[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <25213093.1r3eYUQgxm@positron.chronox.de>
Date: Sun, 05 Dec 2021 06:52:28 +0100
From: Stephan Müller <smueller@...onox.de>
To: Herbert Xu <herbert@...dor.apana.org.au>,
"David S. Miller" <davem@...emloft.net>,
Nicolai Stange <nstange@...e.de>
Cc: Hannes Reinecke <hare@...e.de>, Torsten Duwe <duwe@...e.de>,
Zaibo Xu <xuzaibo@...wei.com>,
Giovanni Cabiddu <giovanni.cabiddu@...el.com>,
David Howells <dhowells@...hat.com>,
Jarkko Sakkinen <jarkko@...nel.org>,
linux-crypto@...r.kernel.org, linux-kernel@...r.kernel.org,
qat-linux@...el.com, keyrings@...r.kernel.org,
Nicolai Stange <nstange@...e.de>
Subject: Re: [PATCH 09/18] crypto: dh - implement private key generation primitive
Am Mittwoch, 1. Dezember 2021, 01:48:49 CET schrieb Nicolai Stange:
Hi Nicolai,
> The support for NVME in-band authentication currently in the works ([1])
> needs to generate ephemeral DH keys.
>
> Implement crypto_dh_gen_privkey() which is intended to be used from
> the DH implementations just in analogy to how ecc_gen_privkey() is used
> for ECDH.
>
> Make the new crypto_dh_gen_privkey() to follow the approach specified
> in SP800-56Arev3, sec. 5.6.1.1.3 ("Key-Pair Generation Using Extra Random
> Bits").
>
> SP800-56Arev3 specifies a lower as well as an upper bound on the generated
> key's length:
> - it must be >= two times the maximum supported security strength of
> the group in question and
> - it must be <= the length of the domain parameter Q.
> Both of these are available only for the safe-prime groups from
> RFC 3526 or RFC 7919, which had been introduced to the kernel with previous
> patches: for any safe-prime group Q = (P - 1)/2 by definition and the
> individual maximum supported security strength as specified by
> SP800-56Arev3 has already been made available alongside the resp. domain
> parameters with said previous patches. Restrict crypto_dh_gen_privkey() to
> these safe-prime groups, i.e. to those groups with any group_id but
> dh_group_id_unknown. Make it pick twice the maximum supported strength
> rounded up to the next power of two for the output key size. This choice
> respects both, the lower and upper bounds given by SP800-90Arev3 for
> all safe-prime groups known to the kernel by now and is also in line with
> the NVME base spec 2.0, which requires the key size to be >= 256bits.
>
> [1] https://lkml.kernel.org/r/20211122074727.25988-4-hare@suse.de
>
> Signed-off-by: Nicolai Stange <nstange@...e.de>
> ---
> crypto/Kconfig | 1 +
> crypto/dh_helper.c | 128 ++++++++++++++++++++++++++++++++++++++++++++
> include/crypto/dh.h | 22 ++++++++
> 3 files changed, 151 insertions(+)
>
> diff --git a/crypto/Kconfig b/crypto/Kconfig
> index fcb044bdc90a..578711b02bb3 100644
> --- a/crypto/Kconfig
> +++ b/crypto/Kconfig
> @@ -228,6 +228,7 @@ menuconfig CRYPTO_DH
> tristate "Diffie-Hellman algorithm"
> select CRYPTO_KPP
> select MPILIB
> + select CRYPTO_RNG_DEFAULT
> help
> Generic implementation of the Diffie-Hellman algorithm.
>
> diff --git a/crypto/dh_helper.c b/crypto/dh_helper.c
> index fb8df4734dc1..5a8c9c50297f 100644
> --- a/crypto/dh_helper.c
> +++ b/crypto/dh_helper.c
> @@ -9,6 +9,7 @@
> #include <linux/string.h>
> #include <crypto/dh.h>
> #include <crypto/kpp.h>
> +#include <crypto/rng.h>
>
> #define DH_KPP_SECRET_MIN_SIZE (sizeof(struct kpp_secret) + \
> sizeof(enum dh_group_id) + 3 * sizeof(int))
> @@ -592,3 +593,130 @@ int crypto_dh_decode_key(const char *buf, unsigned int
> len, struct dh *params) return 0;
> }
> EXPORT_SYMBOL_GPL(crypto_dh_decode_key);
> +
> +static u64 __add_u64_to_be(__be64 *dst, unsigned int n, u64 val)
> +{
> + unsigned int i;
> +
> + for (i = n; val && i > 0; --i) {
> + u64 tmp = be64_to_cpu(dst[i - 1]);
> +
> + tmp += val;
> + val = tmp >= val ? 0 : 1;
> + dst[i - 1] = cpu_to_be64(tmp);
> + }
> +
> + return val;
> +}
> +
> +int crypto_dh_gen_privkey(enum dh_group_id group_id,
> + char key[CRYPTO_DH_MAX_PRIVKEY_SIZE],
> + unsigned int *key_size)
> +{
> + const struct safe_prime_group *g;
> + unsigned int n, tmp_size;
> + __be64 *tmp;
> + int err;
> + u64 h, o;
> +
> + /*
> + * Generate a private key following NIST SP800-56Ar3,
> + * sec. 5.6.1.1.1 and 5.6.1.1.3 resp.. This is supported only
> + * for the (approved) safe-prime groups.
> + */
> + g = get_safe_prime_group(group_id);
> + if (!g)
What about
if (g == dh_group_id_unknown)
?
> + return -EINVAL;
> +
> + /*
> + * 5.6.1.1.1: choose key length N such that
> + * 2 * ->max_strength <= N <= log2(q) + 1 = ->p_size * 8 - 1
> + * with q = (p - 1) / 2 for the safe-prime groups.
> + * Choose the lower bound's next power of two for N in order to
> + * avoid excessively large private keys while still
> + * maintaining some extra reserve beyond the bare minimum in
> + * most cases. Note that for each entry in safe_prime_groups[],
> + * the following holds for such N:
> + * - N >= 256, in particular it is a multiple of 2^6 = 64
> + * bits and
> + * - N < log2(q) + 1, i.e. N respects the upper bound.
> + */
> + n = roundup_pow_of_two(2 * g->max_strength);
> + WARN_ON_ONCE(n & ((1u << 6) - 1));
> + n >>= 6; /* Convert N into units of u64. */
Couldn't we pre-compute that value for each of the safeprime groups? This
value should be static for each of them.
> +
> + /*
> + * Reserve one extra u64 to hold the extra random bits
> + * required as per 5.6.1.1.3.
> + */
> + tmp_size = (n + 1) * sizeof(__be64);
Maybe add this to the pre-computed value?
> + tmp = kmalloc(tmp_size, GFP_KERNEL);
> + if (!tmp)
> + return -ENOMEM;
> +
> + /*
> + * 5.6.1.1.3, step 3 (and implicitly step 4): obtain N + 64
> + * random bits and interpret them as a big endian integer.
> + */
> + err = -EFAULT;
> + if (crypto_get_default_rng())
> + goto out;
> +
> + err = crypto_rng_get_bytes(crypto_default_rng, (u8 *)tmp, tmp_size);
> + crypto_put_default_rng();
> + if (err)
> + goto out;
> +
> + /*
> + * 5.6.1.1.3, step 5 is implicit: 2^N < q and thus,
> + * M = min(2^N, q) = 2^N.
> + *
> + * For step 6, calculate
> + * key = (tmp[] mod (M - 1)) + 1 = (tmp[] mod (2^N - 1)) + 1.
> + *
> + * In order to avoid expensive divisions, note that
> + * 2^N mod (2^N - 1) = 1 and thus, for any integer h,
> + * 2^N * h mod (2^N - 1) = h mod (2^N - 1) always holds.
> + * The big endian integer tmp[] composed of n + 1 64bit words
> + * may be written as tmp[] = h * 2^N + l, with h = tmp[0]
> + * representing the 64 most significant bits and l
> + * corresponding to the remaining 2^N bits. With the remark
> + * from above,
> + * h * 2^N + l mod (2^N - 1) = l + h mod (2^N - 1).
> + * As both, l and h are less than 2^N, their sum after
> + * this first reduction is guaranteed to be <= 2^(N + 1) - 2.
> + * Or equivalently, that their sum can again be written as
> + * h' * 2^N + l' with h' now either zero or one and if one,
> + * then l' <= 2^N - 2. Thus, all bits at positions >= N will
> + * be zero after a second reduction:
> + * h' * 2^N + l' mod (2^N - 1) = l' + h' mod (2^N - 1).
> + * At this point, it is still possible that
> + * l' + h' = 2^N - 1, i.e. that l' + h' mod (2^N - 1)
> + * is zero. This condition will be detected below by means of
> + * the final increment overflowing in this case.
> + */
> + h = be64_to_cpu(tmp[0]);
> + h = __add_u64_to_be(tmp + 1, n, h);
> + h = __add_u64_to_be(tmp + 1, n, h);
> + WARN_ON_ONCE(h);
> +
> + /* Increment to obtain the final result. */
> + o = __add_u64_to_be(tmp + 1, n, 1);
> + /*
> + * The overflow bit o from the increment is either zero or
> + * one. If zero, tmp[1:n] holds the final result in big-endian
> + * order. If one, tmp[1:n] is zero now, but needs to be set to
> + * one, c.f. above.
> + */
> + if (o)
> + tmp[n] = cpu_to_be64(1);
> +
> + /* n is in units of u64, convert to bytes. */
> + *key_size = n << 3;
> + memcpy(key, &tmp[1], *key_size);
> +
> +out:
> + kfree_sensitive(tmp);
> + return err;
> +}
> +EXPORT_SYMBOL_GPL(crypto_dh_gen_privkey);
> diff --git a/include/crypto/dh.h b/include/crypto/dh.h
> index 7eb1fad93d02..182100395bbb 100644
> --- a/include/crypto/dh.h
> +++ b/include/crypto/dh.h
> @@ -99,4 +99,26 @@ int crypto_dh_encode_key(char *buf, unsigned int len,
> const struct dh *params); */
> int crypto_dh_decode_key(const char *buf, unsigned int len, struct dh
> *params);
>
> +/*
> + * The maximum key length is two times the max. sec. strength of the
> + * safe-prime groups, rounded up to the next power of two.
> + */
> +#define CRYPTO_DH_MAX_PRIVKEY_SIZE (512 / 8)
> +
> +/**
> + * crypto_dh_gen_privkey() - generate a DH private key
> + * @buf: The DH group to generate a key for
> + * @key: Buffer provided by the caller to receive the generated
> + * key
> + * @key_size: Pointer to an unsigned integer the generated key's length
> + * will be stored in
> + *
> + * This function is intended to generate an ephemeral DH key.
> + *
> + * Return: Negative error code on failure, 0 on success
> + */
> +int crypto_dh_gen_privkey(enum dh_group_id group_id,
> + char key[CRYPTO_DH_MAX_PRIVKEY_SIZE],
> + unsigned int *key_size);
> +
> #endif
Ciao
Stephan
Powered by blists - more mailing lists