lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date:   Fri, 7 May 2021 16:57:55 -0700
From:   Kees Cook <keescook@...omium.org>
To:     James Bottomley <jejb@...ux.ibm.com>
Cc:     Andrew Morton <akpm@...ux-foundation.org>,
        Mike Rapoport <rppt@...nel.org>,
        Alexander Viro <viro@...iv.linux.org.uk>,
        Andy Lutomirski <luto@...nel.org>,
        Arnd Bergmann <arnd@...db.de>, Borislav Petkov <bp@...en8.de>,
        Catalin Marinas <catalin.marinas@....com>,
        Christopher Lameter <cl@...ux.com>,
        Dan Williams <dan.j.williams@...el.com>,
        Dave Hansen <dave.hansen@...ux.intel.com>,
        David Hildenbrand <david@...hat.com>,
        Elena Reshetova <elena.reshetova@...el.com>,
        "H. Peter Anvin" <hpa@...or.com>, Ingo Molnar <mingo@...hat.com>,
        "Kirill A. Shutemov" <kirill@...temov.name>,
        Matthew Wilcox <willy@...radead.org>,
        Matthew Garrett <mjg59@...f.ucam.org>,
        Mark Rutland <mark.rutland@....com>,
        Michal Hocko <mhocko@...e.com>,
        Mike Rapoport <rppt@...ux.ibm.com>,
        Michael Kerrisk <mtk.manpages@...il.com>,
        Palmer Dabbelt <palmer@...belt.com>,
        Paul Walmsley <paul.walmsley@...ive.com>,
        Peter Zijlstra <peterz@...radead.org>,
        "Rafael J. Wysocki" <rjw@...ysocki.net>,
        Rick Edgecombe <rick.p.edgecombe@...el.com>,
        Roman Gushchin <guro@...com>,
        Shakeel Butt <shakeelb@...gle.com>,
        Shuah Khan <shuah@...nel.org>,
        Thomas Gleixner <tglx@...utronix.de>,
        Tycho Andersen <tycho@...ho.ws>, Will Deacon <will@...nel.org>,
        linux-api@...r.kernel.org, linux-arch@...r.kernel.org,
        linux-arm-kernel@...ts.infradead.org,
        linux-fsdevel@...r.kernel.org, linux-mm@...ck.org,
        linux-kernel@...r.kernel.org, linux-kselftest@...r.kernel.org,
        linux-nvdimm@...ts.01.org, linux-riscv@...ts.infradead.org
Subject: Re: [PATCH v18 0/9] mm: introduce memfd_secret system call to create
 "secret" memory areas

On Thu, May 06, 2021 at 11:47:47AM -0700, James Bottomley wrote:
> On Thu, 2021-05-06 at 10:33 -0700, Kees Cook wrote:
> > On Thu, May 06, 2021 at 08:26:41AM -0700, James Bottomley wrote:
> [...]
> > > > I think that a very complete description of the threats which
> > > > this feature addresses would be helpful.  
> > > 
> > > It's designed to protect against three different threats:
> > > 
> > >    1. Detection of user secret memory mismanagement
> > 
> > I would say "cross-process secret userspace memory exposures" (via a
> > number of common interfaces by blocking it at the GUP level).
> > 
> > >    2. significant protection against privilege escalation
> > 
> > I don't see how this series protects against privilege escalation.
> > (It protects against exfiltration.) Maybe you mean include this in
> > the first bullet point (i.e. "cross-process secret userspace memory
> > exposures, even in the face of privileged processes")?
> 
> It doesn't prevent privilege escalation from happening in the first
> place, but once the escalation has happened it protects against
> exfiltration by the newly minted root attacker.

So, after thinking a bit more about this, I don't think there is
protection here against privileged execution. This feature kind of helps
against cross-process read/write attempts, but it doesn't help with
sufficiently privileged (i.e. ptraced) execution, since we can just ask
the process itself to do the reading:

$ gdb ./memfd_secret
...
ready: 0x7ffff7ffb000
Breakpoint 1, ...
(gdb) compile code unsigned long addr = 0x7ffff7ffb000UL; printf("%016lx\n", *((unsigned long *)addr));
55555555555555555

And since process_vm_readv() requires PTRACE_ATTACH, there's very little
difference in effort between process_vm_readv() and the above.

So, what other paths through GUP exist that aren't covered by
PTRACE_ATTACH? And if none, then should this actually just be done by
setting the process undumpable? (This is already what things like gnupg
do.)

So, the user-space side of this doesn't seem to really help. The kernel
side protection is interesting for kernel read/write flaws, though, in
the sense that the process is likely not being attacked from "current",
so a kernel-side attack would need to either walk the page tables and
create new ones, or spawn a new userspace process to do the ptracing.

So, while I like the idea of this stuff, and I see how it provides
certain coverages, I'm curious to learn more about the threat model to
make sure it's actually providing meaningful hurdles to attacks.

-- 
Kees Cook

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ