[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <20210713123356.6924-2-sj38.park@gmail.com>
Date: Tue, 13 Jul 2021 12:33:44 +0000
From: SeongJae Park <sj38.park@...il.com>
To: akpm@...ux-foundation.org
Cc: SeongJae Park <sjpark@...zon.de>, Jonathan.Cameron@...wei.com,
acme@...nel.org, alexander.shishkin@...ux.intel.com,
amit@...nel.org, benh@...nel.crashing.org,
brendanhiggins@...gle.com, corbet@....net, david@...hat.com,
dwmw@...zon.com, elver@...gle.com, fan.du@...el.com,
foersleo@...zon.de, greg@...ah.com, gthelen@...gle.com,
guoju.fgj@...baba-inc.com, jgowans@...zon.com, mgorman@...e.de,
mheyne@...zon.de, minchan@...nel.org, mingo@...hat.com,
namhyung@...nel.org, peterz@...radead.org, riel@...riel.com,
rientjes@...gle.com, rostedt@...dmis.org, rppt@...nel.org,
shakeelb@...gle.com, shuah@...nel.org, sieberf@...zon.com,
sj38.park@...il.com, snu@...le79.org, vbabka@...e.cz,
vdavydov.dev@...il.com, zgf574564920@...il.com,
linux-damon@...zon.com, linux-mm@...ck.org,
linux-doc@...r.kernel.org, linux-kernel@...r.kernel.org
Subject: [PATCH v33 01/13] mm: Introduce Data Access MONitor (DAMON)
From: SeongJae Park <sjpark@...zon.de>
DAMON is a data access monitoring framework for the Linux kernel. The
core mechanisms of DAMON make it
- accurate (the monitoring output is useful enough for DRAM level
performance-centric memory management; It might be inappropriate for
CPU cache levels, though),
- light-weight (the monitoring overhead is normally low enough to be
applied online), and
- scalable (the upper-bound of the overhead is in constant range
regardless of the size of target workloads).
Using this framework, hence, we can easily write efficient kernel space
data access monitoring applications. For example, the kernel's memory
management mechanisms can make advanced decisions using this.
Experimental data access aware optimization works that incurring high
access monitoring overhead could again be implemented on top of this.
Due to its simple and flexible interface, providing user space interface
would be also easy. Then, user space users who have some special
workloads can write personalized applications for better understanding
and optimizations of their workloads and systems.
===
Nevertheless, this commit is defining and implementing only basic access
check part without the overhead-accuracy handling core logic. The basic
access check is as below.
The output of DAMON says what memory regions are how frequently accessed
for a given duration. The resolution of the access frequency is
controlled by setting ``sampling interval`` and ``aggregation
interval``. In detail, DAMON checks access to each page per ``sampling
interval`` and aggregates the results. In other words, counts the
number of the accesses to each region. After each ``aggregation
interval`` passes, DAMON calls callback functions that previously
registered by users so that users can read the aggregated results and
then clears the results. This can be described in below simple
pseudo-code::
init()
while monitoring_on:
for page in monitoring_target:
if accessed(page):
nr_accesses[page] += 1
if time() % aggregation_interval == 0:
for callback in user_registered_callbacks:
callback(monitoring_target, nr_accesses)
for page in monitoring_target:
nr_accesses[page] = 0
if time() % update_interval == 0:
update()
sleep(sampling interval)
The target regions constructed at the beginning of the monitoring and
updated after each ``regions_update_interval``, because the target
regions could be dynamically changed (e.g., mmap() or memory hotplug).
The monitoring overhead of this mechanism will arbitrarily increase as
the size of the target workload grows.
The basic monitoring primitives for actual access check and dynamic
target regions construction aren't in the core part of DAMON. Instead,
it allows users to implement their own primitives that are optimized for
their use case and configure DAMON to use those. In other words, users
cannot use current version of DAMON without some additional works.
Following commits will implement the core mechanisms for the
overhead-accuracy control and default primitives implementations.
Signed-off-by: SeongJae Park <sjpark@...zon.de>
Reviewed-by: Leonard Foerster <foersleo@...zon.de>
Reviewed-by: Fernand Sieber <sieberf@...zon.com>
Acked-by: Shakeel Butt <shakeelb@...gle.com>
---
include/linux/damon.h | 167 ++++++++++++++++++++++
mm/Kconfig | 2 +
mm/Makefile | 1 +
mm/damon/Kconfig | 15 ++
mm/damon/Makefile | 3 +
mm/damon/core.c | 320 ++++++++++++++++++++++++++++++++++++++++++
6 files changed, 508 insertions(+)
create mode 100644 include/linux/damon.h
create mode 100644 mm/damon/Kconfig
create mode 100644 mm/damon/Makefile
create mode 100644 mm/damon/core.c
diff --git a/include/linux/damon.h b/include/linux/damon.h
new file mode 100644
index 000000000000..2f652602b1ea
--- /dev/null
+++ b/include/linux/damon.h
@@ -0,0 +1,167 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * DAMON api
+ *
+ * Author: SeongJae Park <sjpark@...zon.de>
+ */
+
+#ifndef _DAMON_H_
+#define _DAMON_H_
+
+#include <linux/mutex.h>
+#include <linux/time64.h>
+#include <linux/types.h>
+
+struct damon_ctx;
+
+/**
+ * struct damon_primitive Monitoring primitives for given use cases.
+ *
+ * @init: Initialize primitive-internal data structures.
+ * @update: Update primitive-internal data structures.
+ * @prepare_access_checks: Prepare next access check of target regions.
+ * @check_accesses: Check the accesses to target regions.
+ * @reset_aggregated: Reset aggregated accesses monitoring results.
+ * @target_valid: Determine if the target is valid.
+ * @cleanup: Clean up the context.
+ *
+ * DAMON can be extended for various address spaces and usages. For this,
+ * users should register the low level primitives for their target address
+ * space and usecase via the &damon_ctx.primitive. Then, the monitoring thread
+ * (&damon_ctx.kdamond) calls @init and @prepare_access_checks before starting
+ * the monitoring, @update after each &damon_ctx.primitive_update_interval, and
+ * @check_accesses, @target_valid and @prepare_access_checks after each
+ * &damon_ctx.sample_interval. Finally, @reset_aggregated is called after each
+ * &damon_ctx.aggr_interval.
+ *
+ * @init should initialize primitive-internal data structures. For example,
+ * this could be used to construct proper monitoring target regions and link
+ * those to @damon_ctx.target.
+ * @update should update the primitive-internal data structures. For example,
+ * this could be used to update monitoring target regions for current status.
+ * @prepare_access_checks should manipulate the monitoring regions to be
+ * prepared for the next access check.
+ * @check_accesses should check the accesses to each region that made after the
+ * last preparation and update the number of observed accesses of each region.
+ * @reset_aggregated should reset the access monitoring results that aggregated
+ * by @check_accesses.
+ * @target_valid should check whether the target is still valid for the
+ * monitoring.
+ * @cleanup is called from @kdamond just before its termination.
+ */
+struct damon_primitive {
+ void (*init)(struct damon_ctx *context);
+ void (*update)(struct damon_ctx *context);
+ void (*prepare_access_checks)(struct damon_ctx *context);
+ void (*check_accesses)(struct damon_ctx *context);
+ void (*reset_aggregated)(struct damon_ctx *context);
+ bool (*target_valid)(void *target);
+ void (*cleanup)(struct damon_ctx *context);
+};
+
+/*
+ * struct damon_callback Monitoring events notification callbacks.
+ *
+ * @before_start: Called before starting the monitoring.
+ * @after_sampling: Called after each sampling.
+ * @after_aggregation: Called after each aggregation.
+ * @before_terminate: Called before terminating the monitoring.
+ * @private: User private data.
+ *
+ * The monitoring thread (&damon_ctx.kdamond) calls @before_start and
+ * @before_terminate just before starting and finishing the monitoring,
+ * respectively. Therefore, those are good places for installing and cleaning
+ * @private.
+ *
+ * The monitoring thread calls @after_sampling and @after_aggregation for each
+ * of the sampling intervals and aggregation intervals, respectively.
+ * Therefore, users can safely access the monitoring results without additional
+ * protection. For the reason, users are recommended to use these callback for
+ * the accesses to the results.
+ *
+ * If any callback returns non-zero, monitoring stops.
+ */
+struct damon_callback {
+ void *private;
+
+ int (*before_start)(struct damon_ctx *context);
+ int (*after_sampling)(struct damon_ctx *context);
+ int (*after_aggregation)(struct damon_ctx *context);
+ int (*before_terminate)(struct damon_ctx *context);
+};
+
+/**
+ * struct damon_ctx - Represents a context for each monitoring. This is the
+ * main interface that allows users to set the attributes and get the results
+ * of the monitoring.
+ *
+ * @sample_interval: The time between access samplings.
+ * @aggr_interval: The time between monitor results aggregations.
+ * @primitive_update_interval: The time between monitoring primitive updates.
+ *
+ * For each @sample_interval, DAMON checks whether each region is accessed or
+ * not. It aggregates and keeps the access information (number of accesses to
+ * each region) for @aggr_interval time. DAMON also checks whether the target
+ * memory regions need update (e.g., by ``mmap()`` calls from the application,
+ * in case of virtual memory monitoring) and applies the changes for each
+ * @primitive_update_interval. All time intervals are in micro-seconds.
+ * Please refer to &struct damon_primitive and &struct damon_callback for more
+ * detail.
+ *
+ * @kdamond: Kernel thread who does the monitoring.
+ * @kdamond_stop: Notifies whether kdamond should stop.
+ * @kdamond_lock: Mutex for the synchronizations with @kdamond.
+ *
+ * For each monitoring context, one kernel thread for the monitoring is
+ * created. The pointer to the thread is stored in @kdamond.
+ *
+ * Once started, the monitoring thread runs until explicitly required to be
+ * terminated or every monitoring target is invalid. The validity of the
+ * targets is checked via the &damon_primitive.target_valid of @primitive. The
+ * termination can also be explicitly requested by writing non-zero to
+ * @kdamond_stop. The thread sets @kdamond to NULL when it terminates.
+ * Therefore, users can know whether the monitoring is ongoing or terminated by
+ * reading @kdamond. Reads and writes to @kdamond and @kdamond_stop from
+ * outside of the monitoring thread must be protected by @kdamond_lock.
+ *
+ * Note that the monitoring thread protects only @kdamond and @kdamond_stop via
+ * @kdamond_lock. Accesses to other fields must be protected by themselves.
+ *
+ * @primitive: Set of monitoring primitives for given use cases.
+ * @callback: Set of callbacks for monitoring events notifications.
+ *
+ * @target: Pointer to the user-defined monitoring target.
+ */
+struct damon_ctx {
+ unsigned long sample_interval;
+ unsigned long aggr_interval;
+ unsigned long primitive_update_interval;
+
+/* private: internal use only */
+ struct timespec64 last_aggregation;
+ struct timespec64 last_primitive_update;
+
+/* public: */
+ struct task_struct *kdamond;
+ bool kdamond_stop;
+ struct mutex kdamond_lock;
+
+ struct damon_primitive primitive;
+ struct damon_callback callback;
+
+ void *target;
+};
+
+#ifdef CONFIG_DAMON
+
+struct damon_ctx *damon_new_ctx(void);
+void damon_destroy_ctx(struct damon_ctx *ctx);
+int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int,
+ unsigned long aggr_int, unsigned long primitive_upd_int);
+
+int damon_start(struct damon_ctx **ctxs, int nr_ctxs);
+int damon_stop(struct damon_ctx **ctxs, int nr_ctxs);
+
+#endif /* CONFIG_DAMON */
+
+#endif /* _DAMON_H */
diff --git a/mm/Kconfig b/mm/Kconfig
index 40a9bfcd5062..f5f4fddc67b1 100644
--- a/mm/Kconfig
+++ b/mm/Kconfig
@@ -889,4 +889,6 @@ config IO_MAPPING
config SECRETMEM
def_bool ARCH_HAS_SET_DIRECT_MAP && !EMBEDDED
+source "mm/damon/Kconfig"
+
endmenu
diff --git a/mm/Makefile b/mm/Makefile
index e3436741d539..709674b13497 100644
--- a/mm/Makefile
+++ b/mm/Makefile
@@ -128,3 +128,4 @@ obj-$(CONFIG_PTDUMP_CORE) += ptdump.o
obj-$(CONFIG_PAGE_REPORTING) += page_reporting.o
obj-$(CONFIG_IO_MAPPING) += io-mapping.o
obj-$(CONFIG_HAVE_BOOTMEM_INFO_NODE) += bootmem_info.o
+obj-$(CONFIG_DAMON) += damon/
diff --git a/mm/damon/Kconfig b/mm/damon/Kconfig
new file mode 100644
index 000000000000..d00e99ac1a15
--- /dev/null
+++ b/mm/damon/Kconfig
@@ -0,0 +1,15 @@
+# SPDX-License-Identifier: GPL-2.0-only
+
+menu "Data Access Monitoring"
+
+config DAMON
+ bool "DAMON: Data Access Monitoring Framework"
+ help
+ This builds a framework that allows kernel subsystems to monitor
+ access frequency of each memory region. The information can be useful
+ for performance-centric DRAM level memory management.
+
+ See https://damonitor.github.io/doc/html/latest-damon/index.html for
+ more information.
+
+endmenu
diff --git a/mm/damon/Makefile b/mm/damon/Makefile
new file mode 100644
index 000000000000..4fd2edb4becf
--- /dev/null
+++ b/mm/damon/Makefile
@@ -0,0 +1,3 @@
+# SPDX-License-Identifier: GPL-2.0
+
+obj-$(CONFIG_DAMON) := core.o
diff --git a/mm/damon/core.c b/mm/damon/core.c
new file mode 100644
index 000000000000..651590bf49b1
--- /dev/null
+++ b/mm/damon/core.c
@@ -0,0 +1,320 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Data Access Monitor
+ *
+ * Author: SeongJae Park <sjpark@...zon.de>
+ */
+
+#define pr_fmt(fmt) "damon: " fmt
+
+#include <linux/damon.h>
+#include <linux/delay.h>
+#include <linux/kthread.h>
+#include <linux/slab.h>
+
+static DEFINE_MUTEX(damon_lock);
+static int nr_running_ctxs;
+
+struct damon_ctx *damon_new_ctx(void)
+{
+ struct damon_ctx *ctx;
+
+ ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
+ if (!ctx)
+ return NULL;
+
+ ctx->sample_interval = 5 * 1000;
+ ctx->aggr_interval = 100 * 1000;
+ ctx->primitive_update_interval = 60 * 1000 * 1000;
+
+ ktime_get_coarse_ts64(&ctx->last_aggregation);
+ ctx->last_primitive_update = ctx->last_aggregation;
+
+ mutex_init(&ctx->kdamond_lock);
+
+ ctx->target = NULL;
+
+ return ctx;
+}
+
+void damon_destroy_ctx(struct damon_ctx *ctx)
+{
+ if (ctx->primitive.cleanup)
+ ctx->primitive.cleanup(ctx);
+ kfree(ctx);
+}
+
+/**
+ * damon_set_attrs() - Set attributes for the monitoring.
+ * @ctx: monitoring context
+ * @sample_int: time interval between samplings
+ * @aggr_int: time interval between aggregations
+ * @primitive_upd_int: time interval between monitoring primitive updates
+ *
+ * This function should not be called while the kdamond is running.
+ * Every time interval is in micro-seconds.
+ *
+ * Return: 0 on success, negative error code otherwise.
+ */
+int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int,
+ unsigned long aggr_int, unsigned long primitive_upd_int)
+{
+ ctx->sample_interval = sample_int;
+ ctx->aggr_interval = aggr_int;
+ ctx->primitive_update_interval = primitive_upd_int;
+
+ return 0;
+}
+
+static bool damon_kdamond_running(struct damon_ctx *ctx)
+{
+ bool running;
+
+ mutex_lock(&ctx->kdamond_lock);
+ running = ctx->kdamond != NULL;
+ mutex_unlock(&ctx->kdamond_lock);
+
+ return running;
+}
+
+static int kdamond_fn(void *data);
+
+/*
+ * __damon_start() - Starts monitoring with given context.
+ * @ctx: monitoring context
+ *
+ * This function should be called while damon_lock is hold.
+ *
+ * Return: 0 on success, negative error code otherwise.
+ */
+static int __damon_start(struct damon_ctx *ctx)
+{
+ int err = -EBUSY;
+
+ mutex_lock(&ctx->kdamond_lock);
+ if (!ctx->kdamond) {
+ err = 0;
+ ctx->kdamond_stop = false;
+ ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
+ nr_running_ctxs);
+ if (IS_ERR(ctx->kdamond)) {
+ err = PTR_ERR(ctx->kdamond);
+ ctx->kdamond = 0;
+ }
+ }
+ mutex_unlock(&ctx->kdamond_lock);
+
+ return err;
+}
+
+/**
+ * damon_start() - Starts the monitorings for a given group of contexts.
+ * @ctxs: an array of the pointers for contexts to start monitoring
+ * @nr_ctxs: size of @ctxs
+ *
+ * This function starts a group of monitoring threads for a group of monitoring
+ * contexts. One thread per each context is created and run in parallel. The
+ * caller should handle synchronization between the threads by itself. If a
+ * group of threads that created by other 'damon_start()' call is currently
+ * running, this function does nothing but returns -EBUSY.
+ *
+ * Return: 0 on success, negative error code otherwise.
+ */
+int damon_start(struct damon_ctx **ctxs, int nr_ctxs)
+{
+ int i;
+ int err = 0;
+
+ mutex_lock(&damon_lock);
+ if (nr_running_ctxs) {
+ mutex_unlock(&damon_lock);
+ return -EBUSY;
+ }
+
+ for (i = 0; i < nr_ctxs; i++) {
+ err = __damon_start(ctxs[i]);
+ if (err)
+ break;
+ nr_running_ctxs++;
+ }
+ mutex_unlock(&damon_lock);
+
+ return err;
+}
+
+/*
+ * __damon_stop() - Stops monitoring of given context.
+ * @ctx: monitoring context
+ *
+ * Return: 0 on success, negative error code otherwise.
+ */
+static int __damon_stop(struct damon_ctx *ctx)
+{
+ mutex_lock(&ctx->kdamond_lock);
+ if (ctx->kdamond) {
+ ctx->kdamond_stop = true;
+ mutex_unlock(&ctx->kdamond_lock);
+ while (damon_kdamond_running(ctx))
+ usleep_range(ctx->sample_interval,
+ ctx->sample_interval * 2);
+ return 0;
+ }
+ mutex_unlock(&ctx->kdamond_lock);
+
+ return -EPERM;
+}
+
+/**
+ * damon_stop() - Stops the monitorings for a given group of contexts.
+ * @ctxs: an array of the pointers for contexts to stop monitoring
+ * @nr_ctxs: size of @ctxs
+ *
+ * Return: 0 on success, negative error code otherwise.
+ */
+int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
+{
+ int i, err = 0;
+
+ for (i = 0; i < nr_ctxs; i++) {
+ /* nr_running_ctxs is decremented in kdamond_fn */
+ err = __damon_stop(ctxs[i]);
+ if (err)
+ return err;
+ }
+
+ return err;
+}
+
+/*
+ * damon_check_reset_time_interval() - Check if a time interval is elapsed.
+ * @baseline: the time to check whether the interval has elapsed since
+ * @interval: the time interval (microseconds)
+ *
+ * See whether the given time interval has passed since the given baseline
+ * time. If so, it also updates the baseline to current time for next check.
+ *
+ * Return: true if the time interval has passed, or false otherwise.
+ */
+static bool damon_check_reset_time_interval(struct timespec64 *baseline,
+ unsigned long interval)
+{
+ struct timespec64 now;
+
+ ktime_get_coarse_ts64(&now);
+ if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) <
+ interval * 1000)
+ return false;
+ *baseline = now;
+ return true;
+}
+
+/*
+ * Check whether it is time to flush the aggregated information
+ */
+static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx)
+{
+ return damon_check_reset_time_interval(&ctx->last_aggregation,
+ ctx->aggr_interval);
+}
+
+/*
+ * Check whether it is time to check and apply the target monitoring regions
+ *
+ * Returns true if it is.
+ */
+static bool kdamond_need_update_primitive(struct damon_ctx *ctx)
+{
+ return damon_check_reset_time_interval(&ctx->last_primitive_update,
+ ctx->primitive_update_interval);
+}
+
+/*
+ * Check whether current monitoring should be stopped
+ *
+ * The monitoring is stopped when either the user requested to stop, or all
+ * monitoring targets are invalid.
+ *
+ * Returns true if need to stop current monitoring.
+ */
+static bool kdamond_need_stop(struct damon_ctx *ctx)
+{
+ bool stop;
+
+ mutex_lock(&ctx->kdamond_lock);
+ stop = ctx->kdamond_stop;
+ mutex_unlock(&ctx->kdamond_lock);
+ if (stop)
+ return true;
+
+ if (!ctx->primitive.target_valid)
+ return false;
+
+ return !ctx->primitive.target_valid(ctx->target);
+}
+
+static void set_kdamond_stop(struct damon_ctx *ctx)
+{
+ mutex_lock(&ctx->kdamond_lock);
+ ctx->kdamond_stop = true;
+ mutex_unlock(&ctx->kdamond_lock);
+}
+
+/*
+ * The monitoring daemon that runs as a kernel thread
+ */
+static int kdamond_fn(void *data)
+{
+ struct damon_ctx *ctx = (struct damon_ctx *)data;
+
+ mutex_lock(&ctx->kdamond_lock);
+ pr_info("kdamond (%d) starts\n", ctx->kdamond->pid);
+ mutex_unlock(&ctx->kdamond_lock);
+
+ if (ctx->primitive.init)
+ ctx->primitive.init(ctx);
+ if (ctx->callback.before_start && ctx->callback.before_start(ctx))
+ set_kdamond_stop(ctx);
+
+ while (!kdamond_need_stop(ctx)) {
+ if (ctx->primitive.prepare_access_checks)
+ ctx->primitive.prepare_access_checks(ctx);
+ if (ctx->callback.after_sampling &&
+ ctx->callback.after_sampling(ctx))
+ set_kdamond_stop(ctx);
+
+ usleep_range(ctx->sample_interval, ctx->sample_interval + 1);
+
+ if (ctx->primitive.check_accesses)
+ ctx->primitive.check_accesses(ctx);
+
+ if (kdamond_aggregate_interval_passed(ctx)) {
+ if (ctx->callback.after_aggregation &&
+ ctx->callback.after_aggregation(ctx))
+ set_kdamond_stop(ctx);
+ if (ctx->primitive.reset_aggregated)
+ ctx->primitive.reset_aggregated(ctx);
+ }
+
+ if (kdamond_need_update_primitive(ctx)) {
+ if (ctx->primitive.update)
+ ctx->primitive.update(ctx);
+ }
+ }
+
+ if (ctx->callback.before_terminate &&
+ ctx->callback.before_terminate(ctx))
+ set_kdamond_stop(ctx);
+ if (ctx->primitive.cleanup)
+ ctx->primitive.cleanup(ctx);
+
+ pr_debug("kdamond (%d) finishes\n", ctx->kdamond->pid);
+ mutex_lock(&ctx->kdamond_lock);
+ ctx->kdamond = NULL;
+ mutex_unlock(&ctx->kdamond_lock);
+
+ mutex_lock(&damon_lock);
+ nr_running_ctxs--;
+ mutex_unlock(&damon_lock);
+
+ do_exit(0);
+}
--
2.17.1
Powered by blists - more mailing lists