lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date:   Fri, 07 May 2021 02:16:03 +0300
From:   Nick Kossifidis <mick@....forth.gr>
To:     jejb@...ux.ibm.com
Cc:     David Hildenbrand <david@...hat.com>,
        Andrew Morton <akpm@...ux-foundation.org>,
        Mike Rapoport <rppt@...nel.org>,
        Alexander Viro <viro@...iv.linux.org.uk>,
        Andy Lutomirski <luto@...nel.org>,
        Arnd Bergmann <arnd@...db.de>, Borislav Petkov <bp@...en8.de>,
        Catalin Marinas <catalin.marinas@....com>,
        Christopher Lameter <cl@...ux.com>,
        Dan Williams <dan.j.williams@...el.com>,
        Dave Hansen <dave.hansen@...ux.intel.com>,
        Elena Reshetova <elena.reshetova@...el.com>,
        "H. Peter Anvin" <hpa@...or.com>, Ingo Molnar <mingo@...hat.com>,
        "Kirill A. Shutemov" <kirill@...temov.name>,
        Matthew Wilcox <willy@...radead.org>,
        Matthew Garrett <mjg59@...f.ucam.org>,
        Mark Rutland <mark.rutland@....com>,
        Michal Hocko <mhocko@...e.com>,
        Mike Rapoport <rppt@...ux.ibm.com>,
        Michael Kerrisk <mtk.manpages@...il.com>,
        Palmer Dabbelt <palmer@...belt.com>,
        Paul Walmsley <paul.walmsley@...ive.com>,
        Peter Zijlstra <peterz@...radead.org>,
        "Rafael J. Wysocki" <rjw@...ysocki.net>,
        Rick Edgecombe <rick.p.edgecombe@...el.com>,
        Roman Gushchin <guro@...com>,
        Shakeel Butt <shakeelb@...gle.com>,
        Shuah Khan <shuah@...nel.org>,
        Thomas Gleixner <tglx@...utronix.de>,
        Tycho Andersen <tycho@...ho.ws>, Will Deacon <will@...nel.org>,
        linux-api@...r.kernel.org, linux-arch@...r.kernel.org,
        linux-arm-kernel@...ts.infradead.org,
        linux-fsdevel@...r.kernel.org, linux-mm@...ck.org,
        linux-kernel@...r.kernel.org, linux-kselftest@...r.kernel.org,
        linux-nvdimm@...ts.01.org, linux-riscv@...ts.infradead.org,
        x86@...nel.org
Subject: Re: [PATCH v18 0/9] mm: introduce memfd_secret system call to create
 "secret" memory areas

Στις 2021-05-06 20:05, James Bottomley έγραψε:
> On Thu, 2021-05-06 at 18:45 +0200, David Hildenbrand wrote:
>> 
>> Also, there is a way to still read that memory when root by
>> 
>> 1. Having kdump active (which would often be the case, but maybe not
>> to dump user pages )
>> 2. Triggering a kernel crash (easy via proc as root)
>> 3. Waiting for the reboot after kump() created the dump and then
>> reading the content from disk.
> 
> Anything that can leave physical memory intact but boot to a kernel
> where the missing direct map entry is restored could theoretically
> extract the secret.  However, it's not exactly going to be a stealthy
> extraction ...
> 
>> Or, as an attacker, load a custom kexec() kernel and read memory
>> from the new environment. Of course, the latter two are advanced
>> mechanisms, but they are possible when root. We might be able to
>> mitigate, for example, by zeroing out secretmem pages before booting
>> into the kexec kernel, if we care :)
> 
> I think we could handle it by marking the region, yes, and a zero on
> shutdown might be useful ... it would prevent all warm reboot type
> attacks.
> 

I had similar concerns about recovering secrets with kdump, and 
considered cleaning up keyrings before jumping to the new kernel. The 
problem is we can't provide guarantees in that case, once the kernel has 
crashed and we are on our way to run crashkernel, we can't be sure we 
can reliably zero-out anything, the more code we add to that path the 
more risky it gets. However during reboot/normal kexec() we should do 
some cleanup, it makes sense and secretmem can indeed be useful in that 
case. Regarding loading custom kexec() kernels, we mitigate this with 
the kexec file-based API where we can verify the signature of the loaded 
kimage (assuming the system runs a kernel provided by a trusted 3rd 
party and we 've maintained a chain of trust since booting).

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ