[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <YNKKkEMD4sVhfcNr@yoga>
Date: Tue, 22 Jun 2021 20:12:48 -0500
From: Bjorn Andersson <bjorn.andersson@...aro.org>
To: Uwe Kleine-K?nig <u.kleine-koenig@...gutronix.de>
Cc: Andrzej Hajda <a.hajda@...sung.com>,
Neil Armstrong <narmstrong@...libre.com>,
Robert Foss <robert.foss@...aro.org>,
Laurent Pinchart <Laurent.pinchart@...asonboard.com>,
Jonas Karlman <jonas@...boo.se>,
Jernej Skrabec <jernej.skrabec@...il.com>,
David Airlie <airlied@...ux.ie>,
Daniel Vetter <daniel@...ll.ch>,
Thierry Reding <thierry.reding@...il.com>,
Lee Jones <lee.jones@...aro.org>,
Doug Anderson <dianders@...omium.org>,
dri-devel@...ts.freedesktop.org, linux-kernel@...r.kernel.org,
linux-pwm@...r.kernel.org
Subject: Re: [PATCH v3 2/2] drm/bridge: ti-sn65dsi86: Implement the pwm_chip
On Tue 22 Jun 15:29 CDT 2021, Uwe Kleine-K?nig wrote:
> On Mon, Jun 21, 2021 at 10:09:48PM -0500, Bjorn Andersson wrote:
> > The SN65DSI86 provides the ability to supply a PWM signal on GPIO 4,
> > with the primary purpose of controlling the backlight of the attached
> > panel. Add an implementation that exposes this using the standard PWM
> > framework, to allow e.g. pwm-backlight to expose this to the user.
> >
> > Signed-off-by: Bjorn Andersson <bjorn.andersson@...aro.org>
> > ---
> >
> > Changes since v2:
> > - Corrected calculation of scale, to include a 1 instead of 1/NSEC_TO_SEC and
> > rounded the period up in get_state, to make sure its idempotent
> > - Changed duty_cycle calculation to make sure it idempotent over my tested period
> > - Documented "Limitations"
> > - Documented muxing operation after pm_runtime_get_sync()
> >
> > drivers/gpu/drm/bridge/ti-sn65dsi86.c | 335 +++++++++++++++++++++++++-
> > 1 file changed, 334 insertions(+), 1 deletion(-)
> >
> > diff --git a/drivers/gpu/drm/bridge/ti-sn65dsi86.c b/drivers/gpu/drm/bridge/ti-sn65dsi86.c
> > index 5d712c8c3c3b..0eabbdad1830 100644
> > --- a/drivers/gpu/drm/bridge/ti-sn65dsi86.c
> > +++ b/drivers/gpu/drm/bridge/ti-sn65dsi86.c
> > @@ -4,6 +4,7 @@
> > * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
> > */
> >
> > +#include <linux/atomic.h>
> > #include <linux/auxiliary_bus.h>
> > #include <linux/bits.h>
> > #include <linux/clk.h>
> > @@ -15,6 +16,7 @@
> > #include <linux/module.h>
> > #include <linux/of_graph.h>
> > #include <linux/pm_runtime.h>
> > +#include <linux/pwm.h>
> > #include <linux/regmap.h>
> > #include <linux/regulator/consumer.h>
> >
> > @@ -91,6 +93,13 @@
> > #define SN_ML_TX_MODE_REG 0x96
> > #define ML_TX_MAIN_LINK_OFF 0
> > #define ML_TX_NORMAL_MODE BIT(0)
> > +#define SN_PWM_PRE_DIV_REG 0xA0
> > +#define SN_BACKLIGHT_SCALE_REG 0xA1
> > +#define BACKLIGHT_SCALE_MAX 0xFFFF
> > +#define SN_BACKLIGHT_REG 0xA3
> > +#define SN_PWM_EN_INV_REG 0xA5
> > +#define SN_PWM_INV_MASK BIT(0)
> > +#define SN_PWM_EN_MASK BIT(1)
> > #define SN_AUX_CMD_STATUS_REG 0xF4
> > #define AUX_IRQ_STATUS_AUX_RPLY_TOUT BIT(3)
> > #define AUX_IRQ_STATUS_AUX_SHORT BIT(5)
> > @@ -113,11 +122,14 @@
> >
> > #define SN_LINK_TRAINING_TRIES 10
> >
> > +#define SN_PWM_GPIO_IDX 3 /* 4th GPIO */
> > +
> > /**
> > * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver.
> > * @bridge_aux: AUX-bus sub device for MIPI-to-eDP bridge functionality.
> > * @gpio_aux: AUX-bus sub device for GPIO controller functionality.
> > * @aux_aux: AUX-bus sub device for eDP AUX channel functionality.
> > + * @pwm_aux: AUX-bus sub device for PWM controller functionality.
> > *
> > * @dev: Pointer to the top level (i2c) device.
> > * @regmap: Regmap for accessing i2c.
> > @@ -145,11 +157,17 @@
> > * bitmap so we can do atomic ops on it without an extra
> > * lock so concurrent users of our 4 GPIOs don't stomp on
> > * each other's read-modify-write.
> > + *
> > + * @pchip: pwm_chip if the PWM is exposed.
> > + * @pwm_enabled: Used to track if the PWM signal is currently enabled.
> > + * @pwm_refclk_freq: Cache for the reference clock input to the PWM.
> > + * @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM.
> > */
> > struct ti_sn65dsi86 {
> > struct auxiliary_device bridge_aux;
> > struct auxiliary_device gpio_aux;
> > struct auxiliary_device aux_aux;
> > + struct auxiliary_device pwm_aux;
> >
> > struct device *dev;
> > struct regmap *regmap;
> > @@ -172,6 +190,12 @@ struct ti_sn65dsi86 {
> > struct gpio_chip gchip;
> > DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
> > #endif
> > +#if defined(CONFIG_PWM)
> > + struct pwm_chip pchip;
> > + bool pwm_enabled;
> > + unsigned int pwm_refclk_freq;
> > + atomic_t pwm_pin_busy;
> > +#endif
> > };
> >
> > static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = {
> > @@ -190,6 +214,25 @@ static const struct regmap_config ti_sn65dsi86_regmap_config = {
> > .cache_type = REGCACHE_NONE,
> > };
> >
> > +static int ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata,
> > + unsigned int reg, u16 *val)
> > +{
> > + unsigned int tmp;
> > + int ret;
> > +
> > + ret = regmap_read(pdata->regmap, reg, &tmp);
> > + if (ret)
> > + return ret;
> > + *val = tmp;
> > +
> > + ret = regmap_read(pdata->regmap, reg + 1, &tmp);
> > + if (ret)
> > + return ret;
> > + *val |= tmp << 8;
> > +
> > + return 0;
> > +}
> > +
> > static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata,
> > unsigned int reg, u16 val)
> > {
> > @@ -253,6 +296,14 @@ static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata)
> >
> > regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
> > REFCLK_FREQ(i));
> > +
> > +#if defined(CONFIG_PWM)
> > + /*
> > + * The PWM refclk is based on the value written to SN_DPPLL_SRC_REG,
> > + * regardless of its actual sourcing.
> > + */
> > + pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i];
> > +#endif
> > }
> >
> > static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata)
> > @@ -1044,6 +1095,258 @@ static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata)
> > return 0;
> > }
> >
> > +#if defined(CONFIG_PWM)
> > +static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata)
> > +{
> > + return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0;
> > +}
> > +
> > +static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata)
> > +{
> > + atomic_set(&pdata->pwm_pin_busy, 0);
> > +}
> > +
> > +static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip)
> > +{
> > + return container_of(chip, struct ti_sn65dsi86, pchip);
> > +}
> > +
> > +static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
> > +{
> > + struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
> > +
> > + return ti_sn_pwm_pin_request(pdata);
> > +}
> > +
> > +static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
> > +{
> > + struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
> > +
> > + ti_sn_pwm_pin_release(pdata);
> > +}
> > +
> > +/*
> > + * Limitations:
> > + * - The PWM signal is not driven when the chip is powered down, or in its
> > + * reset state and the driver does not implement the "suspend state"
> > + * described in the documentation. In order to save power, state->enabled is
> > + * interpreted as denoting if the signal is expected to be valid, and is used to keep
> > + * the determine if the chip needs to be kept powered.
> > + * - Changing both period and duty_cycle is not done atomically, so the output
> > + * might briefly be a mix of the two settings.
> > + */
> > +static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
> > + const struct pwm_state *state)
> > +{
> > + struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
> > + unsigned int pwm_en_inv;
> > + unsigned int backlight;
> > + unsigned int pre_div;
> > + unsigned int scale;
> > + u64 tick;
> > + int ret;
> > +
> > + if (!pdata->pwm_enabled) {
> > + ret = pm_runtime_get_sync(pdata->dev);
> > + if (ret < 0)
> > + return ret;
> > +
> > + /*
> > + * The chip might have been powered down while we didn't hold a
> > + * PM runtime reference, so mux in the PWM function on the GPIO
> > + * pin again.
> > + */
> > + ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
> > + SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX),
> > + SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX));
> > + if (ret) {
> > + dev_err(pdata->dev, "failed to mux in PWM function\n");
> > + goto out;
> > + }
>
> In reply to your v2 I requested to short-cut the case !pdata->pwm_enabled
> && !state->enabled without enabling stuff.
>
You're right, got lost in my thoughts about the power state. But per my
own reasoning there's no need enable the mux when state->enabled = false
> > + }
> > +
> > + if (state->enabled) {
> > + /*
> > + * Per the datasheet the PWM frequency is given by:
> > + *
> > + * PWM_FREQ = REFCLK_FREQ / (PWM_PRE_DIV * BACKLIGHT_SCALE + 1)
> > + *
> > + * which can be rewritten:
> > + *
> > + * T_pwm * REFCLK_FREQ - 1 = PWM_PRE_DIV * BACKLIGHT_SCALE
> > + *
> > + * In order to keep BACKLIGHT_SCALE within its 16 bits,
> > + * PWM_PRE_DIV must be:
> > + *
> > + * PWM_PRE_DIV >= (T_pwm * REFCLK_FREQ - 1) / BACKLIGHT_SCALE_MAX;
> > + *
> > + * To simplify the search and optimize the resolution of the
> > + * PWM, the lowest possible PWM_PRE_DIV is used. Finally the
> > + * scale is calculated as:
> > + *
> > + * BACKLIGHT_SCALE = (T_pwm * REFCLK_FREQ - 1) / PWM_PRE_DIV
> > + *
> > + * Here T_pwm is represented in seconds, so appropriate scaling
> > + * to nanoseconds is necessary.
> > + */
> > +
> > + /* Minimum T_pwm is (1 * 1 + 1) / REFCLK_FREQ */
> > + if (state->period * pdata->pwm_refclk_freq <= 2 * NSEC_PER_SEC) {
> > + ret = -EINVAL;
> > + goto out;
> > + }
> > +
> > + pre_div = DIV_ROUND_UP((state->period * pdata->pwm_refclk_freq - NSEC_PER_SEC),
> > + (NSEC_PER_SEC * BACKLIGHT_SCALE_MAX));
> > + if (pre_div > 0xff)
> > + pre_div = 0xff;
> > +
> > + scale = (state->period * pdata->pwm_refclk_freq - NSEC_PER_SEC) / (NSEC_PER_SEC * pre_div);
>
> Please consider this multiplication to overflow. Something like:
>
> if (state->period > $someterm)
> period = $someterm;
> else
> period = state->period;
>
> is usually appropriate. Also NSEC_PER_SEC * pre_div might overflow.
> Moreover to divide a u64 you must not rely on / but need do_div() or
> some variant of it.
>
Didn't consider that someone would ask for a period of 430 second, but
that sounds reasonable and you're right the denominator might be only 4
bytes on some architectures.
Will fix this, and ensure that things are promoted to 64 bits where
needed and divided appropriately.
> > +
> > + /*
> > + * PWM duty cycle is given as:
> > + *
> > + * duty = BACKLIGHT / (BACKLIGHT_SCALE + 1)
> > + *
> > + * The documentation is however inconsistent in its examples,
> > + * so the interpretation used here is that the duty cycle is
> > + * the period of BACKLIGHT * PRE_DIV / REFCLK_FREQ.
>
> I don't understand this.
>
> > + *
> > + * The ratio PRE_DIV / REFCLK_FREQ is rounded up to whole
> > + * nanoseconds in order to ensure that the calculations are
> > + * idempotent and gives results that are smaller than the
> > + * requested value.
> > + */
> > + tick = DIV_ROUND_UP(NSEC_PER_SEC * pre_div, pdata->pwm_refclk_freq);
> > + backlight = state->duty_cycle / tick;
>
> You're loosing precision here by dividing by the result of a division.
>
The actual period is also a result of a division and after spending too
many hours scratching my head I reached to conclusion that this was the
reason why I wasn't able to get the duty cycle calculation idempotent
over the ranges I tested.
But in my effort to describe this to you here, I finally spotted the
error and will follow up with a new version that does:
actual = NSEC_PER_SEC * (pre_div * scale + 1) / pdata->pwm_refclk_freq);
backlight = state->duty_cycle * (scale + 1) / actual;
(With appropriate u64 casts and divisions)
> > + if (backlight > scale)
> > + backlight = scale;
> > +
> > + ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div);
> > + if (ret) {
> > + dev_err(pdata->dev, "failed to update PWM_PRE_DIV\n");
> > + goto out;
> > + }
> > +
> > + ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale);
> > + ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight);
> > + }
> > +
> > + pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, !!state->enabled) |
> > + FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED);
> > + ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv);
> > + if (ret) {
> > + dev_err(pdata->dev, "failed to update PWM_EN/PWM_INV\n");
> > + goto out;
> > + }
> > +
> > + pdata->pwm_enabled = !!state->enabled;
> > +out:
> > +
> > + if (!pdata->pwm_enabled)
> > + pm_runtime_put_sync(pdata->dev);
> > +
> > + return ret;
> > +}
> > +
> > +static void ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
> > + struct pwm_state *state)
> > +{
> > + struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
> > + unsigned int pwm_en_inv;
> > + unsigned int pre_div;
> > + u16 backlight;
> > + u16 scale;
> > + int ret;
> > +
> > + ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv);
> > + if (ret)
> > + return;
> > +
> > + ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale);
> > + if (ret)
> > + return;
> > +
> > + ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight);
> > + if (ret)
> > + return;
> > +
> > + ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div);
> > + if (ret)
> > + return;
> > +
> > + state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv);
> > + if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv))
> > + state->polarity = PWM_POLARITY_INVERSED;
> > + else
> > + state->polarity = PWM_POLARITY_NORMAL;
> > +
> > + state->period = DIV_ROUND_UP(NSEC_PER_SEC * (pre_div * scale + 1), pdata->pwm_refclk_freq);
> > + state->duty_cycle = backlight * DIV_ROUND_UP(NSEC_PER_SEC * pre_div, pdata->pwm_refclk_freq);
>
> If you use
>
> state->duty_cycle = DIV_ROUND_UP(backlight * NSEC_PER_SEC * pre_div, pdata->pwm_refclk_freq);
>
> instead (with a cast to u64 to not yield an overflow) the result is more
> exact.
>
The problem with this is that it sometimes yields duty_cycles larger
than what was requested... But going back to describing this as a ratio
of the period this becomes:
state->duty_cycle = DIV_ROUND_UP_ULL(state->period * backlight, scale + 1);
> I still find this surprising, I'd expect that SCALE also matters for the
> duty_cycle. With the assumption implemented here modifying SCALE only
> affects the period. This should be easy to verify?! I would expect that
> changing SCALE doesn't affect the relative duty_cycle, so the brightness
> of an LED is unaffected (unless the period gets too big of course).
>
I think the hardware is two nested counters, one (A) ticking at REFCLK_FREQ
and as that hits PRE_DIV, it kicks the second counter (B) (and resets).
As counter A is reset the output signal goes high, when A hits BACKLIGHT the
signal goes low and when A hits BACKLIGHT_SCALE it resets.
Per this implementation the actual length of the duty cycle would indeed
be independent of the BACKLIGHT_SCALE, but the length of the low signal
(and hence the ratio, which results in the actual brightness) does
depend on BACKLIGHT_SCALE.
> I didn't spend much cycles to verify that the logic in .apply() matches
> .get_state(). I'd keep that check for the next iteration.
>
Your feedback is much appreciated!
Regards,
Bjorn
> Best regards
> Uwe
>
> --
> Pengutronix e.K. | Uwe Kleine-König |
> Industrial Linux Solutions | https://www.pengutronix.de/ |
Powered by blists - more mailing lists