = 0x0F;	/* Write and Invalidate */
>-module_param(pci_write_cmd, int, 0);
>-MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
>-
>-static int pci_cmds;
>-
>-static int major_nr;
>-
>-#include <linux/blkdev.h>
>-#include <linux/blkpg.h>
>-
>-struct cardinfo {
>-	struct pci_dev	*dev;
>-
>-	unsigned char	__iomem *csr_remap;
>-	unsigned int	mm_size;  /* size in kbytes */
>-
>-	unsigned int	init_size; /* initial segment, in sectors,
>-				    * that we know to
>-				    * have been written
>-				    */
>-	struct bio	*bio, *currentbio, **biotail;
>-	struct bvec_iter current_iter;
>-
>-	struct request_queue *queue;
>-
>-	struct mm_page {
>-		dma_addr_t		page_dma;
>-		struct mm_dma_desc	*desc;
>-		int	 		cnt, headcnt;
>-		struct bio		*bio, **biotail;
>-		struct bvec_iter	iter;
>-	} mm_pages[2];
>-#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
>-
>-	int  Active, Ready;
>-
>-	struct tasklet_struct	tasklet;
>-	unsigned int dma_status;
>-
>-	struct {
>-		int		good;
>-		int		warned;
>-		unsigned long	last_change;
>-	} battery[2];
>-
>-	spinlock_t 	lock;
>-	int		check_batteries;
>-
>-	int		flags;
>-};
>-
>-static struct cardinfo cards[MM_MAXCARDS];
>-static struct timer_list battery_timer;
>-
>-static int num_cards;
>-
>-static struct gendisk *mm_gendisk[MM_MAXCARDS];
>-
>-static void check_batteries(struct cardinfo *card);
>-
>-static int get_userbit(struct cardinfo *card, int bit)
>-{
>-	unsigned char led;
>-
>-	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
>-	return led & bit;
>-}
>-
>-static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
>-{
>-	unsigned char led;
>-
>-	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
>-	if (state)
>-		led |= bit;
>-	else
>-		led &= ~bit;
>-	writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
>-
>-	return 0;
>-}
>-
>-/*
>- * NOTE: For the power LED, use the LED_POWER_* macros since they differ
>- */
>-static void set_led(struct cardinfo *card, int shift, unsigned char state)
>-{
>-	unsigned char led;
>-
>-	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
>-	if (state == LED_FLIP)
>-		led ^= (1<<shift);
>-	else {
>-		led &= ~(0x03 << shift);
>-		led |= (state << shift);
>-	}
>-	writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
>-
>-}
>-
>-#ifdef MM_DIAG
>-static void dump_regs(struct cardinfo *card)
>-{
>-	unsigned char *p;
>-	int i, i1;
>-
>-	p = card->csr_remap;
>-	for (i = 0; i < 8; i++) {
>-		printk(KERN_DEBUG "%p   ", p);
>-
>-		for (i1 = 0; i1 < 16; i1++)
>-			printk("%02x ", *p++);
>-
>-		printk("\n");
>-	}
>-}
>-#endif
>-
>-static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
>-{
>-	dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
>-	if (dmastat & DMASCR_ANY_ERR)
>-		printk(KERN_CONT "ANY_ERR ");
>-	if (dmastat & DMASCR_MBE_ERR)
>-		printk(KERN_CONT "MBE_ERR ");
>-	if (dmastat & DMASCR_PARITY_ERR_REP)
>-		printk(KERN_CONT "PARITY_ERR_REP ");
>-	if (dmastat & DMASCR_PARITY_ERR_DET)
>-		printk(KERN_CONT "PARITY_ERR_DET ");
>-	if (dmastat & DMASCR_SYSTEM_ERR_SIG)
>-		printk(KERN_CONT "SYSTEM_ERR_SIG ");
>-	if (dmastat & DMASCR_TARGET_ABT)
>-		printk(KERN_CONT "TARGET_ABT ");
>-	if (dmastat & DMASCR_MASTER_ABT)
>-		printk(KERN_CONT "MASTER_ABT ");
>-	if (dmastat & DMASCR_CHAIN_COMPLETE)
>-		printk(KERN_CONT "CHAIN_COMPLETE ");
>-	if (dmastat & DMASCR_DMA_COMPLETE)
>-		printk(KERN_CONT "DMA_COMPLETE ");
>-	printk("\n");
>-}
>-
>-/*
>- * Theory of request handling
>- *
>- * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
>- * We have two pages of mm_dma_desc, holding about 64 descriptors
>- * each.  These are allocated at init time.
>- * One page is "Ready" and is either full, or can have request added.
>- * The other page might be "Active", which DMA is happening on it.
>- *
>- * Whenever IO on the active page completes, the Ready page is activated
>- * and the ex-Active page is clean out and made Ready.
>- * Otherwise the Ready page is only activated when it becomes full.
>- *
>- * If a request arrives while both pages a full, it is queued, and b_rdev is
>- * overloaded to record whether it was a read or a write.
>- *
>- * The interrupt handler only polls the device to clear the interrupt.
>- * The processing of the result is done in a tasklet.
>- */
>-
>-static void mm_start_io(struct cardinfo *card)
>-{
>-	/* we have the lock, we know there is
>-	 * no IO active, and we know that card->Active
>-	 * is set
>-	 */
>-	struct mm_dma_desc *desc;
>-	struct mm_page *page;
>-	int offset;
>-
>-	/* make the last descriptor end the chain */
>-	page = &card->mm_pages[card->Active];
>-	pr_debug("start_io: %d %d->%d\n",
>-		card->Active, page->headcnt, page->cnt - 1);
>-	desc = &page->desc[page->cnt-1];
>-
>-	desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
>-	desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
>-	desc->sem_control_bits = desc->control_bits;
>-
>-
>-	if (debug & DEBUG_LED_ON_TRANSFER)
>-		set_led(card, LED_REMOVE, LED_ON);
>-
>-	desc = &page->desc[page->headcnt];
>-	writel(0, card->csr_remap + DMA_PCI_ADDR);
>-	writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
>-
>-	writel(0, card->csr_remap + DMA_LOCAL_ADDR);
>-	writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
>-
>-	writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
>-	writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
>-
>-	writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
>-	writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
>-
>-	offset = ((char *)desc) - ((char *)page->desc);
>-	writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
>-	       card->csr_remap + DMA_DESCRIPTOR_ADDR);
>-	/* Force the value to u64 before shifting otherwise >> 32 is undefined C
>-	 * and on some ports will do nothing ! */
>-	writel(cpu_to_le32(((u64)page->page_dma)>>32),
>-	       card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
>-
>-	/* Go, go, go */
>-	writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
>-	       card->csr_remap + DMA_STATUS_CTRL);
>-}
>-
>-static int add_bio(struct cardinfo *card);
>-
>-static void activate(struct cardinfo *card)
>-{
>-	/* if No page is Active, and Ready is
>-	 * not empty, then switch Ready page
>-	 * to active and start IO.
>-	 * Then add any bh's that are available to Ready
>-	 */
>-
>-	do {
>-		while (add_bio(card))
>-			;
>-
>-		if (card->Active == -1 &&
>-		    card->mm_pages[card->Ready].cnt > 0) {
>-			card->Active = card->Ready;
>-			card->Ready = 1-card->Ready;
>-			mm_start_io(card);
>-		}
>-
>-	} while (card->Active == -1 && add_bio(card));
>-}
>-
>-static inline void reset_page(struct mm_page *page)
>-{
>-	page->cnt = 0;
>-	page->headcnt = 0;
>-	page->bio = NULL;
>-	page->biotail = &page->bio;
>-}
>-
>-/*
>- * If there is room on Ready page, take
>- * one bh off list and add it.
>- * return 1 if there was room, else 0.
>- */
>-static int add_bio(struct cardinfo *card)
>-{
>-	struct mm_page *p;
>-	struct mm_dma_desc *desc;
>-	dma_addr_t dma_handle;
>-	int offset;
>-	struct bio *bio;
>-	struct bio_vec vec;
>-
>-	bio = card->currentbio;
>-	if (!bio && card->bio) {
>-		card->currentbio = card->bio;
>-		card->current_iter = card->bio->bi_iter;
>-		card->bio = card->bio->bi_next;
>-		if (card->bio == NULL)
>-			card->biotail = &card->bio;
>-		card->currentbio->bi_next = NULL;
>-		return 1;
>-	}
>-	if (!bio)
>-		return 0;
>-
>-	if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
>-		return 0;
>-
>-	vec = bio_iter_iovec(bio, card->current_iter);
>-
>-	dma_handle = dma_map_page(&card->dev->dev,
>-				  vec.bv_page,
>-				  vec.bv_offset,
>-				  vec.bv_len,
>-				  bio_op(bio) == REQ_OP_READ ?
>-				  DMA_FROM_DEVICE : DMA_TO_DEVICE);
>-
>-	p = &card->mm_pages[card->Ready];
>-	desc = &p->desc[p->cnt];
>-	p->cnt++;
>-	if (p->bio == NULL)
>-		p->iter = card->current_iter;
>-	if ((p->biotail) != &bio->bi_next) {
>-		*(p->biotail) = bio;
>-		p->biotail = &(bio->bi_next);
>-		bio->bi_next = NULL;
>-	}
>-
>-	desc->data_dma_handle = dma_handle;
>-
>-	desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
>-	desc->local_addr = cpu_to_le64(card->current_iter.bi_sector << 9);
>-	desc->transfer_size = cpu_to_le32(vec.bv_len);
>-	offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
>-	desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
>-	desc->zero1 = desc->zero2 = 0;
>-	offset = (((char *)(desc+1)) - ((char *)p->desc));
>-	desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
>-	desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
>-					 DMASCR_PARITY_INT_EN|
>-					 DMASCR_CHAIN_EN |
>-					 DMASCR_SEM_EN |
>-					 pci_cmds);
>-	if (bio_op(bio) == REQ_OP_WRITE)
>-		desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
>-	desc->sem_control_bits = desc->control_bits;
>-
>-
>-	bio_advance_iter(bio, &card->current_iter, vec.bv_len);
>-	if (!card->current_iter.bi_size)
>-		card->currentbio = NULL;
>-
>-	return 1;
>-}
>-
>-static void process_page(unsigned long data)
>-{
>-	/* check if any of the requests in the page are DMA_COMPLETE,
>-	 * and deal with them appropriately.
>-	 * If we find a descriptor without DMA_COMPLETE in the semaphore, then
>-	 * dma must have hit an error on that descriptor, so use dma_status
>-	 * instead and assume that all following descriptors must be re-tried.
>-	 */
>-	struct mm_page *page;
>-	struct bio *return_bio = NULL;
>-	struct cardinfo *card = (struct cardinfo *)data;
>-	unsigned int dma_status = card->dma_status;
>-
>-	spin_lock(&card->lock);
>-	if (card->Active < 0)
>-		goto out_unlock;
>-	page = &card->mm_pages[card->Active];
>-
>-	while (page->headcnt < page->cnt) {
>-		struct bio *bio = page->bio;
>-		struct mm_dma_desc *desc = &page->desc[page->headcnt];
>-		int control = le32_to_cpu(desc->sem_control_bits);
>-		int last = 0;
>-		struct bio_vec vec;
>-
>-		if (!(control & DMASCR_DMA_COMPLETE)) {
>-			control = dma_status;
>-			last = 1;
>-		}
>-
>-		page->headcnt++;
>-		vec = bio_iter_iovec(bio, page->iter);
>-		bio_advance_iter(bio, &page->iter, vec.bv_len);
>-
>-		if (!page->iter.bi_size) {
>-			page->bio = bio->bi_next;
>-			if (page->bio)
>-				page->iter = page->bio->bi_iter;
>-		}
>-
>-		dma_unmap_page(&card->dev->dev, desc->data_dma_handle,
>-			       vec.bv_len,
>-				 (control & DMASCR_TRANSFER_READ) ?
>-				DMA_TO_DEVICE : DMA_FROM_DEVICE);
>-		if (control & DMASCR_HARD_ERROR) {
>-			/* error */
>-			bio->bi_status = BLK_STS_IOERR;
>-			dev_printk(KERN_WARNING, &card->dev->dev,
>-				"I/O error on sector %d/%d\n",
>-				le32_to_cpu(desc->local_addr)>>9,
>-				le32_to_cpu(desc->transfer_size));
>-			dump_dmastat(card, control);
>-		} else if (op_is_write(bio_op(bio)) &&
>-			   le32_to_cpu(desc->local_addr) >> 9 ==
>-				card->init_size) {
>-			card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
>-			if (card->init_size >> 1 >= card->mm_size) {
>-				dev_printk(KERN_INFO, &card->dev->dev,
>-					"memory now initialised\n");
>-				set_userbit(card, MEMORY_INITIALIZED, 1);
>-			}
>-		}
>-		if (bio != page->bio) {
>-			bio->bi_next = return_bio;
>-			return_bio = bio;
>-		}
>-
>-		if (last)
>-			break;
>-	}
>-
>-	if (debug & DEBUG_LED_ON_TRANSFER)
>-		set_led(card, LED_REMOVE, LED_OFF);
>-
>-	if (card->check_batteries) {
>-		card->check_batteries = 0;
>-		check_batteries(card);
>-	}
>-	if (page->headcnt >= page->cnt) {
>-		reset_page(page);
>-		card->Active = -1;
>-		activate(card);
>-	} else {
>-		/* haven't finished with this one yet */
>-		pr_debug("do some more\n");
>-		mm_start_io(card);
>-	}
>- out_unlock:
>-	spin_unlock(&card->lock);
>-
>-	while (return_bio) {
>-		struct bio *bio = return_bio;
>-
>-		return_bio = bio->bi_next;
>-		bio->bi_next = NULL;
>-		bio_endio(bio);
>-	}
>-}
>-
>-static void mm_unplug(struct blk_plug_cb *cb, bool from_schedule)
>-{
>-	struct cardinfo *card = cb->data;
>-
>-	spin_lock_irq(&card->lock);
>-	activate(card);
>-	spin_unlock_irq(&card->lock);
>-	kfree(cb);
>-}
>-
>-static int mm_check_plugged(struct cardinfo *card)
>-{
>-	return !!blk_check_plugged(mm_unplug, card, sizeof(struct blk_plug_cb));
>-}
>-
>-static blk_qc_t mm_submit_bio(struct bio *bio)
>-{
>-	struct cardinfo *card = bio->bi_bdev->bd_disk->private_data;
>-
>-	pr_debug("mm_make_request %llu %u\n",
>-		 (unsigned long long)bio->bi_iter.bi_sector,
>-		 bio->bi_iter.bi_size);
>-
>-	blk_queue_split(&bio);
>-
>-	spin_lock_irq(&card->lock);
>-	*card->biotail = bio;
>-	bio->bi_next = NULL;
>-	card->biotail = &bio->bi_next;
>-	if (op_is_sync(bio->bi_opf) || !mm_check_plugged(card))
>-		activate(card);
>-	spin_unlock_irq(&card->lock);
>-
>-	return BLK_QC_T_NONE;
>-}
>-
>-static irqreturn_t mm_interrupt(int irq, void *__card)
>-{
>-	struct cardinfo *card = (struct cardinfo *) __card;
>-	unsigned int dma_status;
>-	unsigned short cfg_status;
>-
>-HW_TRACE(0x30);
>-
>-	dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
>-
>-	if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
>-		/* interrupt wasn't for me ... */
>-		return IRQ_NONE;
>-	}
>-
>-	/* clear COMPLETION interrupts */
>-	if (card->flags & UM_FLAG_NO_BYTE_STATUS)
>-		writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
>-		       card->csr_remap + DMA_STATUS_CTRL);
>-	else
>-		writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
>-		       card->csr_remap + DMA_STATUS_CTRL + 2);
>-
>-	/* log errors and clear interrupt status */
>-	if (dma_status & DMASCR_ANY_ERR) {
>-		unsigned int	data_log1, data_log2;
>-		unsigned int	addr_log1, addr_log2;
>-		unsigned char	stat, count, syndrome, check;
>-
>-		stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
>-
>-		data_log1 = le32_to_cpu(readl(card->csr_remap +
>-						ERROR_DATA_LOG));
>-		data_log2 = le32_to_cpu(readl(card->csr_remap +
>-						ERROR_DATA_LOG + 4));
>-		addr_log1 = le32_to_cpu(readl(card->csr_remap +
>-						ERROR_ADDR_LOG));
>-		addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
>-
>-		count = readb(card->csr_remap + ERROR_COUNT);
>-		syndrome = readb(card->csr_remap + ERROR_SYNDROME);
>-		check = readb(card->csr_remap + ERROR_CHECK);
>-
>-		dump_dmastat(card, dma_status);
>-
>-		if (stat & 0x01)
>-			dev_printk(KERN_ERR, &card->dev->dev,
>-				"Memory access error detected (err count %d)\n",
>-				count);
>-		if (stat & 0x02)
>-			dev_printk(KERN_ERR, &card->dev->dev,
>-				"Multi-bit EDC error\n");
>-
>-		dev_printk(KERN_ERR, &card->dev->dev,
>-			"Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
>-			addr_log2, addr_log1, data_log2, data_log1);
>-		dev_printk(KERN_ERR, &card->dev->dev,
>-			"Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
>-			check, syndrome);
>-
>-		writeb(0, card->csr_remap + ERROR_COUNT);
>-	}
>-
>-	if (dma_status & DMASCR_PARITY_ERR_REP) {
>-		dev_printk(KERN_ERR, &card->dev->dev,
>-			"PARITY ERROR REPORTED\n");
>-		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
>-		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
>-	}
>-
>-	if (dma_status & DMASCR_PARITY_ERR_DET) {
>-		dev_printk(KERN_ERR, &card->dev->dev,
>-			"PARITY ERROR DETECTED\n");
>-		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
>-		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
>-	}
>-
>-	if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
>-		dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
>-		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
>-		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
>-	}
>-
>-	if (dma_status & DMASCR_TARGET_ABT) {
>-		dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
>-		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
>-		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
>-	}
>-
>-	if (dma_status & DMASCR_MASTER_ABT) {
>-		dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
>-		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
>-		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
>-	}
>-
>-	/* and process the DMA descriptors */
>-	card->dma_status = dma_status;
>-	tasklet_schedule(&card->tasklet);
>-
>-HW_TRACE(0x36);
>-
>-	return IRQ_HANDLED;
>-}
>-
>-/*
>- * If both batteries are good, no LED
>- * If either battery has been warned, solid LED
>- * If both batteries are bad, flash the LED quickly
>- * If either battery is bad, flash the LED semi quickly
>- */
>-static void set_fault_to_battery_status(struct cardinfo *card)
>-{
>-	if (card->battery[0].good && card->battery[1].good)
>-		set_led(card, LED_FAULT, LED_OFF);
>-	else if (card->battery[0].warned || card->battery[1].warned)
>-		set_led(card, LED_FAULT, LED_ON);
>-	else if (!card->battery[0].good && !card->battery[1].good)
>-		set_led(card, LED_FAULT, LED_FLASH_7_0);
>-	else
>-		set_led(card, LED_FAULT, LED_FLASH_3_5);
>-}
>-
>-static void init_battery_timer(void);
>-
>-static int check_battery(struct cardinfo *card, int battery, int status)
>-{
>-	if (status != card->battery[battery].good) {
>-		card->battery[battery].good = !card->battery[battery].good;
>-		card->battery[battery].last_change = jiffies;
>-
>-		if (card->battery[battery].good) {
>-			dev_printk(KERN_ERR, &card->dev->dev,
>-				"Battery %d now good\n", battery + 1);
>-			card->battery[battery].warned = 0;
>-		} else
>-			dev_printk(KERN_ERR, &card->dev->dev,
>-				"Battery %d now FAILED\n", battery + 1);
>-
>-		return 1;
>-	} else if (!card->battery[battery].good &&
>-		   !card->battery[battery].warned &&
>-		   time_after_eq(jiffies, card->battery[battery].last_change +
>-				 (HZ * 60 * 60 * 5))) {
>-		dev_printk(KERN_ERR, &card->dev->dev,
>-			"Battery %d still FAILED after 5 hours\n", battery + 1);
>-		card->battery[battery].warned = 1;
>-
>-		return 1;
>-	}
>-
>-	return 0;
>-}
>-
>-static void check_batteries(struct cardinfo *card)
>-{
>-	/* NOTE: this must *never* be called while the card
>-	 * is doing (bus-to-card) DMA, or you will need the
>-	 * reset switch
>-	 */
>-	unsigned char status;
>-	int ret1, ret2;
>-
>-	status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
>-	if (debug & DEBUG_BATTERY_POLLING)
>-		dev_printk(KERN_DEBUG, &card->dev->dev,
>-			"checking battery status, 1 = %s, 2 = %s\n",
>-		       (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
>-		       (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
>-
>-	ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
>-	ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
>-
>-	if (ret1 || ret2)
>-		set_fault_to_battery_status(card);
>-}
>-
>-static void check_all_batteries(struct timer_list *unused)
>-{
>-	int i;
>-
>-	for (i = 0; i < num_cards; i++)
>-		if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
>-			struct cardinfo *card = &cards[i];
>-			spin_lock_bh(&card->lock);
>-			if (card->Active >= 0)
>-				card->check_batteries = 1;
>-			else
>-				check_batteries(card);
>-			spin_unlock_bh(&card->lock);
>-		}
>-
>-	init_battery_timer();
>-}
>-
>-static void init_battery_timer(void)
>-{
>-	timer_setup(&battery_timer, check_all_batteries, 0);
>-	battery_timer.expires = jiffies + (HZ * 60);
>-	add_timer(&battery_timer);
>-}
>-
>-static void del_battery_timer(void)
>-{
>-	del_timer(&battery_timer);
>-}
>-
>-/*
>- * Note no locks taken out here.  In a worst case scenario, we could drop
>- * a chunk of system memory.  But that should never happen, since validation
>- * happens at open or mount time, when locks are held.
>- *
>- *	That's crap, since doing that while some partitions are opened
>- * or mounted will give you really nasty results.
>- */
>-static int mm_revalidate(struct gendisk *disk)
>-{
>-	struct cardinfo *card = disk->private_data;
>-	set_capacity(disk, card->mm_size << 1);
>-	return 0;
>-}
>-
>-static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
>-{
>-	struct cardinfo *card = bdev->bd_disk->private_data;
>-	int size = card->mm_size * (1024 / MM_HARDSECT);
>-
>-	/*
>-	 * get geometry: we have to fake one...  trim the size to a
>-	 * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
>-	 * whatever cylinders.
>-	 */
>-	geo->heads     = 64;
>-	geo->sectors   = 32;
>-	geo->cylinders = size / (geo->heads * geo->sectors);
>-	return 0;
>-}
>-
>-static const struct block_device_operations mm_fops = {
>-	.owner		= THIS_MODULE,
>-	.submit_bio	= mm_submit_bio,
>-	.getgeo		= mm_getgeo,
>-	.revalidate_disk = mm_revalidate,
>-};
>-
>-static int mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
>-{
>-	int ret;
>-	struct cardinfo *card = &cards[num_cards];
>-	unsigned char	mem_present;
>-	unsigned char	batt_status;
>-	unsigned int	saved_bar, data;
>-	unsigned long	csr_base;
>-	unsigned long	csr_len;
>-	int		magic_number;
>-	static int	printed_version;
>-
>-	if (!printed_version++)
>-		printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
>-
>-	ret = pci_enable_device(dev);
>-	if (ret)
>-		return ret;
>-
>-	pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
>-	pci_set_master(dev);
>-
>-	card->dev         = dev;
>-
>-	csr_base = pci_resource_start(dev, 0);
>-	csr_len  = pci_resource_len(dev, 0);
>-	if (!csr_base || !csr_len)
>-		return -ENODEV;
>-
>-	dev_printk(KERN_INFO, &dev->dev,
>-	  "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
>-
>-	if (dma_set_mask(&dev->dev, DMA_BIT_MASK(64)) &&
>-	    dma_set_mask(&dev->dev, DMA_BIT_MASK(32))) {
>-		dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
>-		return  -ENOMEM;
>-	}
>-
>-	ret = pci_request_regions(dev, DRIVER_NAME);
>-	if (ret) {
>-		dev_printk(KERN_ERR, &card->dev->dev,
>-			"Unable to request memory region\n");
>-		goto failed_req_csr;
>-	}
>-
>-	card->csr_remap = ioremap(csr_base, csr_len);
>-	if (!card->csr_remap) {
>-		dev_printk(KERN_ERR, &card->dev->dev,
>-			"Unable to remap memory region\n");
>-		ret = -ENOMEM;
>-
>-		goto failed_remap_csr;
>-	}
>-
>-	dev_printk(KERN_INFO, &card->dev->dev,
>-		"CSR 0x%08lx -> 0x%p (0x%lx)\n",
>-	       csr_base, card->csr_remap, csr_len);
>-
>-	switch (card->dev->device) {
>-	case 0x5415:
>-		card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
>-		magic_number = 0x59;
>-		break;
>-
>-	case 0x5425:
>-		card->flags |= UM_FLAG_NO_BYTE_STATUS;
>-		magic_number = 0x5C;
>-		break;
>-
>-	case 0x6155:
>-		card->flags |= UM_FLAG_NO_BYTE_STATUS |
>-				UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
>-		magic_number = 0x99;
>-		break;
>-
>-	default:
>-		magic_number = 0x100;
>-		break;
>-	}
>-
>-	if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
>-		dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
>-		ret = -ENOMEM;
>-		goto failed_magic;
>-	}
>-
>-	card->mm_pages[0].desc = dma_alloc_coherent(&card->dev->dev,
>-			PAGE_SIZE * 2, &card->mm_pages[0].page_dma, GFP_KERNEL);
>-	card->mm_pages[1].desc = dma_alloc_coherent(&card->dev->dev,
>-			PAGE_SIZE * 2, &card->mm_pages[1].page_dma, GFP_KERNEL);
>-	if (card->mm_pages[0].desc == NULL ||
>-	    card->mm_pages[1].desc == NULL) {
>-		dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
>-		ret = -ENOMEM;
>-		goto failed_alloc;
>-	}
>-	reset_page(&card->mm_pages[0]);
>-	reset_page(&card->mm_pages[1]);
>-	card->Ready = 0;	/* page 0 is ready */
>-	card->Active = -1;	/* no page is active */
>-	card->bio = NULL;
>-	card->biotail = &card->bio;
>-	spin_lock_init(&card->lock);
>-
>-	card->queue = blk_alloc_queue(NUMA_NO_NODE);
>-	if (!card->queue) {
>-		ret = -ENOMEM;
>-		goto failed_alloc;
>-	}
>-
>-	tasklet_init(&card->tasklet, process_page, (unsigned long)card);
>-
>-	card->check_batteries = 0;
>-
>-	mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
>-	switch (mem_present) {
>-	case MEM_128_MB:
>-		card->mm_size = 1024 * 128;
>-		break;
>-	case MEM_256_MB:
>-		card->mm_size = 1024 * 256;
>-		break;
>-	case MEM_512_MB:
>-		card->mm_size = 1024 * 512;
>-		break;
>-	case MEM_1_GB:
>-		card->mm_size = 1024 * 1024;
>-		break;
>-	case MEM_2_GB:
>-		card->mm_size = 1024 * 2048;
>-		break;
>-	default:
>-		card->mm_size = 0;
>-		break;
>-	}
>-
>-	/* Clear the LED's we control */
>-	set_led(card, LED_REMOVE, LED_OFF);
>-	set_led(card, LED_FAULT, LED_OFF);
>-
>-	batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
>-
>-	card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
>-	card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
>-	card->battery[0].last_change = card->battery[1].last_change = jiffies;
>-
>-	if (card->flags & UM_FLAG_NO_BATT)
>-		dev_printk(KERN_INFO, &card->dev->dev,
>-			"Size %d KB\n", card->mm_size);
>-	else {
>-		dev_printk(KERN_INFO, &card->dev->dev,
>-			"Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
>-		       card->mm_size,
>-		       batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
>-		       card->battery[0].good ? "OK" : "FAILURE",
>-		       batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
>-		       card->battery[1].good ? "OK" : "FAILURE");
>-
>-		set_fault_to_battery_status(card);
>-	}
>-
>-	pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
>-	data = 0xffffffff;
>-	pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
>-	pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
>-	pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
>-	data &= 0xfffffff0;
>-	data = ~data;
>-	data += 1;
>-
>-	if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
>-			card)) {
>-		dev_printk(KERN_ERR, &card->dev->dev,
>-			"Unable to allocate IRQ\n");
>-		ret = -ENODEV;
>-		goto failed_req_irq;
>-	}
>-
>-	dev_printk(KERN_INFO, &card->dev->dev,
>-		"Window size %d bytes, IRQ %d\n", data, dev->irq);
>-
>-	pci_set_drvdata(dev, card);
>-
>-	if (pci_write_cmd != 0x0F) 	/* If not Memory Write & Invalidate */
>-		pci_write_cmd = 0x07;	/* then Memory Write command */
>-
>-	if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
>-		unsigned short cfg_command;
>-		pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
>-		cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
>-		pci_write_config_word(dev, PCI_COMMAND, cfg_command);
>-	}
>-	pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
>-
>-	num_cards++;
>-
>-	if (!get_userbit(card, MEMORY_INITIALIZED)) {
>-		dev_printk(KERN_INFO, &card->dev->dev,
>-		  "memory NOT initialized. Consider over-writing whole device.\n");
>-		card->init_size = 0;
>-	} else {
>-		dev_printk(KERN_INFO, &card->dev->dev,
>-			"memory already initialized\n");
>-		card->init_size = card->mm_size;
>-	}
>-
>-	/* Enable ECC */
>-	writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
>-
>-	return 0;
>-
>- failed_req_irq:
>- failed_alloc:
>-	if (card->mm_pages[0].desc)
>-		dma_free_coherent(&card->dev->dev, PAGE_SIZE * 2,
>-				  card->mm_pages[0].desc,
>-				  card->mm_pages[0].page_dma);
>-	if (card->mm_pages[1].desc)
>-		dma_free_coherent(&card->dev->dev, PAGE_SIZE * 2,
>-				  card->mm_pages[1].desc,
>-				  card->mm_pages[1].page_dma);
>- failed_magic:
>-	iounmap(card->csr_remap);
>- failed_remap_csr:
>-	pci_release_regions(dev);
>- failed_req_csr:
>-
>-	return ret;
>-}
>-
>-static void mm_pci_remove(struct pci_dev *dev)
>-{
>-	struct cardinfo *card = pci_get_drvdata(dev);
>-
>-	tasklet_kill(&card->tasklet);
>-	free_irq(dev->irq, card);
>-	iounmap(card->csr_remap);
>-
>-	if (card->mm_pages[0].desc)
>-		dma_free_coherent(&card->dev->dev, PAGE_SIZE * 2,
>-				    card->mm_pages[0].desc,
>-				    card->mm_pages[0].page_dma);
>-	if (card->mm_pages[1].desc)
>-		dma_free_coherent(&card->dev->dev, PAGE_SIZE * 2,
>-				    card->mm_pages[1].desc,
>-				    card->mm_pages[1].page_dma);
>-	blk_cleanup_queue(card->queue);
>-
>-	pci_release_regions(dev);
>-	pci_disable_device(dev);
>-}
>-
>-static const struct pci_device_id mm_pci_ids[] = {
>-    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
>-    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
>-    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
>-    {
>-	.vendor	=	0x8086,
>-	.device	=	0xB555,
>-	.subvendor =	0x1332,
>-	.subdevice =	0x5460,
>-	.class =	0x050000,
>-	.class_mask =	0,
>-    }, { /* end: all zeroes */ }
>-};
>-
>-MODULE_DEVICE_TABLE(pci, mm_pci_ids);
>-
>-static struct pci_driver mm_pci_driver = {
>-	.name		= DRIVER_NAME,
>-	.id_table	= mm_pci_ids,
>-	.probe		= mm_pci_probe,
>-	.remove		= mm_pci_remove,
>-};
>-
>-static int __init mm_init(void)
>-{
>-	int retval, i;
>-	int err;
>-
>-	retval = pci_register_driver(&mm_pci_driver);
>-	if (retval)
>-		return -ENOMEM;
>-
>-	err = major_nr = register_blkdev(0, DRIVER_NAME);
>-	if (err < 0) {
>-		pci_unregister_driver(&mm_pci_driver);
>-		return -EIO;
>-	}
>-
>-	for (i = 0; i < num_cards; i++) {
>-		mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
>-		if (!mm_gendisk[i])
>-			goto out;
>-	}
>-
>-	for (i = 0; i < num_cards; i++) {
>-		struct gendisk *disk = mm_gendisk[i];
>-		sprintf(disk->disk_name, "umem%c", 'a'+i);
>-		spin_lock_init(&cards[i].lock);
>-		disk->major = major_nr;
>-		disk->first_minor  = i << MM_SHIFT;
>-		disk->fops = &mm_fops;
>-		disk->private_data = &cards[i];
>-		disk->queue = cards[i].queue;
>-		set_capacity(disk, cards[i].mm_size << 1);
>-		add_disk(disk);
>-	}
>-
>-	init_battery_timer();
>-	printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
>-/* printk("mm_init: Done. 10-19-01 9:00\n"); */
>-	return 0;
>-
>-out:
>-	pci_unregister_driver(&mm_pci_driver);
>-	unregister_blkdev(major_nr, DRIVER_NAME);
>-	while (i--)
>-		put_disk(mm_gendisk[i]);
>-	return -ENOMEM;
>-}
>-
>-static void __exit mm_cleanup(void)
>-{
>-	int i;
>-
>-	del_battery_timer();
>-
>-	for (i = 0; i < num_cards ; i++) {
>-		del_gendisk(mm_gendisk[i]);
>-		put_disk(mm_gendisk[i]);
>-	}
>-
>-	pci_unregister_driver(&mm_pci_driver);
>-
>-	unregister_blkdev(major_nr, DRIVER_NAME);
>-}
>-
>-module_init(mm_init);
>-module_exit(mm_cleanup);
>-
>-MODULE_AUTHOR(DRIVER_AUTHOR);
>-MODULE_DESCRIPTION(DRIVER_DESC);
>-MODULE_LICENSE("GPL");
>diff --git a/drivers/block/umem.h b/drivers/block/umem.h
>deleted file mode 100644
>index 58384978ff05..000000000000
>--- a/drivers/block/umem.h
>+++ /dev/null
>@@ -1,132 +0,0 @@
>-/* SPDX-License-Identifier: GPL-2.0-only */
>-
>-/*
>- * This file contains defines for the
>- *   Micro Memory MM5415
>- * family PCI Memory Module with Battery Backup.
>- *
>- * Copyright Micro Memory INC 2001.  All rights reserved.
>- */
>-
>-#ifndef _DRIVERS_BLOCK_MM_H
>-#define _DRIVERS_BLOCK_MM_H
>-
>-
>-#define IRQ_TIMEOUT (1 * HZ)
>-
>-/* CSR register definition */
>-#define MEMCTRLSTATUS_MAGIC	0x00
>-#define  MM_MAGIC_VALUE		(unsigned char)0x59
>-
>-#define MEMCTRLSTATUS_BATTERY	0x04
>-#define  BATTERY_1_DISABLED	0x01
>-#define  BATTERY_1_FAILURE	0x02
>-#define  BATTERY_2_DISABLED	0x04
>-#define  BATTERY_2_FAILURE	0x08
>-
>-#define MEMCTRLSTATUS_MEMORY	0x07
>-#define  MEM_128_MB		0xfe
>-#define  MEM_256_MB		0xfc
>-#define  MEM_512_MB		0xf8
>-#define  MEM_1_GB		0xf0
>-#define  MEM_2_GB		0xe0
>-
>-#define MEMCTRLCMD_LEDCTRL	0x08
>-#define  LED_REMOVE		2
>-#define  LED_FAULT		4
>-#define  LED_POWER		6
>-#define	 LED_FLIP		255
>-#define  LED_OFF		0x00
>-#define  LED_ON			0x01
>-#define  LED_FLASH_3_5		0x02
>-#define  LED_FLASH_7_0		0x03
>-#define  LED_POWER_ON		0x00
>-#define  LED_POWER_OFF		0x01
>-#define  USER_BIT1		0x01
>-#define  USER_BIT2		0x02
>-
>-#define MEMORY_INITIALIZED	USER_BIT1
>-
>-#define MEMCTRLCMD_ERRCTRL	0x0C
>-#define  EDC_NONE_DEFAULT	0x00
>-#define  EDC_NONE		0x01
>-#define  EDC_STORE_READ		0x02
>-#define  EDC_STORE_CORRECT	0x03
>-
>-#define MEMCTRLCMD_ERRCNT	0x0D
>-#define MEMCTRLCMD_ERRSTATUS	0x0E
>-
>-#define ERROR_DATA_LOG		0x20
>-#define ERROR_ADDR_LOG		0x28
>-#define ERROR_COUNT		0x3D
>-#define ERROR_SYNDROME		0x3E
>-#define ERROR_CHECK		0x3F
>-
>-#define DMA_PCI_ADDR		0x40
>-#define DMA_LOCAL_ADDR		0x48
>-#define DMA_TRANSFER_SIZE	0x50
>-#define DMA_DESCRIPTOR_ADDR	0x58
>-#define DMA_SEMAPHORE_ADDR	0x60
>-#define DMA_STATUS_CTRL		0x68
>-#define  DMASCR_GO		0x00001
>-#define  DMASCR_TRANSFER_READ	0x00002
>-#define  DMASCR_CHAIN_EN	0x00004
>-#define  DMASCR_SEM_EN		0x00010
>-#define  DMASCR_DMA_COMP_EN	0x00020
>-#define  DMASCR_CHAIN_COMP_EN	0x00040
>-#define  DMASCR_ERR_INT_EN	0x00080
>-#define  DMASCR_PARITY_INT_EN	0x00100
>-#define  DMASCR_ANY_ERR		0x00800
>-#define  DMASCR_MBE_ERR		0x01000
>-#define  DMASCR_PARITY_ERR_REP	0x02000
>-#define  DMASCR_PARITY_ERR_DET	0x04000
>-#define  DMASCR_SYSTEM_ERR_SIG	0x08000
>-#define  DMASCR_TARGET_ABT	0x10000
>-#define  DMASCR_MASTER_ABT	0x20000
>-#define  DMASCR_DMA_COMPLETE	0x40000
>-#define  DMASCR_CHAIN_COMPLETE	0x80000
>-
>-/*
>-3.SOME PCs HAVE HOST BRIDGES WHICH APPARENTLY DO NOT CORRECTLY HANDLE
>-READ-LINE (0xE) OR READ-MULTIPLE (0xC) PCI COMMAND CODES DURING DMA
>-TRANSFERS. IN OTHER SYSTEMS THESE COMMAND CODES WILL CAUSE THE HOST BRIDGE
>-TO ALLOW LONGER BURSTS DURING DMA READ OPERATIONS. THE UPPER FOUR BITS
>-(31..28) OF THE DMA CSR HAVE BEEN MADE PROGRAMMABLE, SO THAT EITHER A 0x6,
>-AN 0xE OR A 0xC CAN BE WRITTEN TO THEM TO SET THE COMMAND CODE USED DURING
>-DMA READ OPERATIONS.
>-*/
>-#define        DMASCR_READ   0x60000000
>-#define        DMASCR_READLINE   0xE0000000
>-#define        DMASCR_READMULTI   0xC0000000
>-
>-
>-#define DMASCR_ERROR_MASK	(DMASCR_MASTER_ABT | DMASCR_TARGET_ABT | DMASCR_SYSTEM_ERR_SIG | DMASCR_PARITY_ERR_DET | DMASCR_MBE_ERR | DMASCR_ANY_ERR)
>-#define DMASCR_HARD_ERROR	(DMASCR_MASTER_ABT | DMASCR_TARGET_ABT | DMASCR_SYSTEM_ERR_SIG | DMASCR_PARITY_ERR_DET | DMASCR_MBE_ERR)
>-
>-#define WINDOWMAP_WINNUM	0x7B
>-
>-#define DMA_READ_FROM_HOST 0
>-#define DMA_WRITE_TO_HOST 1
>-
>-struct mm_dma_desc {
>-	__le64	pci_addr;
>-	__le64	local_addr;
>-	__le32	transfer_size;
>-	u32	zero1;
>-	__le64	next_desc_addr;
>-	__le64	sem_addr;
>-	__le32	control_bits;
>-	u32	zero2;
>-
>-	dma_addr_t data_dma_handle;
>-
>-	/* Copy of the bits */
>-	__le64	sem_control_bits;
>-} __attribute__((aligned(8)));
>-
>-/* bits for card->flags */
>-#define UM_FLAG_DMA_IN_REGS		1
>-#define UM_FLAG_NO_BYTE_STATUS		2
>-#define UM_FLAG_NO_BATTREG		4
>-#define	UM_FLAG_NO_BATT			8
>-#endif
>-- 
>2.26.2
>

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ