[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <4a534102-11ff-c849-781e-ed173e46da56@arm.com>
Date: Thu, 22 Jul 2021 12:38:46 +0530
From: Anshuman Khandual <anshuman.khandual@....com>
To: Gavin Shan <gshan@...hat.com>, linux-mm@...ck.org
Cc: linux-kernel@...r.kernel.org, catalin.marinas@....com,
will@...nel.org, akpm@...ux-foundation.org, chuhu@...hat.com,
shan.gavin@...il.com
Subject: Re: [PATCH v3 01/12] mm/debug_vm_pgtable: Introduce struct
pgtable_debug_args
On 7/22/21 11:53 AM, Gavin Shan wrote:
> Hi Anshuman,
>
> On 7/22/21 2:41 PM, Anshuman Khandual wrote:
>> On 7/21/21 3:50 PM, Gavin Shan wrote:
>>> On 7/21/21 3:44 PM, Anshuman Khandual wrote:
>>>> On 7/19/21 6:36 PM, Gavin Shan wrote:
>>>>> In debug_vm_pgtable(), there are many local variables introduced to
>>>>> track the needed information and they are passed to the functions for
>>>>> various test cases. It'd better to introduce a struct as place holder
>>>>> for these information. With it, what the functions for various test
>>>>> cases need is the struct, to simplify the code. It also makes code
>>>>> easier to be maintained.
>>>>>
>>>>> Besides, set_xxx_at() could access the data on the corresponding pages
>>>>> in the page table modifying tests. So the accessed pages in the tests
>>>>> should have been allocated from buddy. Otherwise, we're accessing pages
>>>>> that aren't owned by us. This causes issues like page flag corruption.
>>>>>
>>>>> This introduces "struct pgtable_debug_args". The struct is initialized
>>>>> and destroyed, but the information in the struct isn't used yet. They
>>>>> will be used in subsequent patches.
>>>>>
>>>>> Signed-off-by: Gavin Shan <gshan@...hat.com>
>>>>> ---
>>>>> mm/debug_vm_pgtable.c | 197 +++++++++++++++++++++++++++++++++++++++++-
>>>>> 1 file changed, 196 insertions(+), 1 deletion(-)
>>>>>
>>>
>>> I saw you've finished the review on PATCH[v3 01/12] and PATCH[v3 02/12].
>>> I will wait to integrate your comments to v4 until you finish the review
>>> on all patches in v3 series.
>>>
>>>>> diff --git a/mm/debug_vm_pgtable.c b/mm/debug_vm_pgtable.c
>>>>> index 1c922691aa61..ea153ff40d23 100644
>>>>> --- a/mm/debug_vm_pgtable.c
>>>>> +++ b/mm/debug_vm_pgtable.c
>>>>> @@ -58,6 +58,36 @@
>>>>> #define RANDOM_ORVALUE (GENMASK(BITS_PER_LONG - 1, 0) & ~ARCH_SKIP_MASK)
>>>>> #define RANDOM_NZVALUE GENMASK(7, 0)
>>>>> +struct pgtable_debug_args {
>>>>> + struct mm_struct *mm;
>>>>> + struct vm_area_struct *vma;
>>>>> +
>>>>> + pgd_t *pgdp;
>>>>> + p4d_t *p4dp;
>>>>> + pud_t *pudp;
>>>>> + pmd_t *pmdp;
>>>>> + pte_t *ptep;
>>>>> +
>>>>> + p4d_t *start_p4dp;
>>>>> + pud_t *start_pudp;
>>>>> + pmd_t *start_pmdp;
>>>>> + pgtable_t start_ptep;
>>>>> +
>>>>> + unsigned long vaddr;
>>>>> + pgprot_t page_prot;
>>>>> + pgprot_t page_prot_none;
>>>>> +
>>>>> + unsigned long pud_pfn;
>>>>> + unsigned long pmd_pfn;
>>>>> + unsigned long pte_pfn;
>>>>> +
>>>>> + unsigned long fixed_pgd_pfn;
>>>>> + unsigned long fixed_p4d_pfn;
>>>>> + unsigned long fixed_pud_pfn;
>>>>> + unsigned long fixed_pmd_pfn;
>>>>> + unsigned long fixed_pte_pfn;
>>>>> +};
>>>>> +
>>>>> static void __init pte_basic_tests(unsigned long pfn, int idx)
>>>>> {
>>>>> pgprot_t prot = protection_map[idx];
>>>>> @@ -955,8 +985,167 @@ static unsigned long __init get_random_vaddr(void)
>>>>> return random_vaddr;
>>>>> }
>>>>> +static void __init destroy_args(struct pgtable_debug_args *args)
>>>>> +{
>>>>> + struct page *page = NULL;
>>>>> +
>>>>> + /* Free (huge) page */
>>>>> + if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
>>>>> + IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
>>>>> + has_transparent_hugepage() &&
>>>>> + args->pud_pfn != ULONG_MAX) {
>>>>> + page = pfn_to_page(args->pud_pfn);
>>>>> + __free_pages(page, HPAGE_PUD_SHIFT - PAGE_SHIFT);
>>>>> + } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
>>>>> + has_transparent_hugepage() &&
>>>>> + args->pmd_pfn != ULONG_MAX) {
>>>>> + page = pfn_to_page(args->pmd_pfn);
>>>>> + __free_pages(page, HPAGE_PMD_ORDER);
>>>>> + } else if (args->pte_pfn != ULONG_MAX) {
>>>>> + page = pfn_to_page(args->pte_pfn);
>>>>> + __free_pages(page, 0);
>>>>> + }
>>>>> +
>>>>> + /* Free page table */
>>>>> + if (args->start_ptep) {
>>>>> + pte_free(args->mm, args->start_ptep);
>>>>> + mm_dec_nr_ptes(args->mm);
>>>>> + }
>>>>> +
>>>>> + if (args->start_pmdp) {
>>>>> + pmd_free(args->mm, args->start_pmdp);
>>>>> + mm_dec_nr_pmds(args->mm);
>>>>> + }
>>>>> +
>>>>> + if (args->start_pudp) {
>>>>> + pud_free(args->mm, args->start_pudp);
>>>>> + mm_dec_nr_puds(args->mm);
>>>>> + }
>>>>> +
>>>>> + if (args->start_p4dp)
>>>>> + p4d_free(args->mm, args->p4dp);
>>>>> +
>>>>> + /* Free vma and mm struct */
>>>>> + if (args->vma)
>>>>> + vm_area_free(args->vma);
>>>>> + if (args->mm)
>>>>> + mmdrop(args->mm);
>>>>> +}
>>>>> +
>>>>> +static int __init init_args(struct pgtable_debug_args *args)
>>>>> +{
>>>>> + struct page *page = NULL;
>>>>> + phys_addr_t phys;
>>>>> + int ret = 0;
>>>>> +
>>>>> + /* Initialize the debugging data */
>>>>> + memset(args, 0, sizeof(*args));
>>>>> + args->page_prot = vm_get_page_prot(VMFLAGS);
>>>>> + args->page_prot_none = __P000;
>>>>
>>>> Please preserve the existing comments before this assignment.
>>>>
>>>> /*
>>>> * __P000 (or even __S000) will help create page table entries with
>>>> * PROT_NONE permission as required for pxx_protnone_tests().
>>>> */
>>>>
>>>
>>> Sure. I will combine the comments in v4 as below:
>>>
>>> /*
>>> * Initialize the debugging arguments.
>>> *
>>> * __P000 (or even __S000) will help create page table entries with
>>> * PROT_NONE permission as required for pxx_protnone_tests().
>>> */
>>>
>>>
>>>>> + args->pud_pfn = ULONG_MAX;
>>>>> + args->pmd_pfn = ULONG_MAX;
>>>>> + args->pte_pfn = ULONG_MAX;
>>>>> + args->fixed_pgd_pfn = ULONG_MAX;
>>>>> + args->fixed_p4d_pfn = ULONG_MAX;
>>>>> + args->fixed_pud_pfn = ULONG_MAX;
>>>>> + args->fixed_pmd_pfn = ULONG_MAX;
>>>>> + args->fixed_pte_pfn = ULONG_MAX;
>>>>> +
>>>>> + /* Allocate mm and vma */
>>>>> + args->mm = mm_alloc();
>>>>> + if (!args->mm) {
>>>>> + pr_err("Failed to allocate mm struct\n");
>>>>> + ret = -ENOMEM;
>>>>> + goto error;
>>>>> + }
>>>>> +
>>>>> + args->vma = vm_area_alloc(args->mm);
>>>>> + if (!args->vma) {
>>>>> + pr_err("Failed to allocate vma\n");
>>>>> + ret = -ENOMEM;
>>>>> + goto error;
>>>>> + }
>>>>> +
>>>>> + /* Figure out the virtual address and allocate page table entries */
>>>>> + args->vaddr = get_random_vaddr();
>>>>
>>>> Please group args->vaddr's init with page_prot and page_prot_none above.
>>>>
>>>
>>> Yes, It will make the code tidy. I'll move this line accordingly in v4,
>>> but the related comments will be dropped as the code is self-explanatory.
>>>
>>> /* Allocate page table entries */
>>>
>>>>> + args->pgdp = pgd_offset(args->mm, args->vaddr);
>>>>> + args->p4dp = p4d_alloc(args->mm, args->pgdp, args->vaddr);
>>>>> + args->pudp = args->p4dp ?
>>>>> + pud_alloc(args->mm, args->p4dp, args->vaddr) : NULL;
>>>>> + args->pmdp = args->pudp ?
>>>>> + pmd_alloc(args->mm, args->pudp, args->vaddr) : NULL;
>>>>> + args->ptep = args->pmdp ?
>>>>> + pte_alloc_map(args->mm, args->pmdp, args->vaddr) : NULL;
>>>>> + if (!args->ptep) {
>>>>> + pr_err("Failed to allocate page table\n");
>>>>> + ret = -ENOMEM;
>>>>> + goto error;
>>>>> + }
>>>>
>>>> Why not just assert that all page table level pointers are allocated
>>>> successfully, otherwise bail out the test completely. Something like
>>>> this at each level.
>>>>
>>>> if (!args->p4dp) {
>>>> pr_err("Failed to allocate page table\n");
>>>> ret = -ENOMEM;
>>>> goto error;
>>>> }
>>>>
>>>> Is there any value in proceeding with the test when some page table
>>>> pointers have not been allocated. Also individual tests do not cross
>>>> check these pointers. Also asserting successful allocations will
>>>> make the freeing path simpler, as I had mentioned earlier.
>>>>
>>>
>>> There is no tests will be carried out if we fail to allocate any level
>>> of page table entries. For other questions, please refer below response.
>>> In summary, this snippet needs to be combined with next snippet, as below.
>>>
>>>>> +
>>>>> + /*
>>>>> + * The above page table entries will be modified. Lets save the
>>>>> + * page table entries so that they can be released when the tests
>>>>> + * are completed.
>>>>> + */
>>>>> + args->start_p4dp = p4d_offset(args->pgdp, 0UL);
>>>>> + args->start_pudp = pud_offset(args->p4dp, 0UL);
>>>>> + args->start_pmdp = pmd_offset(args->pudp, 0UL);
>>>>> + args->start_ptep = pmd_pgtable(READ_ONCE(*(args->pmdp)));
>>>>
>>>> If the above page table pointers have been validated to be allocated
>>>> successfully, we could add these here.
>>>>
>>>> WARN_ON(!args->start_p4dp)
>>>> WARN_ON(!args->start_pudp)
>>>> WARN_ON(!args->start_pmdp)
>>>> WARN_ON(!args->start_ptep)
>>>>
>>>> Afterwards all those if (args->start_pxdp) checks in the freeing path
>>>> will not be required anymore.
>>>>
>>>
>>> The check on @args->start_pxdp is still needed in destroy_args() for
>>> couple of cases: (1) destroy_args() is called on failing to allocate
>>> @args->mm or @args->vma. That time, no page table entries are allocated.
>>> (2) It's possible to fail allocating current level of page table entries
>>> even the previous levels of page table entries are allocated successfully.
>>
>> This makes sense as destroy_args() is getting called if any of these
>> allocations fails during init_args(). Did not realize that earlier.
>>
>>>
>>> So Lets change these (above) two snippets as below in v4:
>>>
>>> /*
>>> * Allocate page table entries. The allocated page table entries
>>> * will be modified in the tests. Lets save the page table entries
>>> * so that they can be released when the tests are completed.
>>> */
>>> args->pgdp = pgd_offset(args->mm, args->vaddr);
>>> args->p4dp = p4d_alloc(args->mm, args->pgdp, args->vaddr);
>>> if (!args->p4dp) {
>>> pr_err("Failed to allocate p4d entries\n");
>>> ret = -ENOMEM;
>>> goto error;
>>> }
>>>
>>> args->start_p4dp = p4d_offset(args->pgdp, 0UL);
>>
>> Dont bring the arg->start_pxdp assignments here. If all page table level
>> pointer allocations succeed, they all get assigned together like we have
>> right now. Although a sanity check afterwards like the following, might
>> still be better.
>>
>> WARN_ON(!args->start_p4dp)
>> WARN_ON(!args->start_pudp)
>> WARN_ON(!args->start_pmdp)
>> WARN_ON(!args->start_ptep)
>>
>
> We have to assign arg->start_pxdp here because destroy_args() relies
> it to release the corresponding page tables in failing path. For example,
> the args->start_p4dp is going to be release if we fail to populate
> args->start_pudp.
Okay.
>
> Ok. I will add WARN_ON() for each level of page table entries right after
> they are assigned in v4.
>
>>> args->pudp = pud_alloc(args->mm, args->p4dp, args->vaddr);
>>> if (!args->pudp) {
>>> pr_err("Failed to allocate pud entries\n");
>>> ret = -ENOMEM;
>>> goto error;
>>> }
>>>
>>> args->pmdp = pmd_alloc(args->mm, args->pudp, args->vaddr);
>>> if (!args->pmdp) {
>>> pr_err("Failed to allocate PMD entries\n");
>>> ret = -ENOMEM;
>>> goto error;
>>> }
>>>
>>> args->start_pmdp = pmd_offset(args->pudp, 0UL);
>>> args->ptep = pte_alloc_map(args->mm, args->pmdp, args->vaddr);
>>> if (!args->ptep) {
>>> pr_err("Failed to allocate page table\n");
>>> ret = -ENOMEM;
>>> goto error;
>>> }
>>>
>>> args->start_ptep = pmd_pgtable(READ_ONCE(*(args->pmdp)));
>>>
>>>>> +
>>>>> + /*
>>>>> + * Figure out the fixed addresses, which are all around the kernel
>>>>> + * symbol (@start_kernel). The corresponding PFNs might be invalid,
>>>>> + * but it's fine as the following tests won't access the pages.
>>>>> + */
>>>>> + phys = __pa_symbol(&start_kernel);
>>>>> + args->fixed_pgd_pfn = __phys_to_pfn(phys & PGDIR_MASK);
>>>>> + args->fixed_p4d_pfn = __phys_to_pfn(phys & P4D_MASK);
>>>>> + args->fixed_pud_pfn = __phys_to_pfn(phys & PUD_MASK);
>>>>> + args->fixed_pmd_pfn = __phys_to_pfn(phys & PMD_MASK);
>>>>> + args->fixed_pte_pfn = __phys_to_pfn(phys & PAGE_MASK);
>>>>> +
>>>>> + /*
>>>>> + * Allocate (huge) pages because some of the tests need to access
>>>>> + * the data in the pages. The corresponding tests will be skipped
>>>>> + * if we fail to allocate (huge) pages.
>>>>> + */
>>>>> + if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
>>>>> + IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
>>>>> + has_transparent_hugepage()) {
>>>>> + page = alloc_pages(GFP_KERNEL | __GFP_NOWARN,
>>>>> + HPAGE_PUD_SHIFT - PAGE_SHIFT);
>>>>
>>>> Please drop __GFP_NOWARN and instead use something like alloc_contig_pages()
>>>> when required allocation order exceed (MAX_ORDER - 1). Else the test might
>>>> not be able to execute on platform configurations, where PUD THP is enabled.
>>>>
>>>
>>> Yes, It's correct that alloc_contig_pages() should be used here, depending
>>> on CONFIG_CONTIG_ALLOC. Otherwise, alloc_pages(...__GFP_NOWARN...) is still
>>> used as we're doing. This snippet will be changed like below in v4:
>>
>> First 'order > (MAX_ORDER - 1)' needs to be established before calling into
>> alloc_contig_pages() without __GFP_NOWARN and set a new flag indicating that
>> there is contig page allocated. But if 'order <= (MAX_ORDER - 1)', then call
>> alloc_pages(..) without __GFP_NOWARN. There is no need to add __GFP_NOWARN
>> in any case. In case CONFIG_CONTIG_ALLOC is not available, directly return a
>> NULL as that would have been the case with alloc_pages(...__GFP_NOWARN...) as
>> well.
>>
>> Symbol alloc_contig_pages() is not available outside CONFIG_CONTIG_ALLOC. So
>> IS_ENABLED() construct will not work, unless there is an empty stub added in
>> the header. Otherwise #ifdef CONFIG_CONTIG_ALLOC needs to be used instead.
>>
>> Regardless please do test this on a x86 platform with PUD based THP in order
>> to make sure every thing works as expected.
>>
>
> Thanks, I will change the code accordingly in v4 and test it on x86
> before posting it.
>
>>>
>>> /*
>>> * Allocate (huge) pages because some of the tests need to access
>>> * the data in the pages. The corresponding tests will be skipped
>>> * if we fail to allocate (huge) pages.
>>> */
>>> if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
>>> IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
>>> IS_ENABLED(CONFIG_CONTIG_ALLOC)) &&
>>> has_transparent_hugepage()) {
>>> page = alloc_contig_pages((1 << (HPAGE_PUD_SHIFT - PAGE_SHIFT)),
>>> GFP_KERNEL | __GFP_NOWARN,
>>> first_online_node, NULL);
>>> if (page) {
>>> args->is_contiguous_pud_page = true;
>>> args->pud_pfn = page_to_pfn(page);
>>> args->pmd_pfn = args->pud_pfn;
>>> args->pte_pfn = args->pud_pfn;
>>> return 0;
>>> }
>>> }
>>>
>>> if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
>>> IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
>>> has_transparent_hugepage()) {
>>> page = alloc_pages(GFP_KERNEL | __GFP_NOWARN,
>>> HPAGE_PUD_SHIFT - PAGE_SHIFT);
>>> if (page) {
>>> args->is_contiguous_pud_page = false;
>>> args->pud_pfn = page_to_pfn(page);
>>> args->pmd_pfn = args->pud_pfn;
>>> args->pte_pfn = args->pud_pfn;
>>> return 0;
>>> }
>>> }
>>>
>>> [... The logic to allocate PMD huge page or page is kept as of being]
>>
>> IIRC it is also not guaranteed that PMD_SHIFT <= (MAX_ORDER - 1). Hence
>> this same scheme should be followed for PMD level allocation as well.
>>
>
> In theory, it's possible to have PMD_SHIFT <= (MAX_ORDER - 1) with misconfigured
> kernel. I will apply the similar logic to PMD huge page in v4.
>
>>> [... The code to release the PUD huge page needs changes based on @args->is_contiguous_pud_page]
>>
>> Right, a flag would be needed to call the appropriate free function.
>>
>
> Yes. We need two falgs for PUD and PMD huge pages separately.
A single flag should be enough, the order would be dependent on
whether args->pud_pfn or args->pmd_pfn is valid.
Powered by blists - more mailing lists