[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <YMq/6VhXrYJoTVnj@yoga>
Date: Wed, 16 Jun 2021 22:22:17 -0500
From: Bjorn Andersson <bjorn.andersson@...aro.org>
To: Uwe Kleine-K?nig <u.kleine-koenig@...gutronix.de>
Cc: Andrzej Hajda <a.hajda@...sung.com>,
Neil Armstrong <narmstrong@...libre.com>,
Robert Foss <robert.foss@...aro.org>,
Laurent Pinchart <Laurent.pinchart@...asonboard.com>,
Jonas Karlman <jonas@...boo.se>,
Jernej Skrabec <jernej.skrabec@...il.com>,
David Airlie <airlied@...ux.ie>,
Daniel Vetter <daniel@...ll.ch>,
Thierry Reding <thierry.reding@...il.com>,
Lee Jones <lee.jones@...aro.org>,
Doug Anderson <dianders@...omium.org>,
dri-devel@...ts.freedesktop.org, linux-kernel@...r.kernel.org,
linux-pwm@...r.kernel.org
Subject: Re: [PATCH v2 2/2] drm/bridge: ti-sn65dsi86: Implement the pwm_chip
On Wed 16 Jun 02:56 CDT 2021, Uwe Kleine-K?nig wrote:
> Hello Bjorn,
>
> On Tue, Jun 15, 2021 at 06:18:28PM -0500, Bjorn Andersson wrote:
> > The SN65DSI86 provides the ability to supply a PWM signal on GPIO 4,
> > with the primary purpose of controlling the backlight of the attached
> > panel. Add an implementation that exposes this using the standard PWM
> > framework, to allow e.g. pwm-backlight to expose this to the user.
> >
> > Signed-off-by: Bjorn Andersson <bjorn.andersson@...aro.org>
> > ---
> >
> > Changes since v1:
> > - Rebased ontop of Doug's auxiliary_bus patches
> > - Reworked the math, per Uwe's request
> > - Added pwm_chip->get_state and made sure it's happy (only tested with a few
> > limited periods, such as 1kHz)
> >
> > drivers/gpu/drm/bridge/ti-sn65dsi86.c | 298 +++++++++++++++++++++++++-
> > 1 file changed, 297 insertions(+), 1 deletion(-)
> >
> > diff --git a/drivers/gpu/drm/bridge/ti-sn65dsi86.c b/drivers/gpu/drm/bridge/ti-sn65dsi86.c
> > index 5d712c8c3c3b..8f11c9b2da48 100644
> > --- a/drivers/gpu/drm/bridge/ti-sn65dsi86.c
> > +++ b/drivers/gpu/drm/bridge/ti-sn65dsi86.c
> > @@ -4,6 +4,7 @@
> > * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
> > */
> >
> > +#include <linux/atomic.h>
> > #include <linux/auxiliary_bus.h>
> > #include <linux/bits.h>
> > #include <linux/clk.h>
> > @@ -15,6 +16,7 @@
> > #include <linux/module.h>
> > #include <linux/of_graph.h>
> > #include <linux/pm_runtime.h>
> > +#include <linux/pwm.h>
> > #include <linux/regmap.h>
> > #include <linux/regulator/consumer.h>
> >
> > @@ -91,6 +93,13 @@
> > #define SN_ML_TX_MODE_REG 0x96
> > #define ML_TX_MAIN_LINK_OFF 0
> > #define ML_TX_NORMAL_MODE BIT(0)
> > +#define SN_PWM_PRE_DIV_REG 0xA0
> > +#define SN_BACKLIGHT_SCALE_REG 0xA1
> > +#define BACKLIGHT_SCALE_MAX 0xFFFF
> > +#define SN_BACKLIGHT_REG 0xA3
> > +#define SN_PWM_EN_INV_REG 0xA5
> > +#define SN_PWM_INV_MASK BIT(0)
> > +#define SN_PWM_EN_MASK BIT(1)
> > #define SN_AUX_CMD_STATUS_REG 0xF4
> > #define AUX_IRQ_STATUS_AUX_RPLY_TOUT BIT(3)
> > #define AUX_IRQ_STATUS_AUX_SHORT BIT(5)
> > @@ -113,11 +122,14 @@
> >
> > #define SN_LINK_TRAINING_TRIES 10
> >
> > +#define SN_PWM_GPIO_IDX 3 /* 4th GPIO */
> > +
> > /**
> > * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver.
> > * @bridge_aux: AUX-bus sub device for MIPI-to-eDP bridge functionality.
> > * @gpio_aux: AUX-bus sub device for GPIO controller functionality.
> > * @aux_aux: AUX-bus sub device for eDP AUX channel functionality.
> > + * @pwm_aux: AUX-bus sub device for PWM controller functionality.
> > *
> > * @dev: Pointer to the top level (i2c) device.
> > * @regmap: Regmap for accessing i2c.
> > @@ -145,11 +157,17 @@
> > * bitmap so we can do atomic ops on it without an extra
> > * lock so concurrent users of our 4 GPIOs don't stomp on
> > * each other's read-modify-write.
> > + *
> > + * @pchip: pwm_chip if the PWM is exposed.
> > + * @pwm_enabled: Used to track if the PWM signal is currently enabled.
> > + * @pwm_refclk_freq: Cache for the reference clock input to the PWM.
> > + * @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM.
> > */
> > struct ti_sn65dsi86 {
> > struct auxiliary_device bridge_aux;
> > struct auxiliary_device gpio_aux;
> > struct auxiliary_device aux_aux;
> > + struct auxiliary_device pwm_aux;
> >
> > struct device *dev;
> > struct regmap *regmap;
> > @@ -172,6 +190,12 @@ struct ti_sn65dsi86 {
> > struct gpio_chip gchip;
> > DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
> > #endif
> > +#if defined(CONFIG_PWM)
> > + struct pwm_chip pchip;
> > + bool pwm_enabled;
> > + unsigned int pwm_refclk_freq;
> > + atomic_t pwm_pin_busy;
> > +#endif
> > };
> >
> > static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = {
> > @@ -190,6 +214,25 @@ static const struct regmap_config ti_sn65dsi86_regmap_config = {
> > .cache_type = REGCACHE_NONE,
> > };
> >
> > +static int ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata,
> > + unsigned int reg, u16 *val)
> > +{
> > + unsigned int tmp;
> > + int ret;
> > +
> > + ret = regmap_read(pdata->regmap, reg, &tmp);
> > + if (ret)
> > + return ret;
> > + *val = tmp;
> > +
> > + ret = regmap_read(pdata->regmap, reg + 1, &tmp);
> > + if (ret)
> > + return ret;
> > + *val |= tmp << 8;
> > +
> > + return 0;
> > +}
> > +
> > static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata,
> > unsigned int reg, u16 val)
> > {
> > @@ -253,6 +296,14 @@ static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata)
> >
> > regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
> > REFCLK_FREQ(i));
> > +
> > +#if defined(CONFIG_PWM)
> > + /*
> > + * The PWM refclk is based on the value written to SN_DPPLL_SRC_REG,
> > + * regardless of its actual sourcing.
> > + */
> > + pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i];
> > +#endif
> > }
> >
> > static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata)
> > @@ -1044,6 +1095,221 @@ static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata)
> > return 0;
> > }
> >
> > +#if defined(CONFIG_PWM)
> > +static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata)
> > +{
> > + return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0;
> > +}
> > +
> > +static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata)
> > +{
> > + atomic_set(&pdata->pwm_pin_busy, 0);
> > +}
> > +
> > +static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip)
> > +{
> > + return container_of(chip, struct ti_sn65dsi86, pchip);
> > +}
> > +
> > +static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
> > +{
> > + struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
> > +
> > + return ti_sn_pwm_pin_request(pdata);
> > +}
> > +
> > +static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
> > +{
> > + struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
> > +
> > + ti_sn_pwm_pin_release(pdata);
> > +}
> > +
> > +static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
> > + const struct pwm_state *state)
> > +{
> > + struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
> > + unsigned int pwm_en_inv;
> > + unsigned int backlight;
> > + unsigned int pre_div;
> > + unsigned int scale;
> > + int ret;
> > +
> > + if (!pdata->pwm_enabled) {
> > + ret = pm_runtime_get_sync(pdata->dev);
> > + if (ret < 0)
> > + return ret;
> > +
> > + ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
> > + SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX),
> > + SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX));
> > + if (ret) {
> > + dev_err(pdata->dev, "failed to mux in PWM function\n");
> > + goto out;
> > + }
>
> Do you need to do this even if state->enabled is false?
I presume I should be able to explicitly mux in the GPIO function and
configure that to output low. But I am not able to find anything in the
data sheet that would indicate this to be preferred.
> Does this already modify the output pin?
>
Yes, coming out of reset this pin is configured as input, so switching
the mux here will effectively start driving the pin.
> > + }
> > +
> > + if (state->enabled) {
> > + /*
> > + * Per the datasheet the PWM frequency is given by:
> > + *
> > + * PWM_FREQ = REFCLK_FREQ / (PWM_PRE_DIV * BACKLIGHT_SCALE + 1)
> > + *
> > + * which can be rewritten:
> > + *
> > + * T_pwm * REFCLK_FREQ - 1 = PWM_PRE_DIV * BACKLIGHT_SCALE
> > + *
> > + * In order to keep BACKLIGHT_SCALE within its 16 bits, PWM_PRE_DIV
> > + * must be:
> > + *
> > + * PWM_PRE_DIV >= (T_pwm * REFCLK_FREQ - 1) / BACKLIGHT_SCALE_MAX;
> > + *
> > + * To simplify the search and optimize the resolution of the PWM, the
> > + * lowest possible PWM_PRE_DIV is used. Finally the scale is calculated
> > + * as:
> > + *
> > + * BACKLIGHT_SCALE = (T_pwm * REFCLK_FREQ - 1) / PWM_PRE_DIV
> > + *
> > + * Here T_pwm is represented in seconds, so appropriate scaling to
> > + * nanoseconds is necessary.
> > + */
>
> Very nice.
>
> > + pre_div = DIV_ROUND_UP((state->period * pdata->pwm_refclk_freq - 1),
> > + (NSEC_PER_SEC * BACKLIGHT_SCALE_MAX));
>
> if (pre_div > 0xffff)
> pre_div = 0xffff;
>
> is needed here. (Assuming 0xffff is the bigest valid value for PRE_DIV.)
>
Yes, that makes sense.
> > + scale = (state->period * pdata->pwm_refclk_freq - 1) / (NSEC_PER_SEC * pre_div);
>
> There is something wrong here. Consider:
>
> pdata->pwm_refclk_freq = 3333334
> state->period = 100000
> state->duty_cycle = 600
>
> then you calculate:
>
> pre_div = 1
> scale = 333
>
> which yields an actual period of 100199.98 ns. However you should get a
> period less or equal than the requested period.
>
> It took me some time to spot the problem: Only state->period *
> pdata->pwm_refclk_freq must be divided by NSEC_PER_SEC, but not the -1.
>
> So the right formula is:
>
> scale = (state->period * pdata->pwm_refclk_freq - NSEC_PER_SEC) / (NSEC_PER_SEC * pre_div);
>
Ahh, you're right! Thanks!
> (but you have to pay attention, the dividend might be negative in this
> formula).
>
Right and that defines the lower limit for the period, something I don't
handle as this is currently written.
> > + /*
> > + * The duty ratio is given as:
> > + *
> > + * duty = BACKLIGHT / (BACKLIGHT_SCALE + 1)
> > + */
> > + backlight = state->duty_cycle * (scale + 1) / state->period;
>
> Lets continue the above example with the fixed calculation. So we have:
>
> pdata->pwm_refclk_freq = 3333334
> state->period = 100000 [ns]
> state->duty_cycle = 600
> scale = 332
>
> so the actually emitted period = 99899.98002000399 ns
>
> Now you calculate:
>
> backlight = 1
>
> which yields an actual duty_cycle of 299.99994 ns, with backlight = 2
> you would get an actual duty_cycle of 599.99988 ns, which is better. The
> culprit here is that you divide by state->period but instead should
> divide by the actual period.
>
What do I do about the case where the actual period is lower than the
requested one and thereby the duty cycle becomes larger than the period?
E.g. passing duty_cycle = period = 1,000,000 with a frequency of 3333334
results in a scale of 3332 and duty cycle (over the actual period) of
3333.
> > +
> > + ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div);
> > + if (ret) {
> > + dev_err(pdata->dev, "failed to update PWM_PRE_DIV\n");
> > + goto out;
> > + }
> > +
> > + ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale);
> > + ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight);
>
> How does the output behave between these register writes? Can it happen
> that it emits a wave for corresponding to (e.g.) the new pre_div value
> but the old scale and backlight?
>
I don't see anything indicating in the documentation indicating that
these writes would be buffered or similar. Unfortunately, as I said
earlier I don't have any way to access the signal to see for myself.
>
> > + }
> > +
> > + pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, !!state->enabled) |
> > + FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED);
> > + ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv);
> > + if (ret) {
> > + dev_err(pdata->dev, "failed to update PWM_EN/PWM_INV\n");
> > + goto out;
> > + }
> > +
> > + pdata->pwm_enabled = !!state->enabled;
> > +out:
> > +
> > + if (!pdata->pwm_enabled)
> > + pm_runtime_put_sync(pdata->dev);
> > +
> > + return ret;
> > +}
> > +
> > +static void ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
> > + struct pwm_state *state)
> > +{
> > + struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
> > + unsigned int pwm_en_inv;
> > + unsigned int pre_div;
> > + u16 backlight;
> > + u16 scale;
> > + int ret;
> > +
> > + ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv);
> > + if (ret)
> > + return;
> > +
> > + ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale);
> > + if (ret)
> > + return;
> > +
> > + ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight);
> > + if (ret)
> > + return;
> > +
> > + ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div);
> > + if (ret)
> > + return;
> > +
> > + state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv);
> > + if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv))
> > + state->polarity = PWM_POLARITY_INVERSED;
> > + else
> > + state->polarity = PWM_POLARITY_NORMAL;
> > +
> > + state->period = NSEC_PER_SEC * (pre_div * scale + 1) / pdata->pwm_refclk_freq;
>
> round up here please. Then applying the result of .get_state() is
> a noop (as it should be).
>
Together with the adjustment of the -1 above I can confirm that we get
something that PWM_DEBUG is happy with (over a larger range of tests
input than I previously tested...)
> > + state->duty_cycle = DIV_ROUND_UP(state->period * backlight, scale + 1);
>
> I find it surprising that the actual duty_cycle is:
>
> state->period * backlight
> -------------------------
> scale + 1
>
> pre_div * scale + 1
> = -------------------
> refclk * scale
>
> where scale occurs twice. Can you confirm this to be right?
>
I came to the same conclusion - i.e. that this looks wrong.
As states above, the period of the PWM is:
pre_div * scale + 1
-------------------
refclk
or:
T_refclk * (pre_div * scale + 1)
Which I interpret as us having two nested counters ticking based on
refclk. Once we hit pre_div * scale the counter resets, which takes 1
refclk pulse.
But then the duty cycle is described as:
BACKLIGHT / (BACKLIGHT_SCALE + 1)
which I would say looks like the signal is high pre_div * BACKLIGHT
steps and then it resets at pre_div * (BACKLIGHT_SCALE + 1).
So I don't know what's going on here.
I will take another look tomorrow on why, but the including the + 1 in
the denominator seems to be necessary to keep the duty cycle
idempotent...
> > +}
> > +
> > +static const struct pwm_ops ti_sn_pwm_ops = {
> > + .request = ti_sn_pwm_request,
> > + .free = ti_sn_pwm_free,
> > + .apply = ti_sn_pwm_apply,
> > + .get_state = ti_sn_pwm_get_state,
> > + .owner = THIS_MODULE,
> > +};
> > +
> > +static int ti_sn_pwm_probe(struct auxiliary_device *adev,
> > + const struct auxiliary_device_id *id)
> > +{
> > + struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
> > +
> > + pdata->pchip.dev = pdata->dev;
> > + pdata->pchip.ops = &ti_sn_pwm_ops;
> > + pdata->pchip.base = -1;
>
> base shouldn't be set since
>
> f9a8ee8c8bcd (pwm: Always allocate PWM chip base ID dynamically)
Thanks, that's nice!
Many thanks for your feedback!
Regards,
Bjorn
>
> > + pdata->pchip.npwm = 1;
> > + pdata->pchip.of_xlate = of_pwm_single_xlate;
> > + pdata->pchip.of_pwm_n_cells = 1;
> > +
> > + return pwmchip_add(&pdata->pchip);
> > +}
>
> Best regards
> Uwe
>
> --
> Pengutronix e.K. | Uwe Kleine-König |
> Industrial Linux Solutions | https://www.pengutronix.de/ |
Powered by blists - more mailing lists